
PHYSICAL REVIEW A VOLUME 52, NUMBER 5

Noise-free amplification of squeezed light via atomic coherence
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We derive general solutions for the two-mode operators after two laser modes interact with a beam of atoms
coherently prepared in the lower levels in the A scheme. It is shown that under certain conditions, a "noise-
free" energy transfer can take place from a strong coherent mode to a weak squeezed-field mode.
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I. INTRODUCTION

Recent interest in the quantum theories of linear optical
amplifiers stems from their potential use in optical commu-
nication and the amplification of nonclassical light, e.g. ,
squeezed states of the radiation field. It has been known that
a linear amplifier not only amplifies the signal, but also adds
noise. This added noise places limits on the performance of
the amplifiers. For example, it has been shown that a phase-
insensitive amplifier does not preserve squeezing if the gain
is larger than 2 [1].However, in a phase-sensitive amplifier,
it should be possible to amplify the signal in such a way that
no noise is added in the quadrature of interest and all the
noise is fed into the conjugate quadrature [1,2]. Schemes
based on a two-photon amplifier operating in a three-level
atomic system in cascade configuration with upper and lower
atomic states for such "noise-free amplification" have been
proposed [3]. Other systems based on rigged reservoir [4]
and parametric schemes [5] to achieve phase-sensitive am-
plification have also been studied and implemented. In these
phase-sensitive amplifiers, even when no noise is added in
the quadrature of interest, the amplification process itself de-
grades the amount of squeezing in the output. In this paper,
we consider a two-mode linear amplifier operating on a
three-level atomic system in A configuration, in which a
"noise-free" energy transfer from a strong coherent field to a
weak field in squeezed state can take place under certain
conditions, thus leading to a noise-free amplification of
squeezed light. Such a system has been studied previously in
the context of noise-free energy transfer between two coher-
ent modes in Ref. [6].

In general, the exchange of energy from one mode to
another cannot be represented by unitary transformation. For
example, the exchange between two field modes via interac-
tions with an atomic beam will create entanglement between
the field modes and the atoms. Such entanglement has been
studied in the context of state reduction by continuous mea-
surement [7,8]. In this paper we examine the evolution of the
two-mode field density matrix, without selecting a particular
atomic state. We are able to reach simple, general results
which indicate not only an appreciable amount of energy
transfer, but also a transfer of field fluctuations from one

mode to the other. For one mode in a strong coherent state
and the other in a weak squeezed state, a substantial energy
transfer can take place from the coherent mode to the
squeezed mode, and in the process, a significant amount of
squeezing is transferred from the squeezed mode to the co-
herent mode. Under certain conditions the energy transfer
can be made noise-free.

The paper is organized as follows. In Sec. II we derive the
field master equation for atoms prepared in the two lower
states of the A configuration. In Sec. III we discuss the in-
coherent superposition of lower states and show that there is
no exchange between the two modes. In Sec. IV the evolu-
tion of quadrature expectations and their variances in both
modes is derived for coherent superposition of lower states,
and we analyze the approach to achieve noise-free energy
transfer from one mode to the other. Section V contains a
summary and discussion.

II. MODEL AND EQUATIONS

We consider the resonant interaction of two laser beams
with an atomic beam of the A-type atoms as described in
Ref. [8] (see Fig. 1). We assume that no more than one atom
interacts with the laser beams at any given time. The atom is
initially in the two lower levels

~
b) and

~

b'). Each of the two
field modes couples one lower level (but not the other) to the
upper level

~
a). The Hamiltonian in the interaction picture is
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FIG. 1. Three-level atom in coherent superposition of two lower
states. The two laser fields couple the lower levels ~b), ~b') to the

upper level ~a).
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HI= gai la)(bl+ga2la)(b'I+ H.c.,

where a] and a2 are the annihilation operators for the two
laser modes. Under this interaction Hamiltonian the evolu-
tion of the joint field-atom density matrix is, up to the second
order of the interaction time ~,

pAF(7) —p„F(0)= —i 2[Hi i p„F]— [Hl—, [Hi 1 pAF]],

(2)

where the initial joint density matrix p„F(0)= pF(0) p„(0),

PA(o)=pbbl»(bl+Pb b l»(b I+Pbb l»(bl
+ Pb'bib)(b '

I. (3)

Substituting Eqs. (1) and (3) into Eq. (2) and taking trace
over the atomic states, we find the evolution of the field
density matrix:

The master equation is additive. For each mode the atoms act
as an absorber in a two-level model, therefore the two modes
will decay independently at the same rate.

IV. COHERENT INJECTION

Next we consider injected atoms in coherent superposi-
tion of lb) and lb'). pA(o) =

I po)(~iol. wh«e

(7)

From Eq. (5) we find that the field master equation can be
written in the form

pF= —2R(A1A1 pF+ pFA1A1 —2AipFA1).

Here we define the mode operators

PF(r) = PF(0) 1(pbbai a 1+Pbb'a2a i+ Pb'ba ia22
A] 2=

0] 02e
(9a)

+Pb'b' 2 2)PF(0)+PF(0)(Pbb 1 1+Pbb' 2 1

+Pb'haia2+ pb b a2a2) —2[pbbaipF(0)ai

+Pbb a, PF(0)a2+ pb ba2PF(0)a,

A)+A2ai— (9b)

+ Pb'b'a2PF(0)a2]}. (4) (9c)

If the injection rate of atoms is r, and r 7.&& 1, then we obtain
the time derivative of the field density matrix, i.e., the master
equation from Eq. (4):

PF 2R[(Pbba ia 1+Pbb'a2 1+Pb'b ia2+ Pb'b' 2 2)PF

+ PF(Pbb iai+ Pbb' 2 1+Pb'b 1 2+ Pb'b' 2a2)

2(pbba 1PFa—1+Pbb'a 1 pFa2+ pb'ba2pFa 1

+ Pb'b'a2PFa2)]

H«e R= lgl'~«4.

III. INCOHERENT INJECTION

n, + n, e'&=0 (10)

the two modes are effectively decoupled from the atom, and
the amplitudes will not change. In the following we assume
/=0. For any arbitrary operator of normally ordered form,

g = (A t)F (A,') "A&A;,

we find that

The atom is only coupled to the fields through the mode
operators A] and A~. If the initial field amplitudes for the
two modes are 0.],n2, then under the condition

For atoms initially in incoherent superposition of Ib) and

Ib), the off-diagonal elements p» and pb b vanish. From
the general formula Eq. (5) we get

p= 2R(p»+ p, , )[—(a, a,p, +pFa, a, 2a, p, pFa, )—
—(g) = —2R(P+ q)(g), (12a)

(12b)

+ (a2a2pF+ pFa2a2 2a2pFa2)].
Similarly, we can write the time dependence of any normally
ordered operators of the original modes as

at(1+e 2
) —at(1 —e )e ~ ai(1+e ")—ai(1 —e R )e @

((ati)"(a2) "aqia2)(t) =

a (1 +e ') —a (1 —e 2Rt)e'~ a (1+e R') —a (1 —e ')e
2 2 (13)
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a&+a&
x1=

2

a e'@+a'e '&
2 2x2=

2

The quadrature operators are defined as follows: noise. However, when one input is a coherent state and the
other is a squeezed vacuum, we see the noise in one quadra-
ture of the former can be reduced. With the coherent-state
input ((Ax2) ) = 4, we get from Eq. (17a)

ai a2

l

a2e'& —a,'e '&

2l

((~ ( ))')=.-'+ -'(1+ "")'[((~ (o))') — ],
(18a)

A i+A ) A2+A2
Xi=

2 ' 2
X2=

A) —A( A2 —A2
i 2

~ 2

Using the result in Eq. (12b), and noticing that the quadra-
ture operators must satisfy proper commutation relations, we
can write

((~x (t))') =.-'+ -'(1 — "")'I:((»(0))')—-')
(18b)

Hence the quadrature x2 will be squeezed if the quadrature
x& is squeezed initially. In the mean time, x& will become
less squeezed. In the limit Rt~~ both modes are squeezed
to the same amount, which has the maximum value of 25%:

((~x1)') --=((~x2)')~--= I:((~x1(0))')+4']

X,(t) =X,(0)e '+ v'I —e 'Fx

Y, (t) = Y, (0)e '+ $1 —e 'Fr,

X2(t) =X2(0),Y2(t) = Y2(0).

(15a)

(15b)

(15c)

—1
(x, (t)) = (1 —e ')(x2(0)), (20a)

In the mean time, the amplitude of the coherent-state mode is
reduced, while the squeezed vacuum gains a nonzero ampli-
tude according to Eq. (16a):

The random noise operators Fz, Fi satisfy

(Fx) = (Fr) = (FxF„)= 0, and (Fx) = (Fr) = 4. Conse-
quently, the interaction with the atomic beam introduces
noises to the laser beams:

1 + —2Rt —2Rt

x12(t) =x12(0) 2
—x21(0)

l
—4«) 1~2

2 Fx

y1,2(t) =y1,2(0)

—2Rt
—

y2, 1(o)
1 —- 2Rt

t 1
—4«) 1~2

2
Fy. (16b)

(Ax, (t) Ax (t)) = —
—,
' (1 —e ') [((Ax, (0)) )

+((~x (0))')1+ -'(1+e "')
X(»,(0)Ax2(0) ) + —,

' (1 —e ') . (17b)

The variances of these quadrature operators become mixed;
for example,

((»1,2(t))') = -'(1+ e "')'((~x1,2(0))')

+ (1- "')'((~ .,
(0))')--'(1-

X(hx, (0)b,x2(0)) + —,'(1 —e '), (17a)

(x2(t)) = (1+e ')(x2(0)). (20b)

So in the limiting case we can preserve 50% of the input
coherent-state amplitude, and apply up to 25% squeezing to
it.

For the prospect of obtaining noise-free amplification, we
noticed that one can start with a squeezed input of small
amplitude for mode 1, and an unsqueezed coherent state of
large amplitude for mode 2; as in the above discussion, the
quadrature variance does not depend on the amplitudes; it is
possible to achieve a larger amplitude for the squeezed mode
while preserving its squeezed nature.

Assuming Rt&&1, which can be realized by adjusting ~
and r, we can write Eq. (18a) as

((Ax, (t)) )=((Ax, (0)) )+2Rt[-,' —((Ax, (0)) )]
(21)

This means that the squeezed mode can preserve its squeezed
nature, or more precisely, the increase of noise is negligible.
From Eq. (20a) we have

(x, (t)) =Rt(x2(0)). (22)

For large initial coherent state of mode 2, we can have

Rt(x2(0)) =const&) 1. That is to say, the amplitude of mode
1 (initially in squeeze state with very small amplitude) can
be amplified to an arbitrary value while retaining its original
low noise.

We emphasize here that these results are applicable to
arbitrary initial two-mode states, that the two modes are not
necessarily decoupled, not do they need to be in a pure state.
When the two inputs are both coherent states as discussed in
Ref. [81, the outputs remain coherent states. Thus neither
((b,x, ) ), ((Ax2) ), nor (Ax, hx2) will be changed, and the
interaction with the atoms neither increases nor decreases the

V. DISCUSSION

The method described in this paper uses atomic coherence
to transfer energy from one mode to another while eliminat-
ing the noise transferred in the mean time. To illustrate this
point we used coherent-state and squeezed-state inputs in
the above discussion; however, noise-free transfer is
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not restricted to such inputs. We notice that

((Ax, (t)) )=((Ax, (0)) ) for Rt(&1, with arbitrary inputs
from Eq. (17a). Further, it must be pointed out that the output
in either mode is not a squeezed state. From Eq. (17b) one
finds

(Ax, (r)hx2(r)) = — (1 —e ')[((Ax, (0)) )— ]. (23)

(Ax, hx2)

x, and xz are either correlated [if ((b,xt(0)) ) —~0] or
anticorrelated [if ((Ax, (0)) ) —4(0]. The correlation coef-
ficient

changes the field modes but the atoms as well. In deriving
the field master equation we have assumed that the atoms are
not collected and observed. Thus it differs from the schemes
that use the detection of atoms to realize field state changes.
Our results given here can be interpreted as the weighted
averages over all possible number of atoms in the excited
state. In each such case it is also possible to transfer squeez-

ing from one mode to another as well as amplitude. How-

ever, no general formalism exists for these projected field
states corresponding to a different number of excited atoms;
they have to be studied case by case. These studies will be
presented separately.

(24)

We also point out that the change of the two-mode state is
the result of interaction with the atoms, which not only
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