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We consider two models of multimode lasers: the Tang-Statz-deMars equations modeling a solid-state
Fabry-Pérot laser [C.L. Tang, H. Statz, and G. deMars, J. Appl. Phys. 34, 2289 (1963)] and the rate equations
modeling intracavity second-harmonic generation in a Nd:YAG ring laser (where YAG denotes yttrium alumi-
num garnet). In both models, the dynamics is dominated by a global coupling of the modes of the electromag-
netic field in the cavity. Although the equations for these two problems are fairly different, we prove that a
dominant asymptotic approximation can be determined in each case that leads to the same conservative
problem. It depends on one parameter, which measures the strength of the global coupling, and admits a class

of antiphase periodic solutions.

PACS number(s): 42.50.Ne; 42.60.Mi

L. INTRODUCTION

The antiphase state denotes a simple periodic, multiperi-
odic, or chaotic state that was observed recently in experi-
ments, mostly in multimode lasers [1-5]. The simplest type
of antiphase state is characterized by the fact that the inten-
sity of each mode oscillates with a similar wave form but not
with the same phase. A typical example of a periodic an-
tiphase state is shown in Fig. 1: the three modes differ only
by the relative phase, which is equal to one-third of the pe-
riod. More complex antiphase states may occur. Recently,
four broad classes of antiphase states have been described [6]
and the simple case displayed in Fig. 1 belongs to the first
type, referred to as AD1 in [6]. In addition to the fact that
antiphase regimes are easily recognizable, they are character-
ized by surprising spectral properties. Of particular interest is
the total intensity, which oscillates with only one frequency
while the intensity of each mode oscillates with two or more
frequencies [2,3,7—10]. This property remains verified in the
presence of noise and in the chaotic regime as shown experi-
mentally by Otsuka et al. [4,5]. For periodically driven lasers
generalized forms of antiphased states have also been re-
ported [11,12].

Antiphase states appear with high multiplicity because
there is no preferential mode if all modes are equally
coupled. In the case of intracavity second-harmonic genera-
tion, numerical studies have suggested that there are at least
two distinct domains of parameters corresponding to either
harmonic or pulsating antiphase periodic solutions [6,9,13].
Specific forms of antiphase solutions have been studied
mathematically in the context of Josephson-junction arrays
(splay states [14] or ponies on a merry-go-round {15]) and in
the context of coupled laser arrays (splay phase states
[16,17]). The effects of collective coupling were also ex-
plored for coupled nonlinear oscillators from a more general
point of view [18-20].

In this paper, our purpose is to use asymptotic methods to
formulate a minimal problem for a multimode laser exhibit-
ing antiphase dynamics. The equations are derived from two
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multimode laser problems, which have been studied indepen-
dently. This minimal problem is given by

N
xl',=—yp—)\21 Vs (1.1)
7=
Yp=xp(1+y,), (1.2)
where p=1,2, ... ,N. In these equations x, and y, are pro-

portional to the deviation of the population inversion and the
intensity from their steady-state values, respectively. Equa-

yi(t), ya(t), and ys(t)

Y

0 10 i 20 30
time t

FIG. 1. Antiphase state for a three-mode laser. The figure rep-
resents the solution of Egs. (1.1) and (1.2) with N=3 and A=0.4.
The initial conditions are given by x;(0)=-—1, y(0)=0,
x,(0)=0, y,(0)=—0.9, x3(0)=1, and y;(0)=0. y;(¢) is shown
by a full line while y,(#) and y;(¢) are shown by dotted lines. The
labels 1, 2, and 3 denote the maxima for each mode. We note that
these maxima always appear in sequence, which is a typical feature
of an antiphase state.
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tions (1.1) and (1.2) combine two essential features of the
multimode laser. First, each mode oscillates through its in-
trinsic dynamic described by

x'=-y, (1.3)

y' =x(1+y). (1.4)

These equations form a conservative system of equations
that admits a one-parameter family of periodic solutions.
This can be shown by determining a first integral or energy
E=x%2+y—In(1+y) and by analyzing the periodic orbit
in the phase plane. Second, the coupling term

(1.5)

is acting equally on all the laser modes and is the synchro-
nization mechanism leading to antiphase dynamics. The
main purpose of this paper is to show that Eqgs. (1.1) and
(1.2) are the common asymptotic limit of two different laser
models and that they admit antiphase periodic solutions.

In Secs. II and 111, we derive Egs. (1.1) and (1.2) from the
equations describing (i) a multimode Fabry-Pérot laser and
(ii) intracavity second-harmonic generation in a Nd:YAG
ring laser (where YAG denotes yttrium aluminum garnet).
The asymptotic approximation is based on the experimental
laser parameters as described in [1-5]. In Sec. IV, we show
that our minimal model admits antiphase solutions. In Sec. V,
we investigate the case N=2 in detail. In Sec. VI, we discuss
our main results.

I. MULTIMODE FABRY-PEROT LASER

In this section, we consider the Tang-Statz-deMars (TSD)
equations for a N-mode Fabry-Pérot laser [21] and show that
they can be reduced to Egs. (1.1) and (1.2). In terms of
normalized quantities, the TSD equations are given by

N
dng
d—t:W‘”o“z Yi(no— 3, (2.1)
=1
N
dn,,
—d—l_':’YmnOIm_nm( 1+2 ')/klk), (22)
=1
dar,, .
_dl—:K[YWl(nO—_Enm)—l]Im? (23)
where m=1,2, ... ,N. In these equations, ny(#) represents

the space average of the population inversion n(x,?) while
n,,(t) denotes the Fourier integral of n(x,t) with respect to
mode cos(2k,,x):

1 (L
ny= zfo n(x,t)dx, (2.4)
2 (L
= Zfo n(x,t)cos (2k,,x)dx, (2.5)

where k,, is the wave number of mode m and L is the length
of the cavity, which is entirely filled with the active medium.
The modes have average intensities /,,. The parameter w is
the pump parameter and is defined so that w=1 corresponds
to the threshold of the first lasing mode. The parameter v,, is
the ratio of the gain of mode m to the gain of the first mode.
Detailed numerical simulations of the antiphase responses
observed experimentally suggest that vy,, is close to 1. k is
the cavity decay rate in units of the population inversion
decay rate. For simplicity, we assume the same « for all
modes. « is typically large and may vary from 10° to 10® for
solid-state lasers.

We now propose to reformulate the TSD equations in
terms of deviations from a particular reference steady state.
Setting y,,=1 (m=1,...,N) in Egs. (2.1)-(2.3), we deter-
mine an N-mode steady-state solution given by

I,=J=0, (2.6)
n,=n=2(w—1-NJ), 2.7)
no=no=w—NJ, (2.8)

where J satisfies the quadratic equation
(2N?2=N)J?+(w—2Nw+4N)J—2(w—1)=0. 00

From (2.9), we find that there is a unique real and positive
solution if w=1. We next introduce the variables y,,, Ny,
and N,, defined by

I,=J(1+y,), (2.10)
no=no+ (J/x)"’Ny, (2.11)
np=n+(J/k)"2N,, (2.12)

and a time variable s defined by
s=(xJ). (2.13)

Inserting (2.10)—(2.13) into Egs. (2.1)-(2.3) and grouping
the leading O(1) terms give
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dN. N N N
T2 e (kD) T PNe= Uk YR (No= N)(1+y0 = 2 (= DI+ N =N I+ 3,
(2.14)
de 1~ 1=~ a - 1 ~ —
2 =Ty 32 it (kD NG (14 y,) 4 5 (v = Dlg+ (6D No1(1+y,)
N N
— 3D TN ND = [+ 206D N1 2 i [+ 206D PN, 13 20 (= D14y, (215)
dym -
—5 =LNo= N+ (7, = DI ™24+ No=Np) (1 +3,0). (2.16)

These equations were first derived in [4], but without the
O(x~ %) corrections terms. Finally, we consider the limit
k— and assume 1 —v,,= O(x~"?). In terms of the differ-
ence (Ng—N,,) and y,,, Egs. (2.14)—(2.16) reduce to

d N
2 No=N) == 3oy, + (-1 v, (217)

dy
5 = WNo=N)(1+y,).

(2.18)
It is easy to rewrite Egs. (2.17) and (2.18) in the form of Egs.
(1.1) and (1.2). Introducing

S=(370)""s, (2.19)

x,=(379)""A(Ng—N,,) (2.20)
into Egs. (2.17) and (2.18) gives (1.1) and (1.2), where X\ is
defined by

AN=2(1—1A)/itg=2(2—1p) 7. (2.21)
I1I. MULTIMODE INTRACAVITY SECOND-HARMONIC
GENERATION

Roy and co-workers have observed antiphase dynamics in
a Nd:YAG laser that contains a potassium titanyl phosphate
(KTP) crystal that doubles the frequency of the light emitted
by the Nd:YAG crystal [1]. They studied the response of the
laser by using the rate equations [22]

- M P
nl),= Gp—a+egll,—26g21 Ij—2€(1“g)21 J;
L J: J:

~

P

S (3.1)

[ P M

nl,=|H,—a+ ngq—zong1 J,.—25(1—g)§)l LJ,,
L = 7= J

3.2)

G,=7=G,

M P
1 +(1—ﬁ)1p+52‘,1 1j+ﬁ;1 Jj], (3.3)

Ht;: Yy—H,

P M
1+(1—,3)Jq+,82:1 Jj+,3j§ Ij}, (3.4)

where (I,,G,) (1spsM) and (J,,H,) (1=q=<P) denote
the dependent variables for the two polarizations, respec-
tively. I, and G, (J, and H ) represent the intensity and the
gain associated with the p (g) longitudinal mode, respec-
tively. A prime means differentiation with respect to the di-
mensionless time 7=1¢/7;, where 7; is the fluorescence time.
The parameter 7= 7./7; is the ratio of cavity round-trip time
7. and the fluorescence lifetime 7,. @ and vy are the cavity
loss parameter and the small signal gain, which we assumed
to be equal for all modes. 0<<3<C1 is the cross saturation
parameter, 0<<g<1 is a geometrical parameter, and € is a
parameter associated with the KTP crystal.

Both 7 and € are small parameters that suggest investi-
gating the double limit e—0 and %»—0. Equations (3.1)-
(3.4) with e=0 admit a unique, nonzero steady-state inten-
sity given by

G,=H,=a, (3.5)
1,=J,=1, (3.6)
where [ is defined by
— yTa
I_a(l—,B+,BN) 37

and N=M+ P. We next introduce the deviations x,, y,,
u,, and v, defined by

I,=I(1+y,), J,=I(1+v,), (3.8)
Gy=a+tux,, G,=a+pu, 3.9)

and the time s given by
s=6T. (3.10)
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The coefficients w and & are determined so that the equations
for Xps Yps Ugs e}nd Vg do not have the parameter 7 multi-
plying a time derivative. We find

w=n"[(1-pB)Ia]"?, (3.11)

S=n""(1-pB)a]" (3.12)

Inserting (3.8)—(3.12) into Egs. (3.1)—(3.4) leads to the fol-
lowing equations for the variables Xps Yps Ugs and v :
M P

x;,=—yp—)\§:l yj—AEI v—Ax, I+ (1-B)(1+y,)
j= j=

(3.13)

M P
+,Bj:21 (1+yj)+/a’;1 (1+v))

M
g(1+y,7)—2gj:§:1 (1+y))

yl',=(1+yp){xp+B

P
_2(1_“”)21 (1+v;) } (3.14)
f=

M P

u;=—vq—)\2 yj—)\z v,—Au | I +(1-B)(1+v,)
=1 =1

, (3.15)

M P
+Bj§l (1+y,)+p~:j§1 (1+v))

P
g(l-i-vq)—Zng1 (1+v))

v,=(1 +vq)[uq+B

M
—2(1—g),21 (1+y;) } (3.16)

f=

where N\, A, and B are defined by
B

A= =5 (3.17)
A=6"I=5"2I[(1-B)Ia]™ (3.18)
B=eu "U=en~"2[(1-B)Ia]™ "2 (3.19)

We now investigate the limit
€=0(7)—0
keeping «, B, and vy fixed. This implies A=0(B)—0 and

setting A=B =0 in Egs. (3.13)—(3.16) leads to the following
equations for (x,,y,) and (u,,v,):

M P
Xp==y,~ A2 y;=A 2 v,
j=1 j=1

(3.20)
y,=(1+y,)x, (3.21)
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M P
ulg=—vq—)\21 yj——)\.z:l v, (3.22)
j= i=

v =(1+v,)u,. (3.23)
We note that (x,,y,) and (u,,v,) satisfy the same equa-
tions. If we redefine (x,,y,) so that (x,,y,)=(u,,v,) with
p running from M +1 to N=M + P, we obtain the minimal
equations (1.1) and (1.2). Note that the asymmetry between
the two polarizations, which is modeled by the factor g, does
not appear in the leading-order problem.

IV. ANTIPHASE DYNAMICS

In this section, we show that Egs. (1.1) and (1.2) admit
antiphase periodic solutions of the type ADI. Specifically,
we seek a solution of Egs. (1.1) and (1.2) of the form

x,=X(t+¢,), 4.1)

y,=Y(t+,), (4.2)

where the functions X and Y are T-periodic functions of ¢
and ¢, is a constant phase. The AD1 solutions are charac-
terized by the property that each mode oscillates with the
same amplitude. Introducing (4.1) and (4.2) into Egs. (1.1)
and (1.2) and changing the time variable for each mode from
t to {,=t+ ¢, lead to the following problem for the func-
tions X(&,) and Y(§,):

dX(&,)
aE, =—Y(§,)—N\S,, (4.3)
dy
d(f”) =[1+Y(£)), (4.4)
P
where ¢;, and S, are defined by
bip=;— bp» .5)
N
SPE;] Y(€,+ ;). (4.6)

Equations (4.3) and (4.4) are the same equations for each p
provided S, does not depend on p. Then, §=S§, and the
functions X and Y satisfy

dx
E——Y—AS, (4.7)
dy
EE_X(I +Y), (4.8)

where

N
SEZ:] Y(&,+ ). (4.9)

In Appendix A, we use the periodicity of the function Y and
show that § is indeed independent of p provided
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mT

l/fjp=(j—p)—1\7- (m=0,...,N—1), (4.10)

where m denotes a fixed wave number. If m =0, all modes
are oscillating in phase. If m+# 0, each mode oscillates with
the same period but experiences a phase shift equal to a
rational fraction of the period. As a result, each y, becomes
maximum at different times and the sequence of maxima
depends on m. For example, if N=3, m=1 implies that y; is
maximum first, then y, and finally y;. On the other hand,
m=2 implies that y, is maximum first and then y; and y;.

The expression of =S, in terms of X and Y is easy to
find if m=0 (all modes are in phase). Then S=NY and Egs.
(4.7)—-(4.9) become

dx

d_g"_(IH‘N)Y’ (4.11)
dy
E—X(H—Y). 4.12)

If m#0 (all modes are out of phase), we cannot evaluate S
exactly. In the next section, we determine an approximation
for S for the case N=2.

V.N=2

In this section we investigate the case N=2 in detail and
illustrate the properties of the antiphase periodic solutions
discussed in Sec. IV. We construct a small-amplitude solution
and show that the general solution of Egs. (1.1) and (1.2) is
in first approximation a linear combination of an in-phase
periodic solution and an out-of-phase periodic solution. It is
this out-of-phase solution that is responsible for the an-
tiphase dynamics. We also show that the solution remains
bounded for all time. Its amplitude is determined by the ini-
tial conditions and never grows or decays. This suggests that
our minimal problem verifies a conservative property, which
we demonstrate by determining a first integral.

Linearizing Egs. (4.7)—(4.9) with N=2, we find that the
solution is quasiperiodic and depends on two frequencies

w,=0=(1+2\)"2 (5.1)

(Ulzl,

We construct a small-amplitude solution by using a standard
multitime perturbation method [23]. From Egs. (1.1) and
(1.2), we obtain the following approximations for y; and
Ya:

yi~(Ae' +c.c)+(Be+c.c)+(A%p 1?7 +c.c)
+ (B?pye?*+c.c.)+(ABpsei@t it cc)

+(ABpsetT Vitce), (5.2)

y,~(Ae'"+c.c.)—(Be'"+c.c)+(A%pe? o +c.c)
+(B2pye?'+c.c.)—(ABp;ei@Ditcc)
—(ABpse? Vi+ce), (5.3)

where the next correction is proportional to cubic powers of
A and B. The constants p;,p,, ... are defined by

0.6
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FIG. 2. Antiphase periodic state for a two-mode laser. The figure
represents the solution of Egs. (1.1) and (1.2) for N=2 and
A=04. The initial conditions are x;(0)=x,(0)=0,
¥1(0)=—0.38, and y,(0)=0.52.

2 2 _(o+1)? _(0—1)?
P73 P27 3oy P3Tg(o+2)y P4 o(o—2)
(5.4)

A and B now denote amplitudes that are determined uniquely
from the initial conditions. For a particular set of initial con-
ditions, we may have

A=0, (5.5)
which implies, using (5.2) and (5.3), a pure antiphase solu-
tion. An approximation for the initial conditions leading to
this antiphase periodic solution can be found from (5.2) and
(5.3) with A=0. We find the conditions

¥2(0)~—y(0),

B“%[M(O)_ih(o)],

x,(0)~—x,(0),

B“%[)’l(o)‘*'ixl(o)]-

Figure 2 shows a periodic antiphase periodic solution ob-
tained numerically from Egs. (1.1) and (1.2) with N=2. The
initial conditions satisfy (5.6).

With the expression (5.2) and (5.3) we may also compute
the time-dependent contribution of the total intensity

S=y;+y,:

S=~2(Ae'""+c.c)+2(A%pe? " +c.c.)+2(B%*pye?+c.c.).
(5.7)

Equation (5.7) shows the contribution of frequency o, but no
contribution from frequency 1. This feature has been ob-
served numerically from the original laser equations [7-9].
In the particular case of A=0 leading to a pure antiphase
periodic solution, S oscillates with respect to a multiple of
the basic frequency. Its leading approximation is given by
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S=2(B?*pye®'+cc)+---. (5.8)
Note that S is proportional to B? and not B. This explains
why the numerically determined value of S is relatively
small.

The solution (5.2) and (5.3) is determined from the initial
conditions and suggests that the minimal problem does not
include a dissipation mechanism. This can be substantiated
analytically by determining a first integral of Egs. (1.1) and
(1.2). We find

2
E=2 {ix2+Cly,~In(1+y,) ]} +Dxyx,,  (5.9)
P

where

C=(1+2N)/(1+N\), =—N/(1+\). (5.10)
E is the constant of integration (or energy) and its value is
determined from the initial conditions. We determine (5.9)
by using the expression of the energy when A=0 [namely,
E=x%*/2+y—In(1+y)] and by introducing a mixed term
x1x,. The two coefficients C and D are obtained from the
condition dE/dt=0, using first (5.9) and then Egs. (1.1) and
(1.2).

VI. GENERALIZATION AND DISCUSSION

We have formulated a minimal problem for two distinct
multimode lasers and showed that it admits antiphase peri-
odic solutions. The asymptotic approximation is based on the
experimental laser parameters as described in [1-5]. A com-
mon small parameter for both laser systems is the ratio of the
population inversion decay rate and the cavity decay rate.
The other key parameters are specific to each of the two
problems. Although the two problems differ considerably by
their dissipative corrections to the minimal problem, the laser
oscillations are described by the same leading-order nonlin-
ear equations, namely, Eqgs. (1.1) and (1.2). This analysis of
two problems known to exhibit antiphase dynamics allows
us to identify key mechanisms leading to antiphase re-
sponses. For example, we note that the global coupling term
only appears in the x, equations (associated with the popu-
lation inversion), but not in the y, equations (associated with
the intensities). This particular feature is significant if we
consider coupled solid-state lasers [16,17]. We have found
that the original equations can be reduced to the following
problem for x, and y, :

Xp= =Y, 3V (6.1)

N

yo=x,(1+y,) N 2 (v,=v,). (6.2)
J#p

The A =0 problem is conservative and admits periodic solu-
tions as for Eqs. (1.1) and (1.2), but the coupling term
now appears in the equations for the intensities y,. No
antiphase periodic solutions of the form (x,.,y,)
=[x,(t+6,),y,(t+ 6,)] has been found yet.
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The minimal problem exhibits a first integral (energy),
which we determine for arbitrary N in Appendix B. The gen-
eral expression of the energy is given by

N N N
E=2 {5+ Clyp=In (14y) 1302 X x5,
(6.3)
where C and D are defined by
_1+AN _ -\ 6.4
TIENN-1) T THNN—1) 64)

The expression (6.3) allows us to discuss the case of weak
coupling (A—0) and the case of a large number of modes
(N—). For a weak coupling, we find C~1 and D~ —N\
and the total energy is in first approximation a linear combi-
nation of the individual modal energies. For a large number
of modes, we find C~1 and D~—N""! as N— with A
fixed. Increasing the number of modes therefore has the same
effect as a weak coupling. The total energy is again a sum of
all the individual modal energies.

The expression of the energy is useful if we wish to de-
termine the long-time effect of the damping terms. Indeed,
we may obtain an equation for E by differentiating (6.3) and
by using the original equations for x, and y, in order to
eliminate x,, and y 1',. The right-hand side of E’ will then be
proportional to the smaller parameter (the decay rate ratio)
since E is defined as a first integral with this small parameter
equal to zero. By using standard averaging techniques, we
may then obtain a condition on the dissipative correction
terms, which reduce to a solvability condition for the peri-
odic solutions.
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APPENDIX A: SUM OF INTENSITIES

We introduce the sum S, defined as

N
Sp= 2, ¥ (6% U, (A1)
where Y(&,) is T periodic and
mT
z/fjp=(j-p)7 (m=0,...,N—1). (A2)

Our goal is to show that S, is independent of p. To this end,
we show that S, with p# 1 can be rewritten as S;. §; and
S, are given by
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S$1=Y(EN+Y(EtmO)+Y(E+2moO)+ - -

+Y(£+H(N—1)m80), (A3)
S,=Y(,—(p—1)mO)+Y(,—(p—2)mo)+ - - -
+Y(£,+(N—p)mb), (A4)

where 6=T/N and p#1. We now rewrite the first p—1
terms (i.e., all the terms that have a negative phase) using the
fact that Y is T periodic. The T periodicity of Y (&) implies
that

Y+ i)=Y (E+mT+h)=Y(E+mNO+ ) (AS)

and then that

p—1 p—1

; Y(,— (p—k)m6)= ; Y(&,—(p—k)mO+mN6)

p—1
=§ Y(&,+m(N—p+k)). (A6)

Using (A6), we obtain from (A4) that

p—1
S,= ; Y(&+m(N=p+k)+Y(£)+Y(&,+0)+- -

+Y(§,+(N—p)m¥), (A7)
which is matching §, with §;=§,. Consequently,
N
SP:SEEI Y(E+ ;). (A8)
b=

APPENDIX B: FIRST INTEGRAL

In this appendix, we show that

N N N
E=§ {%xf)+C[yp—ln(1+yp)]}+%D§ ; XX,
(B1)

is a first integral of Egs. (1.1) and (1.2) and determine the
coefficients C and D. The form of (B1) is motivated by the
first integral of the laser equations E=x%/2+y—1In(1+y) if
A=0 and an analysis of the case N=2 (Sec. V), which sug-
gests the introduction of mixed products x,x, . The two co-
efficients C and D are obtained by using the condition
dE/dt=0. Using (B1), we have

N

xp+D§ Xq

N

+C>
P

d
—Ly,(1+y,)"'=0,

dE % dx, y
dt < d dt
(B2)

t

where g # p in the first summation. Using (1.1) and (1.2), Eq.
(B2) becomes
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N N
—yp—AEk: yk) (xp+D§ xq) +Cxpyp} =0
(B3)

>

or, equivalently,

N N N
Ep: xp(—yp—hg yk)—Dy,,Eq: X,

N N
—w}k‘, Ve X+ Cx,y,1=0. (B4)
q

Note that

N N N
g ; xq=(N—1)§ Xp, (BS5)

which allows us to simplify the AD term in (B4):

N
xp( _yp_)\g yk)
N N
-Dy, >, xq—)\D(N—l)xp; Y+ Cx,py,
q

>

=0, (B6)
Separating the terms x,y, and x,y,, we rewrite (B6) as
N

> xy[—1-A+C—AD(N—1)]
p

N
+2 2 x,y[-A=D-AD(N—-1)]=0, (B7)
9

M=

which implies that the coefficients are zero. From these con-
ditions, we obtain C and D

1+AN -\

“Tao-1n P imeen ®®
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