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Stability of scalar spatial solitons in cascadable nonlinear media
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A mathematical stability analysis is presented of the two-beam interactions in quadratic optical nonlinear
media that are now attracting such a lot of attention. The averaged Lagrangian is used, within a variational
method, and the analysis is based upon a Gaussian trial function. The stability is governed by parameters that
can be classified into two groups. One describes spatial solitonlike beam positions and propagation directions
and the other describes beam sizes and phases. It is shown that the evolution of these parameters is determined

by ten, coupled, ordinary differential equations. The stationary states are proved, mathematically, to be stable
for all linear phase mismatch parameter values provided the perturbations are symmetric, i.e., perturbations to
beam positions and directions. However, for perturbations to beam sizes or phases, it is proved that a number
of stability regimes exist, together with forbidden parameter ranges. The analytical conclusions are completely
borne out by computer simulations, and some typical examples are reported here.

PACS number(s): 42.50.Rh, 02.60.Lj, 42.60.Jf, 42.65.Jx

I. INTRODUCTION

Until recently, any discussion of envelope solitons or spa-
tial solitons [1—4] in nonlinear optics was based upon the use
of third-order nonlinearity. The general form for the polar-
ization induced by an electromagnetic wave, during its pas-
sage through a dielectric material, however, apart from its

obvious dependence upon y, ,', the linear susceptibility ten-

sor, depends also upon y,. k, a second-order susceptibility

tensor, as well as y,"&&, a third-order susceptibility tensor.
Truncation at the third order is appropriate for most materials
and, furthermore, many elements of these tensors can often
be reduced to zero. This means that the tensors are often
reduced to a single independent parameter, or at most a small
number of independent ones, by the application of the crystal
synitnetry operations [5,6]. Indeed, it is fortunate that mate-
rials needed for real applications are, more often than not,
isotropic, amorphous, or possess a rather simple crystal
structure. The method of processing the tensors to contain a
number of independent elements relies upon the simple fact
that crystal structures are invariant with respect to a set of
well-known crystal symmetry operations. The lower the
symmetry of the material, the smaller the number of these
operations becomes. At the highest level, an isotropic, or
amorphous, material is invariant to any symmetry operation.
The number of nonzero elements of y, k and y, kI, as the
symmetry falls from the cubic classes down to the triclinic
class, can be easily obtained from the literature [5,6], which
reveals that there is a basic separation of materials into those
that have a center of symmetry and those that do not. The
major conclusion is that for nonzero elements of y,,~ to ex-
ist, the material must lack a center of symmetry. This prop-
erty can be demonstrated only in materials that have not been
considered, until recently [7—20], in the context of nonlinear
index (soliton) effects. In a yt 1 material, however, two field
components can mix to produce a third one that is, once
again, at the fundamental frequency, i.e., backmixing occurs,
involving the second-harmonic waves and the complex con-

jugate of the fundamental wave. This recent appreciation of
what can happen is dramatic [7,14] and, furthermore, experi-
mental evidence [7] shows that the backmixing (cascading)
process is clearly observable, even for large linear phase mis-
matching.

The answer to the question of whether solitons truly exist
is complicated, as will be partially illustrated by much of
what now follows. In general, a more cautious, solitonlike,
terminology may be needed, but, if the linear phase-
mismatch parameter is large, then the coupled envelope
equations for the co and 2' waves reduce to a single (co)
nonlinear envelope Schrodinger equation and this is called
the cascaded limit. Obviously, it is this equation that has
stable one-dimensional soliton solutions, so choosing to use
the word "soliton" to include solutions of the coupled
second-harmonic-fundamental wave equations that are not in
the cascaded limit is a less rigorous terminology.

materials are likely to be in the form of planar
waveguides, for which dispersion is generally weak. Diffrac-
tion, on the other hand, is strong and is not dependent upon
the material [2,3,21]. Furthermore, the scale over which dif-
fraction operates is the order of 1 mm, so the immediate
view is that nonlinear beams, for which the tendency to dif-
fract is balanced by nonlinear self-focusing, will be good
probes for use in a y material. The previous paragraphs
highlight the fact that y materials, operating in harmonic-
fundamental mode or even in cascaded (to) form, are ex-
tremely fascinating. They involve very fast nonlinearities
[17], with materials that are well known. In principle, they
can sustain beams that can be called solitons for a wide range
of the linear phase-mismatch parameter.

II. BASIC THEORY

If a dielectric medium supports an electromagnetic wave
E(r, t) that has an angular frequency co and for which
r = (x,y, z) is a position vector and t is time, then it becomes
polarized by an amount P= P, (i=x,y, z). The—important
gt i materials have a single optic axis [5,6] (assumed here to
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lie along the z axis) and belong to the tetragonal (e.g. ,

BaTi03), trigonal (e.g. , LiNb03), or hexagonal (e.g. , n
quartz) systems. These materials are uniaxial and most of the
elements of X, &

are zero.(2)

For example, X,,k for the 6 class of the hexagonal crystal
[5,6] system is

xxx xxx 0 0 0 0 0 yyy yyy

(2) yyy yyy 0 0 0 0 0 xxx xxx
X)JI =

0 0 0 0 0 0 0 0 0

8p
P (cu) [2l~tE ((u)E~(2') 21~2E (co)E»(2')

—2Ir2E*(co)E,(2') —2~,E*(co)E (2o))],

(5b)

in which the following definitions have been used:

M2 co co2co QJ2 M coed cUccp M co

Xxyy Xyxy Xyyx Xxyy Xyxy Xyyx 1 &

2 co2o)E2 cuE2co+ I
co2 (u+ 2 coo)qEo)E2 cu

Xxyy y y I Xxxx Xxxx J x x

+ [X.".", X.",".]E."E,"+[X.".',"+X.',"."]E."E,'
2coco+ co2co]E2ruEru+ [ 2o)2(u+ 2cu2a)]E2coE2co

Xxxy Xxyx x y Xxxy Xxyx y x

+
I X.,',"+X.',","]E,"E,'"),

where the notation X,",I, , X, z, has been adopted to keep
track of the fundamental and the harmonic wave. In the lit-
erature terms such as (y" + y "")are often combined into
one symbol X "".The fundamental wave is

E" = [E (or)e '"'+ c.c.], (3)

where c.c. is the complex conjugate. The same form is to be
used for E " and the spatial dependence in E»(co) and
E, (2') is implicit. The second-order polarization is

P =-,'[P, (co)e '"'+P, (2')e ' "'+c.c.].

where the overbar means the negative value and similar ex-
pressions for all the crystal classes are readily available [5,6].
Using expressions like (1) in Maxwell s equations leads di-
rectly to a description of coupled (co,2co) two-wave behav-
ior.

The crystal class to which lithium niobate belongs is 3m
P quartz belongs to 32, barium titanate belongs to 4mm, and

potassium dihydrogen phosphate to 42m. This paper covers
the hexagonal and trigonal systems and hence the associated
classes 6(C&h), 6m2(Dsh), 32(D3), and 3m(C&, ), where
the parentheses contain the SchoenAies symbol. The princi-
pal axis of these crystals is along z and this is also the propa-
gation direction. For weakly guided TE or TM waves, the
E, field component is negligible, so only E and/or E are
finite. The terms in X~ I~ that can then feature in the second-
order polarization are the (xxx), (xyy), (yxx), (yyy),
(yxy), (yyx), (xxy), and (xyx) components. Both E, and
E have ~ and 2~ parts, which will be defined here as

Ex Ey Ex ' Ey, and the x component of the second-order
polarization is therefore

opto Q)20)
yyy

co2QJ co2ccp co2co QJco coco coco
Xyxx Xxyx Xxxy Xxxy Xyxx Xxyx K2

In Eq. (2) coefficients such as X"„"+y,"," were not rolled
into one coefficient y,"„",so this is why y,","=y,"„",etc.
K~ and K2 are associated with the symmetry groups and as-
sociated classes, in the following way: for the hexagonal
system,

Kt 4 K24 0 (6 class),

~&=0 (6m2 class),

and for the trigonal system,

~2=0 (32 class),

a.t=0 (3m class).

There are similar expressions for Pt ~(2') and Pt ~(cu).
Taken together, Eqs. (5) and the corresponding expressions
for Pt ~(2co) and P~ ~(co) are very interesting. they show
that, depending upon the values of K& and K2, even if E is
initially set to zero, Ey drives I' so E will start to grow. The
same argument applies to E . This means that the choice
of symmetry group is important. For example, if
a. , =0(6m2, 3m), then setting E,=O permits E» (TM wave)
to exist by itself without a driving term causing E to appear.
On the other hand, if Ki 40 then sustaining E =0 is impos-
sible since Ey is finite and drives Px.

The material will be assumed to be in the form of a planar
waveguide. Propagation is along the z axis, guiding is in the
y direction, and the balancing of diffraction with nonlinear
focusing takes place, in the plane of the guide, in the ~x
directions. The field components are essentially uniform in
the y direction, with weak guiding, meaning that a TM has
only an Ey component, while a TE wave has only an E
component.

If the beams are TE polarized E(co) =xE„and
E(2co) = xE2„, where x is a unit vector, the nonlinear polar-
izations, for the 32 class, are

After performing all the multiplications, the following forms
for Pt ~(2co) and Pt ~(cu) are obtained: P (2')=P = E (6a)

Pt l(2cu) = [Ir,E (o)) —Ir tE (c—o) —2I~~E,(~)E»(rd)],

(Sa)

P (co)=P„=go+&E—Ez„.

The equations for E(co) and E(2') are

(6b)
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BE BE 2

+ 2 + 2 e„E„+ 2 v]E~E2~ —0,
Bz Bx c c (7a)

E2~ B E2~ 2 CO

+ 2 +
Bz Bx c

1 (2ai12
e2„E2 +- K)E =0,2=

(7b)

where e„=n (co) and ez = n (2&v) are the linear dielectric
functions at frequencies cu and 2', and n(co) and n(2') are
the respective refractive indices.

It is convenient now to emphasize the slow variation
of the amplitudes E„and E2„on z. This is done by fact-
oring out the fast z dependence by writing
E„=Ei(x,z) exp[i(k~ —tvt)] and E2 = E2(x,z) exp[i(kz~
—2tvt)], defining E, =E,(x,—z) and E2 E2(x——,z), and,
finally, making k l&E, /&zl~l@ Ei/&z

l
and k2 l&E2/&zl

)l8 E2/Bz l. The fact that k„=(ni/c) ge and

k2„= (2co/c) v'e2„are the linear wave numbers means that
the linear phase mismatch is Ak=k2„—2k„. The further

definitions E i (w/+2) exp(iPiz) and E2 = v exp(iP2z), the
transforrnations (co/c) (wt~i/2k„Pi) —+w, (tv/c) (UKi/

2k„Pi) —+u, v'2k„Pix~x, and Piz~z, and the choice
&k+ P2 —2Pi = 0 result in a reduction of the coupled equa-
tions to

3.6-

3.4-

3.2 I

0.7 1.4

1
M= [-,'lwl'+ nlvl']dx (10)

F1G. 1. Variation of the effective mass M with p, the nonlinear
phase-mismatch parameter. a=1.01 and the true mass has been
divided by the number of peaks in the field distribution to put all the

graphs onto a similar scale. The graphs are labeled with the number
of peaks.

0W BW
E + 2 W+W U='0,

BZ Bx

BV BV
i2u + 2

—nPv+w =0,
BZ

(8a)

(8b)

can be defined through Eq. (4). Viewing the eigenstates as
"particles, " this is a constant of "the motion" with the other
conserved quantities being the momentum

BUP= w —w* + nv —nv* dx (11)
ax ax ax ax

where P=2P2/P, and n=k2„/2k„= ge2„/e„ is the linear
phase-mismatch parameter. The development leading to Eqs.
(8), based, as it is, upon the use of crystal syrrunetry, shows
clearly how the coupled scalar equations arise. Nevertheless,
the specific form of Eqs. (8) can be found in a recent publi-
cation [18] provided that the following identifications are

made in [18]:n~uP and x is scaled as gk„P,x~x. The
scaling of w and v in [18] is equivalent to Eqs. (8). The
resolution of E& and E2 into slowly varying parts w and v

and fast dependences exp(iPiz) and exp(iP2z) is interesting.
In the nonstationary regimes w and v are complex but, for
stationary states, w and v are real and independent of z,
while Pi and P2 are exactly the nonlinear phase shifts. This
canonical form of the nonlinear equations describes the com-
petition between diffraction and nonlinearity during the co-
propagation of the second-harmonic wave and the fundamen-
tal wave. They are not restricted to a near phase-matching
limit (n= 1), so neither (2a) nor (2b) is a nonlinear Schro-
dinger equation. This means that exact soliton solutions must
not be expected as stationary states. Solitonlike solutions
should be possible; however, some may well be stable. True
solitons will certainly appear in the cascaded limit
lnPul~l2n(8v/Bz)l, l8 u/Bx l. This cascaded limit gives
v = w /nP and recovers the nonlinear Schrodinger equation

1+,—w+ lwl'w=0.
Bz Bx n

An effective mass

and the Hamiltonian

gw 1 gu u
H= —

I + ——+ lw I'+ Plu I'—
7ri J Bx 2 Bx 2

——(w* u+w u*) dx.
2

(12)

For stationary solutions Bw/Bz = Bv/Bz = 0 and the coupled
equations reduce to

d
W+WV =0,

dx
(13a)

d v
2

—nPu+w =0.
dx

(13b)

These coupled equations can be integrated once [18] to give

1 dw 1 dvi 1 nP+ —
l + — w v U w =C,

2 dx 4 dx) 2 2

where C is a constant of integration. The case C=O corre-
sponds to a soliton solution. Equations (13) do not yield any
more conservation laws and analytical solutions can only be
found for certain values of uP. For example, it is easy to
show that w=u=-', sech (x/2) for uP=1, but, in general,
Eqs. (13a) and (13b) have to be solved numerically. Figure 1

shows the variation of effective mass [Eq. (10)] with P for
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1.5 coupled (u, w) equations, which is

0.7
0.5

0

a~*
L= —w*

oZ ~Z

lA ~ 8V BU
+ U U2( BZ Z

.+'( .. + 2.) („)

I I

-20 -10 0 10 20

-0.5-

I ~ . ~ I . . ~ . i ~

-20 -10 0 1 0 20

must be introduced and theA th i oint some trial functions mut is mu
the are veryones selecte ared Gaussian simply because y

convenient. They are

w = — — + i —x —x
h ) + i —,(15a)w= rlhexp —ph(x —xh) i —(x—

1.6

0.8- 0.8

u= 272exP[-P2 x —x2 i 2u= — — ) +i( (x —x 2) +i 8 2], (15b)

(16)

'tudes z are inverse beam wi t s,where y1z are amplitu es, p1z
s x aret e eamce-n-b am propagation dhrection,12 are earn

ters, and 01z are phases.
The reduced Lagrangian is [22]

JI 2 1/2

L dx=M1+Mz+M12,
I I

-12 0 12 24
I h0-

2 12 0 12 24

d antis mmetric field profiles.FIG. 2. Typical symmetric and an isy

III. STABILITY ANALYSIS

In h h material there is both a fundamental beam (at cu)

and a harmarmonic beam ~at m, w
sti ate the consequences ofWh t will be done here is to investigate ea wi

am osition and direction, on the onep ao o po
hand, an a pe

re resents a mismatch, inh r, The first kind of perturbation represenot er, e
th f ndamental and the ar-position or diredirection, between t e un

h' . The second typeat the moment of launc ing. emonic wave, a
or hase fiuctuation. e s. Th tability analy-represents an energy o p

't [2 3,21] for thesis begins wib
' 'th the Lagrangian density

es of s mmetric and antisymmetnc soliton-
= 1.01. Typical orms olike solutions when u=, p

has beene dis la ed in Fig. 2. The single-peak solution as

,17~ but t e antisymme
interestin because, for these solutions, t e U c

direct mathematics. No sta i ity ornot be discovered by direc
11 but, forhas been found numerica y, u,

. It is im ortant, therefore, to investigate t ese s

1 that their stability regimessolutions in some detai so apeak sou '

recisel defined. It is c ear a1 r that general conclusions
ably small number of numeri-

nts so, in the following, a variationa me
ilit of th f d t 1 oli-will be used to analyze the stability o t e un

tary single-peak wave.

and M need not be formally identified atwhere 1, 2, an
this stage. e u. Th E ler-Lagrange equations are

d

Bg dz B(8glBz)

where

( 2 1/2

~12=—

~P &Z ~~h2+ —2+2 pz Bp

2 — 2 x 2
7h 72) hxpl: —2 p h(x —x 1) p2(x x2)

X cos[82 —eh+ (2(x —x, ) —(h(x —x, dx.

The Hamiltonian of the system is

2 2
1 ~P Vz—+ — '+ ('+=Ph Vh+ (h+ +
2 P2V24P1 Pi

(20)

A. Stationary solitary solitons

occurs whenever dx1/dzA stationary solution occurs
=0= 0 d Idz = d$2/dz =0, d 6'h Idz = d 02 ldz =

= 0 S h conditionsand (dldz)(hl, l2ph) =(dldz)(rI2lp2) =
2 0 1 2 0 71 9101 2 1 2

=P Pz= pzo and pio pzo +10 gzo»»72 720 ~ P1 P10~ 2
the equations

2 2
( +1) (2P o+p )=2phog2O ~ (21a)

re = . . . ;, ; (i = 1,2). Generating useful nonhnear,
c

' f th arameters in (15) is anar cou led equations for t e param
. (17) but does involve considerstraightforward use of Eq. u o

able labor. A typical equation is

2 2 2dx. ~2 de2 ~2 ~2 2+~—2d 2+222
pz z pz z
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are small. The evolution equations, obtained from the Euler-
Lagrange equations, involve only xi,xz, (, , and (z. All the
other equations yield nothing, as expected. If the two vari-

u( r/zoo/pzo) (2 ( 2/10/2p 10)$1 = 2/lf ( and xz —xi = ~
where 2M= u(r/20/pzo)+(r/, 0/2p, o) is the total mass, are
used, then the evolution equations reduce to

0

dA

dz

2
1 p20 2 p &p Q2 Q]p +2O

2 2 2 2 3/2u u&20 '71o 2 (2Pio+ Pzo)

( 2P2o P lo

l u '/zo '/io l

FIG. 3. Ration of second-harmonic wave amplitude to the fun-

damental wave amplitude, as a function of uP ~—. ~, exact nu-

merical result;, variational calculation. Hence

2d( V&OV2O
2 2 ~ 3/2 P10P20 Qdz ( 2 p )0+ p2O)

(25)

(P20+ u/3) ( P 10+ P20) 2P20 710 720'
2 2 2 2 4 2

( P io+ 1)(2Pio+ Pzo) = 2P10(pio+ 1)

( —pzii+ P)( pio+ pzo)= Pzo(pzo P)

(21b)

(21c)

(21d)

(4 —3uPi 4 uP 2 uP
Plo

~ 20
' Pio+ 5 Plo 20

(22)

Only a positive real root of Eq. (22) has any physical mean-
ing, and when uP(0 this real root becomes negative and
the system will not sustain a solitary wave. Once Eq. (22) is

p20 yio ~ and y20 are easily found from

P20 P4io/( P o) (23a)

If up= 1, then r/10= 7/20= s+6, pio= pzo= I/v5, and
w= v =(3+6/5)exp( —x /5). This solution is extremely close
to the special exact value [171, which issech (x/2). For
general up, a cubic equation in p, o can be obtained, i.e.,

1 l db, ~ ab 1 /d(~ ab
(26)

Since a)0 and b)0 the potentials U(A) =(ab/2)h and

U(() =(ab/2)$ are always concave at /=0 and b, =0. The
conclusion is that the stationary solutions are always stable
when subjected to this type of perturbation and this is true
for all uP.

C. Beam size and phase perturbations

For this type of perturbation g, , (2, xi, and xz remain
at their initial values, zero in this case. The perturbation
drives p; to p, o+ Bp; (i = 1,2) and 01 and Hz shift from zero
to become Hi=6'6) and 02=602.

The perturbation will be characterized below with the
new variables Ni = y, /2p& and N2 = y2/p2, so that2 2

Bgi = (pio/ gio) BN1+ ( r/, 0/2p, o) Apl, for example. N, and

N2 represent the total energy in the fundamental and the
harmonic, respectively. First, the Euler-Lagrange equations
generate the differential equations

z (2P io+ Pzo)
Vio

—— (P io+ 1)(Pzo+ uP),
P ioP20

(23b)

2

2pi

+22/', r/2
zsin( gz —0, ),

2p', + p',
(27a)

(2Pio+ Pzo)
Vzo= 2 (Pio+ I) .

2pio
(23c)

+ariz, r/2
u ——=+

2 zsin(02 —0, ),dz i, Pz/ $2p, + pz
(27b)

The ratio of y2p/7)~0 that is needed to sustain a coupled
(203, cu) solitary wave is obtainable from Eqs. (23) as a func-
tion of uP. This is plotted in Fig. 3, together with the exact
numerical solutions. It can be seen that the mathematical
results, based upon the variational analysis, and the exact
numerical results coincide, for all practical purposes.

dl 2 P2 u/3 P~ P2V1/ 72
u = +, 2 zcos( 82 91)

Z $2P&+ P2
(27d)

d0i Pi Vz= —2p, —2+ 2 Q2 z zcos( 02 —0, ), (27c)
dZ 2Pi+Pz

B. Beam position and direction perturbations

In this case, the mismatch in position or direction of the
fundamental and harmonic wave, at the moment of launch-
ing, can be expressed as follows. The equilibrium (stationary
state) positions are x, =xz = 0 and g, = gz = 0, so a distur-
bance to this state will now be defined as x

&

= Bx &,

xz = 8xz, $1= 8'$1, and $2 = 6'sz, where all the Perturbations

and the algebraic equations

2P, (2P, +Pz) =Pzrgzcos (02 —8, ),

2 2 2 = 3 2
Pl 71( Pi P2) P2 72

(28a)

(28b)

Substituting the perturbed quantities and keeping only the
lowest order in 6p), 6'p2, 8'N), 6N2, 66), and 66'2 gives
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d—8N1= —a(92 —01), u —8N2=a(82 —81),

d—8'gi = bi /pi+ b25p2+ b36'N2,
dz

(29a)
I

I

I

I

I

I

I

I

no solitary
waves

d—662 —b46pi+ b5 6p2+ b6 F1 + b7 6N2
dz

(29b)

2 / 2 2where a = p2 yioy20/y2p&o+ p20 and b&, . . . , b7 require
some effort to obtain, but can be obtained in a relatively
straightforward way. Explicitly,

+»«20 1 2P 10bi= 4plo—+
2 2 2 2 (30a)

$2p~io+ p2Q l P 10 P 10+ P20(

2 +2p 10 yl20 1 p20
b2— 2 2

$2pto+ p2o 2P2o 2P, O+P20(

no solitary ',

waves
1

I

I

I

I

I

I

ab~
I
0

I

I

I I t I

unst~pi~

0.5 1 1.5 2

P 10 P20

2Pio+ P2o ~20

'P P20V10 720 ( 1 2P10
b4= ( 2 2 22a q2pio+ p2o ( Pio 2P,O+ P20(

(30b)

dN
=a0,

dz
(33)

FIG. 4. Stability and existence regions of the (P, n) plane, for
single-peak solutions.

2
p20 Q2 p20ygiol y20 ( 1 2p20+ 2 2 2 22~ $2pio+ p2Q ~ 2P2o 2P10+ P20)

(30c) do = —bN,
dz

(34)
2 2 3

U~piop20( 720 V2 P20+10 720
b6= 4~ I 2 2n 2P &0+ P2o %2P &p+ P20

(30d) where b= (b4 —bi)(bs —b9)+ (b5 —b2)(bio —bit)+ b3+ b6
—b7. The coupled equations (33) and (34) give

Bpi —b8 SNAB + b96N2,

p2 = b108N1+ b i ) 8N2

(31a)

(3 lb) where

6'p& and 6p2 are related to 6N& and F2 by the equations
1 ~ dNII 1 1 dg~ '

+ U(N) =0, —
~ + U(g) =0, (35)

2g dzg zj

where

Pio (2Pio —
P20) ( 10Pio—

P2o
2 2 2 2 2

b8 2 2 2 2 2
3710 1, 2pto+P20l I, Pio P2o

4 2 2 4
PioP2o P io+ P10P2o 3P20

b9= 2 2 2 2
720 ( Plo+ P20)(4P10 P20)

(32a)

2 22P,QP2o (2Pto —P201 8P,Q+ P2o
"iO= 2 2 2 23 Vio ( Pio+ P20( ( Pio P20(

b

2 28 P 10P20 P10P20( P 10 P20)
2 2 2 2 23 920 (2P10 P20)( Plo P20)

(32b)

It is now easy to show that (dldz)(BN, + BN2) = 0, so that it
is safe to choose 6N&+F2=0 as an initial value. After
adopting the definitions 2N = 6N2 —BN1 and 0= 02 —01, the
evolution of this kind of perturbation is described by the
simple equations

(d'U(N) ~ (d'U(6) ~

=ab
dN ( i dg

1 A 1 A
P, =4k„, P2=2k„P (36)

determines the shape of the potential functions U(N) and

U( 0) at the origin (N = 0, 0= 0).
For ah~0, d2U/dN2=d U/d0 )0 and the, stationary

solutions can be stable. For ab~O, however, all solitary
wave solutions are unstable. Figure 4 shows the stability re-
gions on the (p, a) plane. The figure shows that there are a
number of domains in which solitary waves can exist, but not
all of them are stable. The boundary ab=O is drawn in Fig.
4 because this condition emerged from the above stability
analysis. In addition, the nonlinear phase-matching condition
is 2k„—k2„—p2+2p1=0, so this must also be taken into
account when defining the existence regimes of the solitary
waves. The crucial point here is that p, )0, p2)0, and
nP)0 so the phase-matching condition is
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