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Theory of phase locking of globally coupled laser arrays
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We have carried out an investigation of the globally coupled laser array with randomly spread eigenfrequen-
cies. It is shown that as this spread increases, either the laser action vanishes or the coherent steady-state

regime is replaced by a phase-unlocked regime. The regions of the stable phase locking have been analytically
and numerically determined. It is found that the gain inertia leads to cooperative phase-locking effects when

the maximum detuning is close to the relaxation frequency,

PACS number(s): 42.55.—f, 42.50.Ne

I. INTRODUCTION

Many nonlinear systems [1,2] (coupled Josephson junc-
tions, vortices in gas dynamics, neural networks, and evolu-
tion and economics models) belong to the class of "globally
coupled" systems, i.e., with a feedback proportional to the
mean value of the field over the entire system. One relatively
simple example of this class is the "all-to-all" optically
coupled laser array. This coupling can be experimentally pro-
vided with good approximation by placing a stop at the com-
mon focus of the array [3].The investigation of such a con-
figuration can clarify the complex dynamic behavior of the
globally coupled arrays. Furthermore, this investigation is of
practical importance since it gives the opportunity to attain
high-power radiation with low angular divergence.

The attainment of this result requires the coherent emis-
sion of radiation from an N-laser array with the minimum

phase spread at the output aperture. This mode can be
achieved if the laser parameters, especially cavity eigenfre-
quencies, vary only slightly. At the present time only a static
eigenfrequency spread has been taken into account. In par-
ticular for the case of the nearest-neighbor coupling it is
shown in [4] that the breaking of the global order occurs
through the creation of domains with phase differences be-
tween two adjacent ones close to m. The mean domain size
is determined by the ratio between the optical coupling co-
efficient and the level of the eigenfrequency detunings. This
correlation size restricts the divergence of the total output
radiation by a value which does not depend on the size of the
entire array. In [4,5] it is also shown that a small additional
global coupling essentially expands the region of the phase-
locking of all the lasers in the "nearest-neighbor" coupled
array. In Ref. [5] the authors already noticed that the average
field at the output aperture (which determines the system
brightness) undergoes a phase transition. Precisely, the aver-

age field changes for an increase of detuning level as the

. magnetic moments in ferromagnetic media do for a tempera-
ture raise. The coherence (order parameter) violation can oc-
cur through creation of topological solitons initiated by
eigenfrequency fIuctuations.

The dynamics of the globally coupled array with negli-
gible inertia of the active medium has been numerically stud-

ied in a recent work [6].Reference [6] considers static varia-
tions of the eigenfrequencies with an almost Lorentzian
distribution. The following regimes are numerically ob-
tained: phase-locked, partially phase-locked (analogous to
the domain regime in [4]), independent lasing of each laser,
order-disorder oscillations. The authors of [6] found a sharp
increase of the order-parameter itself, and this suggests an
analogy with thermodynamic phase transitions. In that paper
only regimes with large gain were studied, and lasing was
possible at any level of detunings.

In this work we present an analytical study of the possible
dynamic operations of the globally coupled laser array as
well as a numerical simulation. Both analysis and simulation
enable discrimination between transitions to phase-unlocked
regimes, already introduced in [6] as phase locking—
unlocking transition, and transitions to laser action damping.
Explicit criteria for order violation are now determined for a
wide range of gain values in the case of negligible gain me-
dium inertia.

The active medium inertia can induce a complicated dy-
namic behavior as it is shown theoretically and experimen-
tally in [7] for two coupled lasers. We show that in the case
of globally coupled arrays, the active medium inertia causes
an effect that we have called cooperative field phase locking
(see Sec. III). This behavior is robust, since it persists also in
the case of a small number of array elements and even for a
long relaxation time of the active medium.

II. ANALYSIS OF PHASE-LOCKING REGIMES

Our approach to studying the field dynamics of optically
globally coupled lasers is based on the following model. In
the absence of coupling each laser operates in a single lon-
gitudinal and transverse mode, assumed to be the same for
all the lasers, the gain is proportional to the population in-
version on the two resonant levels (the two-level approach)
and the only difference among the lasers in the array is in
their cavity eigenfrequency. Generally speaking, the system
of N optically coupled lasers has 3N degrees of freedom
(N complex amplitudes E„and N active medium gains

gt.).
The system of nonlinear equations describing the dynam-
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ics of globally coupled lasers has the following form [3]:

M
Ek = (gk —1 M—)Ek+ i kkEk+ ~ g Em,

Ill= 1

rgk go gk IEkl gk . (2)

The following dimensionless variables are used here:
—IEkl go/E, g &=rg (/rp ~ ~k=~krp/g

M = M/g l, gp = gp Ig, 7 = 7:g l/w, where N is the number

of lasers in the system, EI, is the complex amplitude of the
field in the kth laser, F, is the saturation field, 7~=2,L/c is
the round-trip time of the single cavity, L is the cavity length,

g =g/g„, g being the gain of the active medium and g„ the
threshold gain, gp is the small-signal gain, l is the length of
the active medium, 5& is the detuning of the cavity eigenfre-

quency from the mean frequency of the laser array, M is the
coefficient of the optical coupling (the same value for all
lasers of the array), and 7. is the active medium relaxation
time.

The first term on the right-hand side of (1) governs gain
and loss of the field per cavity trip (including coupling out of
radiation to other lasers), the second term governs variation
of the field phase (we assume

~ Akrp~ && 1), and the third term
represents the injection of the mean field to the laser.

In Eq. (2), the first term on the right-hand side is the pump
rate, the second term is the gain relaxation, and the last term
governs the radiation induced decrease of the resonance level
population.

In the case of the fast relaxation of the active medium, Eq.
(2) gives

gp
g(I„)= (3)

The time dependence is reduced to the same set of equa-
tions of Ref. [6] for low intensities. In the numerical simu-
lations we assumed cavity eigenfrequency detunings to be
uniformly distributed in the interval [—Ao/2, Ao/2] (that dif-
fers from Lorentzian distribution used in [6]. Here Ao is the
distribution width. In the numerical simulation of (1) and (2),
detunings 51, were determined by random number generator.

The coherence degree of the array fields can be character-
ized by the axial far-field radiation brightness which is pro-
portional to the squared sum of individual near fields. At the
low level of eigenfrequency detunings the phase of each la-
ser field has a steady-state value which is different from the
average field phase. The phase difference increases with the
detuning level. The different kinds of coherence violation
and consequent decrease of the system brightness for in-
creasing detuning take place under different relations be-
tween the optical coupling strength M and the active medium
gain gp.

The time-average radiation brightness for a fixed value
M=0. 1 and different values of gp are shown in Fig. 1 as a
function of Ap. The numerical simulations have been carried
out for numbers of lasers N= 100 and N= 1000 showing that
for N~ 100, the results do not significantly depend on differ-
ent selections of random detunings.
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FIG. 1. The average field brightness as function of 50 for
N= 100 at M =0.1 and different values of go.'solid lines, coherent
steady-state regimes; dashed line, dynamic regimes at 7.= 50; dotted
line, dynamic regimes in the case of the inertialess active medium.
The vertical axis is normalized to the brightness of the in-phase
locked array.

M/N D2 —k MIN

MIN MIN ~ ~ e D N

where

D~= g p
—1 —M+ i 5g+ MIN.

It is interesting to note that the proof of the existence of a
gap in the electron energy level spectrum in the Bardeen-

At small values of the small-signal gain gp the laser array
operation remains coherent with the increase of the detuning
distribution width (curves go= 1.001—1.03 in Fig. 1 but the
axial brightness decreases to zero. As it is seen from Eq. (1),
when gp

—1 ~M, lasing of each single laser is impossible in
the absence of the injection of the average field. Increasing
Ap the average field decreases and at some threshold value of
Ap all the lasers quit lasing.

A qualitatively different violation of the coherence occurs
under large gp conditions. Indeed in the curves gp= 1.5 and
gp=5 of Fig. 1 a transition takes place from steady-state
coherent emission to phase unlocking at some critical value
of Ap. Phase unlocking leads to a significant decrease of the
total array brightness. At the high pump rates the field am-
plitudes vary only slightly and the brightness decrease is
caused by averaging of the randomly distributed and dy-
namically varying phases. This brightness dependence on the
eigenfrequency spread is analogous to that numerically ob-
tained in [6] in the case of a Lorentzian distribution.

To determine how the critical values of Ap depend upon
the array parameters, let us consider the conditions for co-
herent emission in more detail, both for low and high gains
and for different eigenfrequency distributions.

(a) go
—1 ~M. Close to threshold, the increase of the de-

tuning distribution width determines the decrease of each
laser field amplitude down to complete quenching. The cri-
terion of the coherent lasing when gp

—1(M can be easily
obtained since the filed intensity goes to zero and the system
(1) becomes linear (gk ——go). The condition for lasing is de-
termined by the roots of the characteristic equation

D, —X
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f f(A)dA N

,„—i,b, —(gp —1 —M + M/N) M (6)

Cooper-Shiffer (BCS) theory of superconductivity is reduced
to a problem similar to (4) (see, for instance [8,9],). Let us
call f(A) the detuning distribution function normalized to
the number of lasers [If(A) d 3 =N with N&) 1]. If
Re(M) )0, then the eigenvalue with the maximum real part
k,„(the analog of the ground energy level in the BCS
theory) is determined by the integral equation

laser is sufficiently large to let it operate without the injection
of a coupling signal. Beyond a critical value of Ao the tran-
sition occurs from a steady-state coherent regime to an un-
steady regime with a sharp brightness decrease caused by the
interference of the laser fields with randomly distributed
phases.

This critical value of 50 can be obtained by perturbation
theory in the limit gp

—1&)M (field amplitude values vary
only slightly). Let us use the steady-state laser fields in the
form

If the random detunings are uniformly distributed in the
interval [—Ap/2, Ap/2] then

Fg=Apexpl PI . (16)

Ao Ao„=go
—1 —M+ tan (7)

If the coupling coefficient is real the equations for ampli-
tudes Az and phase I"z have the form

Equation (7) holds in the general case of a complex cou-
pling factor M. It is easily shown that the lasing condition
reduces to Re(k „))0.Using (7) we obtain a coherent
emission condition:

50 5o
go

—l)Re M — tan

A(AI) = [g(b, I) —1 —M]A(A„)+MCA(0)cos II'(5&),
(17)

A(0)
W(A&) = AI, MC — sin%" (A~),

k

where C is a common constant determined by

For Re(M) ) Im(M) the order-parameter dependence on de-
tuning results in

Q2
C=1—

12(gp —1)Re(M)
'

For the Lorentzian detuning distribution,

CNA(0) = g Z(a, ).

At steady state we have

A„A(b, „)
MCA(0) '

(19)

(20)

N
f(~ =— (10)

So—1~ Y

and yields an order parameter C given by

C=1— 7
(gp —1)

(12)

Eq. (6) leads to a criterion for coherent array lasing which is
independent from M:

[1™g(hr,)]A(b, a)

MCA(0)

Thus, the phase of each laser field with respect to the
average field takes a nonzero value depending on the laser
detuning. The locking destabilizes as the maximum phase
difference exceeds m/2. This could be expected by analogy
with the capture of the laser mode by an external injected
signal and it is found to occur in the numerical simulations of
the system (1) and (2). So the stability limit is determined by

For the Gaussian eigenfrequency distribution
W(A)= —, b, = (22)

f(h) = exp
7

the coherent emission condition is

(13)
The constant C can be determined from Eq. (19), which

in the continuous limit takes the form

7'
Ro 1~2M (14)

CA(0) = A(b) 1—
25m~ —~

l A(A)A
iA(0)MC (23)

and for Re(M) ) Im(M) the order parameter is

7'
2M(gp —1)

'

The solution can be obtained in the limit go —1))M for
which the laser intensities are approximately the same. Thus
the phase unlocking condition in the zeroth-order approxima-
tion [A(A) —=A(0)] is given by

(b) gp
—1)M (M real). In this case the lasing does not

die out with increasing detunings, because the gain in each
5 ~—M. (24)
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In the first-order approximation the laser intensity func-
tion is approximated by the second power polynomial func-
tion of the eigenfrequency

I(d)=I(0) 1 —P (25)

where p is a coefficient to be evaluated. From (20) and (21)
it follows

I(5)(Q'+ [I+ M —g(5)]')= (MC)'I(0); (26)

the value of I(0) can be obtained from (3) and (21) at
5=0 as

0. 05

10 10
I I I I I

10o

go
1+M(1 —C)

(27)

Substituting (25) and (27) into (26) and keeping the term
p(klb, ) only at first order, we obtain for p

FIG. 2. The go and 60 domains at M = 0.1 of the different lasing
regimes: 1, coherent steady-state regimes; 2, dynamic regimes; 3,
domain of the lasing dying out. The solid lines are the analytical
criteria (8) and (27)—(30). The numerical simulations for
N=1000: +, coherent steady-state regime; 5, dynamic regime;
0, vanishing laser action.

2goI(0)
MC MC[1+I(0)]1+ (28)

For this integral equation in the limit of go —1)&M we
can find for the order parameter

I(0) and p at first order still contain the two unknowns C
and 6 . In order to evaluate them, we go to the second-
order approximation and obtain after substitution of I(b, )
into (23)

I'

C= 1—
M~

(32)

C= —1 ——
4 4) (29)

In the general case of a complex coupling parameter the
expression (32) changes into

From (20) and (22) we have

=MC/I —P. (30)

Re(M) i
(33)

We thus have a closed system (27)—(30) for the four un-
knowns I(0), p, C, and 5 . In the limit of go —1&)M the
system has a single root in the neighborhood of p= 0, which
can be obtained numerically.

The analytic criteria described above and the numerical
simulations for a large number of lasers (N~ 100) allow us
to draw a map of the different regimes (Fig. 2). The solid
lines show the analytical boundaries of the different domains
(1 is the domain of the steady-state coherent lasing, 2 is the
domain of the unsteady lasing, and 3 is the domain of the
vanishing laser output). The analytical boundaries are in
agreement with the numerical simulations. Indeed, integrat-
ing the system for several go values, at Ao values close to the
boundaries, we are able to identify close pairs of 60 param-
eters giving rise to different regimes, thus drawing the nu-
merical boundary which is close to the analytical one. In the
figure, +, 5, and 0 refer, respectively, to domains 1, 2, and
3 for N= 100. The same regimes are obtained for the same
parameters and N = 1000.

For the Lorentzian eigenfrequency distribution Eq. (23)
has to be written

f,o-

0,8-

0,6-

04-
0

0,2-

0 0 I

-3.0

analytical
critical valve

analytical expression
~ numerica from ref.I6J 0 g

~ l I /l ~

-f,0 -0.5 0,0-2.5 -2.0 - f.5

with the additional condition that Re(M))
~

Im(M)
~

be sat-
isfied.

To compare our analytical results with the numerical
simulations of Ref. [6]we show in Fig. 3 the order-parameter
dependence on the frequency detuning level for Lorentzian
eigenfrequency distribution.

NCA(0) = f(A)A(h) 1—

where f(A) is given by Eq. (10).

( p(Q)g 2 1/2

, ~(0)MC

FIG. 3. Comparison of the order-parameter dependence on the
eigenfrequency detuning level obtained by the analytical formula
(32) and the numerical simulations of Ref. [6], for the same condi-
tions. Log(y) is the natural logarithm of the normalized frequency
spread.
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T;„=2 srl gh o
—M C ( 1 —P) . (36) IV. CONCLUSION

the parameters C and P being roots of the system (27)-(30).
The different correlation between these two characteristic
times causes the different field dynamics.

However the regimes where the relaxation oscillation pe-
riod is close to the average field modulation period seem to
be of major interest. As the globally coupled array is similar
to the nonlinear laser system driven by the injection of an
external signal [12] or the laser with modulated losses [13],
the nonlinear unsteady regime should be expected to exist. In
particular typical phenomena for nonlinear systems are found
such as spontaneous pulsing and chaos.

Examples of lasing regimes with spontaneous oscillations
are shown in Fig. 5 both for arrays of 100 and 1000 ele-
rnents. The resonant swing at the relaxation oscillations fre-
quency causes the relatively short duration of the dominant
pulse. The cooperative phase locking can take place regard-
less of the large spread of eigenfrequencies because of the
short duration of the pulses.

The peak of brightness on the dashed curve (r=50,
N= 100) in Fig. 1 is explained by the cooperative field phase
locking. The time-averaged brightness achieves up to 40% of
the brightness of the in-phase locked system. This value
weakly depends on the number of lasers and it is mainly
determined by the M, 50, go and 7. parameters.

Similar behaviors have been found integrating Eqs. (1)
and (2) in the case of a small number of lasers (from 3 to 10)
and a long active medium relaxation time. Figure 6 shows
some temporal evolutions for a three-element array of lasers
with r= 3000, M = 0.03, go = 1.5. These parameter values
are typical of CO2 lasers arrays reported in some experi-
ments [14,15].

In the present work the lasing regimes of globally coupled
laser arrays with time-independent spread eigenfrequencies
have been analytically and numerically investigated. It is
shown that the violation of the coherent phase-locked regime
with the increase of the eigenfrequency detuning level can
occur in two different manners.

The first type of coherence loss takes place when the
small-signal gain slightly exceeds the threshold condition. In
this case the lasing quenching occurs above a critical eigen-
frequency detuning level.

The second one is realized at large gains. In this case the
coherent regime is unstable above a critical value and differ-
ent dynamic behaviors are obtained.

The dynamic behavior of the globally coupled laser de-
pends upon the inertia of the active medium. In the case of
large population decay times the regimes with resonant
swing at the relaxation oscillations frequency have been
found. In these regimes the average and peak value of the
order parameter depends only weakly upon the number of
array elements.
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