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A mathematical stability analysis is presented of the two-beam interactions in quadratic optical nonlinear
media that are now attracting such a lot of attention. The averaged Lagrangian is used, within a variational
method, and the analysis is based upon a Gaussian trial function. The stability is governed by parameters that
can be classified into two groups. One describes spatial solitonlike beam positions and propagation directions
and the other describes beam sizes and phases. It is shown that the evolution of these parameters is determined
by ten, coupled, ordinary differential equations. The stationary states are proved, mathematically, to be stable
for all linear phase mismatch parameter values provided the perturbations are symmetric, i.e., perturbations to
beam positions and directions. However, for perturbations to beam sizes or phases, it is proved that a number
of stability regimes exist, together with forbidden parameter ranges. The analytical conclusions are completely
borne out by computer simulations, and some typical examples are reported here.

PACS number(s): 42.50.Rh, 02.60.Lj, 42.60.Jf, 42.65.Jx

L. INTRODUCTION

Until recently, any discussion of envelope solitons or spa-
tial solitons [1—4] in nonlinear optics was based upon the use
of third-order nonlinearity. The general form for the polar-
ization induced by an electromagnetic wave, during its pas-
sage through a dielectric material, however, apart from its
obvious dependence upon XE}) , the linear susceptibility ten-
sor, depends also upon Xf]z,z , a second-order susceptibility
tensor, as well as X,(,3k)z a third-order susceptibility tensor.
Truncation at the third order is appropriate for most materials
and, furthermore, many elements of these tensors can often
be reduced to zero. This means that the tensors are often
reduced to a single independent parameter, or at most a small
number of independent ones, by the application of the crystal
symmetry operations [5,6]. Indeed, it is fortunate that mate-
rials needed for real applications are, more often than not,
isotropic, amorphous, or possess a rather simple crystal
structure. The method of processing the tensors to contain a
number of independent elements relies upon the simple fact
that crystal structures are invariant with respect to a set of
well-known crystal symmetry operations. The lower the
symmetry of the material, the smaller the number of these
operations becomes. At the highest level, an isotropic, or
amorphous, material is invariant to any symmetry operation.
The number of nonzero elements of ijz,g and XE;,ZI, as the
symmetry falls from the cubic classes down to the triclinic
class, can be easily obtained from the literature [5,6], which
reveals that there is a basic separation of materials into those
that have a center of symmetry and those that do not. The
major conclusion is that for nonzero elements of ijz,z to ex-
ist, the material must lack a center of symmetry. This prop-
erty can be demonstrated only in materials that have not been
considered, until recently [7—20], in the context of nonlinear
index (soliton) effects. In a x® material, however, two field
components can mix to produce a third one that is, once
again, at the fundamental frequency, i.e., backmixing occurs,
involving the second-harmonic waves and the complex con-
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jugate of the fundamental wave. This recent appreciation of
what can happen is dramatic [7,14] and, furthermore, experi-
mental evidence [7] shows that the backmixing (cascading)
process is clearly observable, even for large linear phase mis-
matching.

The answer to the question of whether solitons truly exist
is complicated, as will be partially illustrated by much of
what now follows. In general, a more cautious, solitonlike,
terminology may be needed, but, if the linear phase-
mismatch parameter is large, then the coupled envelope
equations for the w and 2w waves reduce to a single (w)
nonlinear envelope Schrodinger equation and this is called
the cascaded limit. Obviously, it is this equation that has
stable one-dimensional soliton solutions, so choosing to use
the word ‘soliton” to include solutions of the coupled
second-harmonic-fundamental wave equations that are not in
the cascaded limit is a less rigorous terminology.

x'? materials are likely to be in the form of planar
waveguides, for which dispersion is generally weak. Diffrac-
tion, on the other hand, is strong and is not dependent upon
the material [2,3,21]. Furthermore, the scale over which dif-
fraction operates is the order of 1 mm, so the immediate
view is that nonlinear beams, for which the tendency to dif-
fract is balanced by nonlinear self-focusing, will be good
probes for use in a x'®) material. The previous paragraphs
highlight the fact that x‘® materials, operating in harmonic-
fundamental mode or even in cascaded (w) form, are ex-
tremely fascinating. They involve very fast nonlinearities
[17], with materials that are well known. In principle, they
can sustain beams that can be called solitons for a wide range
of the linear phase-mismatch parameter.

II. BASIC THEORY

If a dielectric medium supports an electromagnetic wave
E(r,t) that has an angular frequency w and for which
r=(x,y,z) is a position vector and ¢ is time, then it becomes
polarized by an amount P=P; (i=x,y,z). The important
x® materials have a single optic axis [5,6] (assumed here to
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lie along the z axis) and belong to the tetragonal (e.g.,
BaTiO;), trigonal (e.g., LiNbO;3), or hexagonal (e.g., «
quartz) systems. These materials are uniaxial and most of the
elements of ijzk) are zero.

For example, Xff,g for the 6 class of the hexagonal crystal

[5,6] system is

xxx xxx 0 0 0 0 O yyy yyy
Xij?k): m yyy 0 0 0 0 0 Xxxx Xxxx , (1)
0 0 0O 0 0 0 O 0 0

where the overbar means the negative value and similar ex-
pressions for all the crystal classes are readily available [5,6].
Using expressions like (1) in Maxwell’s equations leads di-
rectly to a description of coupled (w,2w) two-wave behav-
ior.

The crystal class to which lithium niobate belongs is 3m
B quartz belongs to 32, barium titanate belongs to 4mm, and
potassium dihydrogen phosphate to 42m. This paper covers
the hexagonal and trigonal systems and hence the associated
classes 6(Cs;), 6m2(D3y), 32(D5), and 3m(Cs,), where
the parentheses contain the Schoenflies symbol. The princi-
pal axis of these crystals is along z and this is also the propa-
gation direction. For weakly guided TE or TM waves, the
E, field component is negligible, so only E, and/or E, are
finite. The terms in ijzk) that can then feature in the second-
order polarization are the (xxx), (xyy), (yxx), (yyy),
(yxy), (yyx), (xxy), and (xyx) components. Both E, and
E, have © and 2w parts, which will be defined here as
EYEY JE2 ,Ei“’ , and the x component of the second-order
polarization is therefore

Pi2)= SO{waEwE;u+Xma)Ea)E;)_'_XZwaE)ZCwEim

xxx™x xyyHy XXX
2020 20 02 2 2 2
T Xy EYCESH IXoa X JEYEL”
2 2 2
X T X ESEY + X0+ Xy JEVES

ey X ERE X+ X JE E

xXyx y xXyx
2 2 2

X5y T Xy JEVEL“}, 2)
w2w

where the notation x;¢,x;;t”, has been adopted to keep
track of the fundamental and the harmonic wave. In the lit-
erature terms such as (x“2“+ x*“) are often combined into
one symbol x>“® . The fundamental wave is

EY =3[E, (w)e "'+ ccl], (3)

where c.c. is the complex conjugate. The same form is to be

used for Ei‘; and the spatial dependence in E, ,(w) and

E, ,(2w) is implicit. The second-order polarization is
P§2; = %[Pf;,( w)e 19+ Pffy)(Z w)e 2¥+cc]. (@)
After performing all the multiplications, the following forms
for P)(CZ)(Zw) and Pfcz)(w) are obtained:
€o
PP (2w) =3[k EX(0) = K E{(0) —2E () Ey(@)],
(5a)
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PO (w)= %2[2K1Ef(w)Ex(2w)—2K2E;"(a))Ey(2w)

—2K2E;!<(a))EX(2w)—2K1E;k(w)Ey(2w)],
(5b)
in which the following definitions have been used:

ww _ | w2ow_
Xxxx™ Xxxx — K1»

w20 __  w2o_  02o_ wow_ 0o _ 0w __ _
Xxyy = Xyxy = Xyyx = Xayy ™ Xyxy ™ Xyyx ™ 7 K1
oo _ 02w __
Xyyy= Xyyy = K25
2w _  w2w_ w2o_ ww_  0o_ 0o __ _
nyx —Xxyx _Xxxy _Xxxy_nyx—Xxyxw K.

w2w 2w

In Eq. (2) coefficients such as xyo”+ x:o were not rolled
into one coefficient x°%°, so this is why x“®=x“2® etc.
k; and k, are associated with the symmetry groups and as-
sociated classes, in the following way: for the hexagonal

system,

K #Kky#0 (6 class),

k=0 (6m2 class),

and for the trigonal system,

k,=0 (32 class),

k=0 (3m class).

There are similar expressions for P;z)(Zw) and P_(Vz)(w).
Taken together, Egs. (5) and the corresponding expressions
for P;z)(Zw) and P;Z)(w) are very interesting. they show
that, depending upon the values of «; and «,, even if E, is
initially set to zero, E, drives P, so E, will start to grow. The
same argument applies to E,. This means that the choice
of symmetry group is important. For example, if
k1 =0(6m2,3m), then setting £, =0 permits E, (TM wave)
to exist by itself without a driving term causing E, to appear.
On the other hand, if x;# 0 then sustaining £, =0 is impos-
sible since E, is finite and drives P, .

The material will be assumed to be in the form of a planar
waveguide. Propagation is along the z axis, guiding is in the
y direction, and the balancing of diffraction with nonlinear
focusing takes place, in the plane of the guide, in the *x
directions. The field components are essentially uniform in
the y direction, with weak guiding, meaning that a TM has
only an E, component, while a TE wave has only an E,
component.

If the beams are TE polarized E(w)=xE, and
E(2w)=XE,,, where X is a unit vector, the nonlinear polar-
izations, for the 32 class, are

EogK
P§2>(2w)spg%3=—°2 LE2 (62)
PP(w)=PP=eoxELE,,. (6b)

The equations for E(w) and E(2w) are
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9*E, J*E, * w?
7ZT+~E;2—+C—28(,,E&)+'C—2K1EGJE2Q,=O, (7a)

&2E2w+a2E2w+ 2w\? . +1 2w\? £ =0
972 oxz T\ ¢ | BrefeT o\ T KiBeTE

(7b)

where &,=n%(w) and £,,=n?(2w) are the linear dielectric
functions at frequencies w and 2w, and n(w) and n(2w) are
the respective refractive indices.

It is convenient now to emphasize the slow variation
of the amplitudes E, and E,, on z. This is done by fact-
oring out the fast z dependence by  writing
E,=E(x,2)explilk,z—wn)] and E;,=E)(x,z)expli(ky,z
—2wt)], defining E=F(x,z) and E,=FE,(x,z), and,
finally, making k,|dE,/9z|>|5%E/9z?| and k,,|dE,/dz]
>|3%E,/0z%|. The fact that k,=(w/c)\Ve, and
k2w=(2w/c)\/—a_2—w are the linear wave numbers means that
the linear phase mismatch is Ak=k,,—2k,. The further
definitions E(w/ \/E)exp(i,Blz) and E,=v exp(if,2), the

transformations  (w/c)?(wk/2k,B)—w, (w/c)*(vk,/
2k,B1)—v, V2k,B1x—x, and B;z—z, and the choice

Ak+ B,—2B3,=0 result in a reduction of the coupled equa-
tions to

ow  FPw

i6—Z+W—W+W*U:0, (83)
) dv  Pu 2
12a5+y—aﬁv+w =0, (8b)

where 8=28,/8, and =k, /2k,=\&e,,/€, is the linear
phase-mismatch parameter. The development leading to Egs.
(8), based, as it is, upon the use of crystal symmetry, shows
clearly how the coupled scalar equations arise. Nevertheless,
the specific form of Eqgs. (8) can be found in a recent publi-
cation [18] provided that the following identifications are
made in [18]: a—aB and x is scaled as vk, Bix—x. The
scaling of w and v in [18] is equivalent to Egs. (8). The
resolution of E; and E, into slowly varying parts w and v
and fast dependences exp(if3;z) and exp(if3,z) is interesting.
In the nonstationary regimes w and v are complex but, for
stationary states, w and v are real and independent of z,
while 3; and B, are exactly the nonlinear phase shifts. This
canonical form of the nonlinear equations describes the com-
petition between diffraction and nonlinearity during the co-
propagation of the second-harmonic wave and the fundamen-
tal wave. They are not restricted to a near phase-matching
limit (a@=1), so neither (2a) nor (2b) is a nonlinear Schro-
dinger equation. This means that exact soliton solutions must
not be expected as stationary states. Solitonlike solutions
should be possible; however, some may well be stable. True
solitons will certainly appear in the cascaded limit
|aBv|>|2a(dv/dz)|,|0*v/dx*|. This cascaded limit gives
v=w?/aB and recovers the nonlinear Schrodinger equation

ow Pw

+

1
- _— = — 2= .
itz w+ B|w| w=0 9)

An effective mass

3.8

% 3.6¢
"
8 .
s 3.4r
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FIG. 1. Variation of the effective mass M with 3, the nonlinear
phase-mismatch parameter. «=1.01 and the true mass has been
divided by the number of peaks in the field distribution to put all the
graphs onto a similar scale. The graphs are labeled with the number
of peaks.

M=\/%J [Lw|?+ alv|?]dx (10)

can be defined through Eq. (4). Viewing the eigenstates as
“particles,” this is a constant of ‘‘the motion” with the other
conserved quantities being the momentum

ow* *o'*w+ dv* *00 dx (11
ox wo"x avé’x av&xx()

w

P=o=|

and the Hamiltonian

2

H-sz ow|? 1&;4r 2, X
N ox 2|0 |W| 5,8|v|
1
——E(W*2v+wzv*) dx. (12)

For stationary solutions dw/dz=dv/dz=0 and the coupled
equations reduce to

d*w

E;T—W'FWU:O, (13a)
d*v )

a—;—aﬁv%—w =0. (13b)

These coupled equations can be integrated once [18] to give

1{dw\? 1/(dv\? 1 af
— — —_ — + = 2,072 2
Z(dx) +4(dx) 2(W“ v W =G

where C is a constant of integration. The case C=0 corre-
sponds to a soliton solution. Equations (13) do not yield any
more conservation laws and analytical solutions can only be
found for certain values of aB. For example, it is easy to
show that w=v=%sech2(x/2) for aB=1, but, in general,
Egs. (13a) and (13b) have to be solved numerically. Figure 1
shows the variation of effective mass [Eq. (10)] with B for
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FIG. 2. Typical symmetric and antisymmetric field profiles.

two different types of symmetric and antisymmetric soliton-
like solutions when a=1.01. Typical forms of the solutions
are displayed in Fig. 2. The single-peak solution has been
reported earlier [17], but the antisymmetric soliton solutions
are interesting because, for these solutions, the v component
is still symmetric in x, while the w component is antisym-
metric about x=0.

Since the original coupled equations are not integrable,
vital properties of their solutions such as their stability and
the kind of initial conditions that will result in a soliton can-
not be discovered by direct mathematics. No stability for
multipeak solutions has been found numerically, but, for
some parameter values, single-peak solutions appear to be
stable. It is important, therefore, to investigate these single-
peak solutions in some detail so that their stability regimes
can be precisely defined. It is clear that general conclusions
cannot be drawn from an inevitably small number of numeri-
cal experiments, so, in the following, a variational method
will be used to analyze the stability of the fundamental soli-
tary single-peak wave.

III. STABILITY ANALYSIS

In x‘® material there is both a fundamental beam (at w)
and a harmonic beam (at 2w), which are copropagating.
What will be done here is to investigate the consequences of
a perturbation to beam position and direction, on the one
hand, and a perturbation to beam size and phase, on the
other. The first kind of perturbation represents a mismatch, in
position or direction, between the fundamental and the har-
monic wave, at the moment of launching. The second type
represents an energy or phase fluctuation. The stability analy-
sis begins with the Lagrangian density [2,3,21] for the
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coupled (v,w) equations, which is

L_i *o'?w ow* +ia >|(o’?v dv*
_2wﬁzwo"z ZU&zvﬂz

owl?

9x

1 2

— 2
w>= 3

v

o 1
po 7'8|vlz+ 3 Wy +w?u®). (14)

At this point some trial functions must be introduced and the
ones selected are Gaussian, simply because they are very
convenient. They are

0
W= 1,exp —p%(x—x1)2+i%(x—x1)+i?1 , (15a)
v=mexp[ — p3(x—x)2 +i&y(x—x,)+i6,], (15b)

where 7;, are amplitudes, p;, are inverse beam widths,
&1, are beam propagation directions, x;, are the beam cen-
ters, and 6, , are phases.

The reduced Lagrangian is [22]

12
\Z:(;’T’) fL dx=Z 1+ %o+ %, (16)
where %, %,, and %}, need not be formally identified at

this stage. The Euler-Lagrange equations are

0% d 0L

g dz|#agian| " an

where g = 7;,p;,0;,&; (i=1,2). Generating useful nonlinear,
ordinary, coupled equations for the parameters in (15) is a
straightforward use of Eq. (17) but does involve consider-
able labor. A typical equation is

LG Mde T T,
p3°%dz T p; dz 2 2p37
aB n, 0%
Bm gy
2. pp 9P
where

2\ 12
5512:(;) W%’?zj exp[—2p%(x~x1)2—p§(x—x2)2]

Xcos[0,— 0+ &(x—xp) — & (x—x;)]dx. (19)

The Hamiltonian of the system is

2 2 2 2
U 2 7 2 72 2 Q’B 72 .
H=p,mi+—¢&+—+= + =t — —— %},
171 4p, ' ) 5 P27 20,27 2 p, 12
(20)
A. Stationary solitary solitons
A stationary solution occurs whenever dx,/dz

=dx,/dz=0, d¢,/dz=d&,/dz=0, d6,/dz=d6,/dz=0,
and (d/dz)(ﬂ%/2p1)=(d/dz)(n%/p2)=0. Such conditions
demand that x1=x2:0, §1=§2=0, 01:02:0, 71= M1o0>

72= 20, P1=P1os P2= P20, and pig,P20, 710, M20 satisfy
the equations

(P%o"' 1)2(29%0"'11%0):29%077%0’ (21a)
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FIG. 3. Ration of second-harmonic wave amplitude to the fun-
damental wave amplitude, as a function of 3. l—M, exact nu-
merical result; ——, variational calculation.

(P2t aB)?(2plot P30) =2p3071 M50, (21b)
(—pTot 1) (2pTo+ p30) =2ps(plo+ 1), (21¢)
(= P30+ aB)(2pio+ prg) =2p3(prp+aB). (21d)

If aB=1, then 7,0=72=3V6, p1p=pn=1/J5, and
=v=(3 \/€/S)exp(—x2/5). This solution is extremely close

to the special exact value [17], which is %sechz(x/Z). For

general «f3, a cubic equation in p?o can be obtained, i.e.,

4-3apB af af
p?0+( 20 )p?0+ i

S P 55 =0 (22)
Only a positive real root of Eq. (22) has any physical mean-
ing, and when a8<0 this real root becomes negative and
the system will not sustain a solitary wave. Once Eq. (22) is
solved pog, 710, and 7, are easily found from

P20=4p1o/(1—ply). (23a)
(2P10 on)
Tho=————(plo+ D(p3+aB).  (23b)
P10P20
(2p10+ P30)
70= g (plo+1)% (23¢)
10

The ratio of 7,¢/7n;, that is needed to sustain a coupled
(2w, w) solitary wave is obtainable from Egs. (23) as a func-
tion of aB. This is plotted in Fig. 3, together with the exact
numerical solutions. It can be seen that the mathematical
results, based upon the variational analysis, and the exact
numerical results coincide, for all practical purposes.

B. Beam position and direction perturbations

In this case, the mismatch in position or direction of the
fundamental and harmonic wave, at the moment of launch-
ing, can be expressed as follows. The equilibrium (stationary
state) positions are x;=x,=0 and &;=¢&,=0, so a distur-
bance to this state will now be defined as x;=dx,,
Xo,=0x,, £1=56¢1, and &,= 6&,, where all the perturbations

are small. The evolution equations, obtained from the Euler-
Lagrange equations, involve only x;,x,,§,, and &,. All the
other equations yield nothing, as expected. If the two vari-
ables a( 730/ p20)é2— (710/2p10)E1=2Mé and x,—x;=A,
where 2M = a( 77%0/ p20)+(77f0/2p10) is the total mass, are
used, then the evolution equations reduce to

dA |1 pay 21010+£ 75070
dz |« a’”’l%o 7)%0 2 (ZP%()JFP%O)?’/2
( P20 2010)2
X >+ ——| |M&=aé, (24)
Ty 710
d A
52_4‘/5#%7513%0!)201” —bA. (25)

Hence

l(dA 2+abA2_0 1(dé 2+ab . i
2\az) T2 3lg) Tt @9

Since a>0 and b>0 the potentials U(A)=(ab/2)A? and
U(&)=(ab/2)& are always concave at £=0 and A=0. The
conclusion is that the stationary solutions are always stable
when subjected to this type of perturbation and this is true
for all af3.

C. Beam size and phase perturbations

For this type of perturbation &,, &,, x;, and x, remain
at their initial values, zero in this case. The perturbation
drives p; to p;o+ 6p; (i=1,2) and #, and 6, shift from zero
to become 6;= 66, and 6,= 66, .

The perturbation will be characterized below with the
new variables N;= 7]1/2p1 and N,= n%/pz, so that
811=(p10/1710) 6N+ (1710/2p19) 6p; , for example. N and
N, represent the total energy in the fundamental and the
harmonic, respectively. First, the Euler-Lagrange equations
generate the differential equations

_d_(_ﬁ_)_ V2737
dz \2p,

———sin( 6, —
V2pi+p;

61), (27a)

d 772) \/_771772
———=in( 6, — s 27b
dz( m (6,—6,) (27b)
dé, P17

-2 —2+2\/—\/———zcos(02 ), (27¢c)
d92 _P_%_% V2 pamil s os(65— 0)) (274)

dZ 2 2 2 :/2p2—|—p2 ]

and the algebraic equations

2p%(2p%+p§)3 =p3 77%0052( 6,—6,), (28a)
P171(2p1 = p3)=p37;. (28b)

Substituting the perturbed quantities and keeping only the
lowest order in 6p;, dp,, N, 6N,, 86,, and 66, gives
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d d
—5N1=-a(02—01), a25N2=a(02—9]),

= (29a)

d
5501:b16p1+b25p2+b35N2,

d
E562:b45p1+b5§p2+b65N1+b75N2, (29b)

where a= \/517%07720/\/2p%0+ p%o and by, ...,b; require
some effort to obtain, but can be obtained in a relatively
straightforward way. Explicitly,

b= —dpg+ 2V2p1o7m20 [ 1 2p10 ) (30a)
== — 57—
! 10 \/2p%0+p§0 P1o 2P%O+on
_2\/50107720 1 P20
2= - 7|
V2piotp2 | 2P0 2P0+ P2
\/EPIO P20
T (30b)
2piot P2 720
_@ P27 720 L 2py
Y 2a \2pigtps\Pi0 2pi0t P20’
P N2 pmid 0 [ 1 2pag
bsz——+2—'\/ 5 5 ) _22+2 N (SOC)
a @ N2pigtpa\ 2P0 2PioT P
2 2,3
b V2piop20/ 720 by V2 [ phomie 70 (30d)
N Ay T Al 2 2|
av2piptpo 4a 2piotpoo

8p, and Sp, are related to SN and SN, by the equations
5p,=bgSN|+bgSN,, (31a)
6py=b1g6N;+b 6N, (31b)

where

o ( 2pT— P%o) ( 10p7y— P%o)
8 ,

3750\ 2p%0+ P20/ \ 4pT0— P30

__P1oP20
6 77%0

by (32a)

—4plot 16piop3y— 3p30]
(2p%0+ P30)(4pT0—p30) |

k)

2, 2
b :2P10P20<2P%0“P§0)(8P10+P20
7 393 \2pT0+ P30/ \ 4pT0— P20

Plopzo(P%o_ Pgo)
(2pT0+ P30 (4pT0—P30)

8p10P20

by =— 7
375

. (32b)

It is now easy to show that (d/dz)(8N;+ 6N,) =0, so that it
is safe to choose 6N,+ 8N,=0 as an initial value. After
adopting the definitions 2N= 6N, — 6N and 6= 6,— 6, the
evolution of this kind of perturbation is described by the
simple equations

5 .
' no solitary
4 stable  waves
=:,~4
3] ,5
3 5 no solitary | ¢table
waves
11 ;
] :
_ =0
O ""Ir,f.;«u-n'Stvalre_'_'_j;
0 05 1 15 2
o

FIG. 4. Stability and existence regions of the (,a) plane, for
single-peak solutions.

dN

_6—1; =a 0, (33)
40 _ bN 34
dZ - s ( )

where b=(b,—~b)(bg—bg)+(bs—b,)(byg—b,))+bs3+bg
—b-. The coupled equations (33) and (34) give

1(dN)2 B 1(d0)2 _
3\ 2z) Tum=0, || +Ue)=0, (35

where

<d2U(N)) _(dzU(H)) 3
an® |, , \Taee |, ~°

determines the shape of the potential functions U(N) and
U(#) at the origin (N=0, 6=0).

For ab>0, d*U/dN*=d*U/d6*>0 and the stationary
solutions can be stable. For ab<<0, however, all solitary
wave solutions are unstable. Figure 4 shows the stability re-
gions on the (B,a) plane. The figure shows that there are a
number of domains in which solitary waves can exist, but not
all of them are stable. The boundary ab=0 is drawn in Fig.
4 because this condition emerged from the above stability
analysis. In addition, the nonlinear phase-matching condition
is 2k, —kp,— B>,+2B;=0, so this must also be taken into
account when defining the existence regimes of the solitary
waves. The crucial point here is that 8,>0, 8,>0, and
a3>0 so the phase-matching condition is

l—«a 1—a

ﬁ1=4kwmv Blzzkwﬁ——‘_—z (36)
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FIG. 5. Numerical simulations of the behavior of single-peak coupled waves. The simulations show the propagation behavior of v
(harmonic) and w (fundamental) for (a) (B,@)=(2.0,1.01) and (b) (B,a)=(0.2,1.01).

The linear phase-matching point a=1 separates the regions
in which 1—a is positive or negative. For example, if
a>1, then 1—a<0, so that it is necessary to have
B—4<0 to keep B;,>0. A second boundary line on the
(B, a) plot, for =4, must be drawn, so the division of the
(B,a) plane into permitted solitary wave solutions is more
complicated than that defined by ab=0. As pB—4,
B12—>, so the line B=4 for a given «a separates out the
regions where nonlinear phase matching is possible. In this
sense, the line defined by S=4 could be called the nonlinear
phase-matching edge. Clearly, with 8, ,—®, as B—4 it will
require more and more power to drive such a state. Figure 5
contains numerical simulations that provide an exact verifi-
cation of the stability conclusions by sampling a few param-
eter values.

IV. CONCLUSIONS

The ideas involved in cascaded nonlinearity are clearly
exposed through a study of scalar waves. The involvement of
crystal symmetry is clearly explained and the basic equations
for copropagating fundamental and second-harmonic waves
are simply derived. A detailed discussion, in terms of a
phase-mismatch parameter, is given and the solutions of the
coupled nonlinear equations are then analyzed in some de-

tail. It is emphasized that only in certain circumstances can
an analytical solution be found. In general, numerical analy-
sis must be resorted to. The problem of determining the sta-
bility then arises. An averaged Lagrangian method is used
for the stability analysis, based upon Gaussian trial func-
tions. It is concluded that the interaction between the second-
harmonic wave and the fundamental beam can be described
in elegant mathematical terms and that the analysis is readily
confirmed by exact numerical simulations. It is shown that it
is convenient to discuss the two-beam interaction in terms of
an “effective mass.” It is then shown that the ‘“mass” with
linear phase-mismatch plane contains ranges in which the
solitary waves can exist. In fact, it is fascinating that by
combining the stability analysis, with the nonlinear phase-
matching condition, very precise domains of stability can be
found analytically. Finally, it is emphasized that the varia-
tional analysis reported here, together with the choice of trial
function, is perfectly accurate when compared to the true
dynamics, as revealed by the numerical simulations.
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