PHYSICAL REVIEW A

VOLUME 52, NUMBER 5

NOVEMBER 1995

Photon-hopping conduction and collectively induced transparency in a photonic band gap

Sajeev John and Tran Quang
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
(Received 23 November 1994)

We study the dynamics of photon-hopping conduction between impurity atoms in a photonic band gap via
resonance dipole-dipole interaction (RDDI) in the low-excitation density limit. This is done both in the absence
and in the presence of a localized dielectric defect mode. The random impurity atom positions are modeled by
means of a Gaussian random distribution of RDDI’s with variance J and atomic line fluctuations with variance
6. By numerical calculation, we demonstrate the occurrence of a number of collective quantum features of
photon-hopping conduction. These include collective enhancement of the energy-transfer rate and collectively
induced transparency within the dielectric cavity mode. These effects are shown to depend sensitively on the
variances J and 8. Our results suggest that RDDI mediated hopping conduction may protect atomic excitation
energy from dissipation through nonradiative relaxation channels.

PACS number(s): 42.50.Fx, 71.55.Jv, 32.80.—t

L. INTRODUCTION

Photonic band-gap (PBG) materials constitute a funda-
mentally new class of dielectric materials in which the elec-
tromagnetic interaction is controllably altered, and in some
cases completely removed over certain frequency and
lengths scales. The existence of a PBG has been demon-
strated both computationally [1] and experimentally [2]. It
has been suggested that many new physical phenomena will
occur in PBG materials, such as photon localization [3], sup-
pression of spontaneous emission and fractionalized single
atom inversion [4-6], and vacuum Rabi splitting and
photon-atom bound states [6,7]. In the case of a collection of
N impurity atoms, the PBG environment leads to fundamen-
tal changes in the collective time scale factor and superradi-
ance rate. This leads to the potential for superradiant and
lasing devices with ultrafast modulation speed and near zero
threshold pumping energy [8].

In this paper we present results on photon-hopping con-
duction between impurity atoms inside a PBG via resonance
dipole-dipole interaction (RDDI). Energy transfer between
impurity atoms in solids has been studied for many years and
continues to be an active area of fruitful research in physics
[9]. Inside a PBG, where spontaneous emission is sup-
pressed, the RDDI energy-transfer process becomes the
dominant interaction mechanism between atoms. The photo-
nic band gap protects this interaction from many incoherent
effects. Conversely, RDDI hopping conduction may occur on
time scales that are short compared to other nonradiative
relaxation channels in the PBG material, thereby further en-
hancing the time scale of coherent quantum evolution. This
leads to a number of interesting collective effects within the
resulting photonic impurity band. In particular, the collective
energy-transfer rate is shown to be strongly enhanced. The
energy transfer from a localized dielectric defect mode to the
impurity atoms is also considered. In particular, if random-
ness of atomic locations is ignored, collectively induced
transparency occurs, i.e., there is almost no absorption of the
resonant photon in the cavity mode by a large collection of
unexcited impurity atoms.
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II. PHOTON-HOPPING CONDUCTION

An excited atom in a PBG interacts strongly with its own
localized radiation field, leading to the formation of a
photon-atom bound state [7]. The photon emitted by the ex-
cited atom will exhibit tunneling on a length scale given by
the localization length &,,. before being Bragg reflected back
to the emitting atom. The result is a stationary-state superpo-
sition of a localized photon and partially excited atom. The
localization length is on the scale of several optical wave-
lengths, and consequently the tunneling photon can be ab-
sorbed by another atom located within the distance &;,.. In
this manner, photon-hopping conduction takes place from
one impurity atom to another.

In this section we investigate dynamical properties of the
photon-hopping conduction between impurity atoms in a
PBG. We consider a collection of N two-level atoms within a
PBG and no nearby resonant radiation mode. The only inter-
action between atoms is the excitation transfer via the RDDI.
The quantum dynamics of the two-level atoms is described
by the set of 2X2 Pauli spin operators. o, describes the
atomic inversion, o' and o~ describe atomic excitation and
deexcitation, respectively. The model Hamiltonian for inter-
acting two-level atoms in a perfect photonic crystal (in the
interaction picture) takes the form [10]

N hS. N
H=2 —Loi+ Jol0;. (1)
=2 oY

Here 6;= w;— w, is the atomic frequency shift (from its av-
erage value w,) caused, in general random, by the static field
in the photonic crystal. J;; denotes the RDDI between the
atoms ith and jth atoms. The dipole-dipole interaction has
been shown to play an important role in Van der Waals
dephasing of the symmetrical superradiant states in vacuum
[11]. Far inside a PBG, spontaneous emission is almost to-
tally suppressed [4,6] while RDDI remains strong as a result
of the exchange of high-energy virtual photons, which lie
outside the PBG. In this case, RDDI plays quite the opposite
role from that in vacuum: it is a coherent rather than a
dephasing interaction. In a PBG, we will show that the ran-
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domness of the dipole-dipole interaction plays an important
role in photon-hopping conduction and lossless energy trans-
fer between impurity atoms. Near the band edge where spon-
taneous emission becomes strong [6,8], competition between
superradiance and photon-hopping conduction will take
place. In particular, dephasing of superradiance near the band
edge by random RDDI at high atomic densities may occur. In
this paper, we consider effect of RDDI on a single atomic
excitation and the competition between RDDI and nonradia-
tive relaxation. The influence of RDDI on superradiance will
be discussed elsewhere.

The order of magnitude of the RDDI in vacuum is given
by the dipole energy scale

|Jij|~|/~zi| |I&‘j|/(Rij)3’ 2

where u; and u; are the induced dipole moments on atoms i
and j, and R;; is the interatomic separation. Using the fact

that | ;| ~eay, where e is the electronic charge and aj is the
atomic Bohr radius, it follows that

|Jij|~hwa(a0/Rij)3- (3)

Here we have used the fact that e?/ag~#Aw,. The sign of
J;; depends on the orientation of the vectors u; and w; rela-

tive to the separation vector R, ;- In a realistic description,
the RDDI term in (1) would be replaced by a short-ranged,
traceless tensor interaction for atomic excitation transfer be-
tween two sets of nearly degenerate atomic orbitals. We
simulate the effects of this traceless tensor interaction with
the simpler two-level atom system by allowing J;; to be a
Gaussian random variable with zero mean value. The effect
of the PBG environment is to induce some phase shifts in the
RDDI matrix elements, as well as to introduce an exponen-
tial damping factor exp(—R;;/§,). It follows that the model
Hamiltonian (1) describes N impurity atoms which are sepa-
rated by a distance R;;=<§,.. The detail evaluation of J;; as
a function of atomic distance R;; and atomic dipole configu-
rations in a PBG may be found in Refs. [7,12]. The analo-
gous expression for J;; in free space can be found in [13,15].
For simplicity we consider the single excitation case in
which only one atom, say, for instance, the first atom, is
initially excited and N—1 atoms are initially unexcited.
There are N states which span the subspace of interest. These
base states we define as follows:

‘j>E|“,,..,+'-,—,...,—> 4
J

represents the jth atom excited and other atoms that are un-
excited. The wave function of the system can be written as

N
|¢<r>>=j§ e (0j). )

The time-dependent Schrodinger equation, projected on to
the single excitation subspace of the N-atom Hilbert space,
takes the form (setting A=1)

TSP 6
dtcj(t)_ i6;c;(1) zi(?&j)Jj,-c,-(t), 6)
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where j=1,2, ...,N. Equation (6) has the initial condition
cj(0)=51j9 (7

that is, the first atom is initially excited and all others unex-
cited.

For comparison purposes, we start with the analytical so-
lution of (6) in the absence of disorder. In this case all
6;=0 and J;;=J. Such a model may be relevant to impurity
atoms located at equal distances [16]. This actually can be
realized just for N=<4 in three-dimensional space. For a
larger collection of atoms, it serves as an approximate model
for specific atomic configurations in which J;; has small vari-
ance compared to its mean value. This may occur if configu-
ration averaging over the atomic positions is incomplete and
nonergodic. Equation (6) then reduces to

d N
—ei(n)= —ljlgj) cilt). (8)
Defining
N
D ci)=A,1), 9)
i(#j)

one can write Eq. (8) as

d
S ci(n=—iJA[D), (10)

%Aj(t)=—i(N—1)ch(t)—i(N—2)JAj(t). (11)
The solution of Egs. (10) and (11) can be easily found in the
form

ci(t)y=ae’ +a e VNI (12)
where a, and a, are defined by the initial condition (7). The

probability of the jth atom being excited, Pj(t)=|c () 2,
follows from Eq. (12):

1—4(N—1)sin®>(JNt/2)/N?,
4 sin®>(JNt/2)/N?,

Jj=1

Pin= j=2,....N.

(13)

This simple but illustrative result suggests that an unexcited
atom never gets a fraction greater than 4N ™2 of the energy of
the excited atom. As N gets very large, the first atom essen-
tially never transfers its energy at all. A similar energy trap-
ping phenomenon has been predicted in the system of N
two-level atoms in an ideal resonant cavity and without
dipole-dipole interaction between atoms [16]. In contrast to
this, energy trapping in a PBG occurs without a cavity mode
as the interaction mediator between atoms. In contrast to Ref.
[17], the absence of excitation transfer does not result from
atomic coherence induced by an external field but results
from strongly correlated RDDI. This result underscores the
important role of disorder in enabling coherent energy trans-
port in a PBG.

We now present results for a more realistic, disordered
system in which atomic positions in the photonic crystal are
random. For simplicity 8; and J;; can be taken in this case as
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FIG. 1. Atomic population on the excited state, P(¢) (a) and
P;(t) (b) as a function of the scaled time N2/t for detuning vari-
ance 6=0 and for number of atoms N=10 (dotted curves), 20
(solid curves), 30 (dashed-dotted curves), and 40 (dashed curves).

Gaussian random variables with zero mean values and with
variances equal to & and J, respectively [10]. For each set of
the Gaussian random numbers &; and J,;, we integrate the
system of Eq. (6) using the fourth-order Runge-Kutta method
[18]. The configurational average is taken over a large num-
ber (~2X10%) of sets of the random numbers &; and J;.
The probability of the jth atom being excited can be written
as

Pi(t)=[|c,(H]*].. (14)

where the square bracket [ ], denotes the configuration av-
erage over the random atomic positions.

In Fig. 1 we plot the probability P,(¢) [Fig. 1(a)] and
P;(¢) [Fig. 1(b)] [P;(¢) is almost the same for any j+# 1] as
a function of the scaled time N2/t for §=0 and various
numbers of atoms N. Clearly each unexcited atom gets a
fraction of the excited atom energy proportional to N~ '.
This is in sharp contrast to the case when all J;;=J, Eq. (13),
where each unexcited atom can get only a fraction of the
excited atom energy proportional to N~ 2 and the first atom
essentially does not transfer its energy at all. Here, we see
the important role of randomness of atomic locations in en-
abling coherent energy transport in a PBG. Clearly from Fig.
1(a) the transfer rate is proportional to \/—1\7 over the major
(early stage) decay process until P;(¢) reaches their steady-
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FIG. 2. Atomic population on the excited state P(¢) as a func-
tion of the scaled time Jt for N=20 and for 6/J=0 (solid curve), 5
(dashed curve), 10 (dotted curve), and 20 (dashed-dotted curve).

state values proportional N™!. As a result of rapid energy
transfer, other nonradiative decay mechanisms, such as mul-
tiphonon transition, will be ineffective. This suggests that the
PBG can be used as an ultrafast and nearly lossless device
for energy transfer (photon-hopping conduction). In Fig. 2
we plot P(¢) for N=20 and for various values 6/J=1, 5,
10, and 20. Clearly, energy transfer from the first atom to the
unexcited atoms is reduced with inhomogeneous line broad-
ening caused by the random static field in the lattice.

III. COLLECTIVELY INDUCED TRANSPARENCY

In this section we investigate energy transfer from a reso-
nant dielectric defect mode to N two-level impurity atoms
inside a PBG. We assume that the Q factor of the localized
defect mode is sufficiently high that we describe it by an
extended Jaynes-Cummings model [10,16] with the Hamil-
tonian

N

2 N N o

H=, __10-11_-1—2 ]ijg-;ra-j+g2 (eik"jo;fa
=2 % =
+e_"k"ia“o'j-). (15)

Here, a and a are the annihilation and the creation operators
for photons in the defect mode, k is the wave vector of the

defect mode, ;}- is the position of the jth atom, and g is the
atom-radiation mode coupling constant. Here, the magnitude
of coupling constant g is related to the volume of the cavity
mode £ .. In particular [19],

w )\ [ 2mhc?\ V2
g=ﬁ %— ;‘g— . (16)

Here the atomic dipole moment u~ea,. Again using the
fact that e?/ay~#, it follows that

g'wﬁwa(aolgloc)?,/z' (17)

In Eq. (15) we further assume that the N atoms are confined
within a region that is small compared to &,.. This allows us
to neglect the exponential decay of the mode amplitude func-
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tions. For simplicity we consider only the case when the
defect frequency is in exact resonance with the atomic tran-
sition frequency w,. As in the preceding section, we con-
sider the case of single excitation. Suppose that initially there
is only one photon in the defect mode and all atoms are
unexcited. The basis states can then be chosen as

[0y=|—,—,...,—:1), (18a)

y=l—,. ...+, ...,—;0). (18b)
J

In the state |0), all the atoms are in ground state and there is
one photon in the cavity mode. In the state |j), the jth atom
is excited and there is no photon in the defect mode. The
wave function of the system in this one photon sector of the
Hilbert space is of the form

N
|¢x(r)>=j§1 c;(D]j)+co(1)]0). (19)

The projected time-dependent Schrodinger equation has the
following form:

d -

—co()=—ig >, e *7ic (1), (20)

dt j=1

N
4 =i 0—i D —gei* i 21
EC,‘(T)— i8;c;(t) li(ﬂ)fjici(t) ge'"icy(t). (21)
Defining
&(1)=e % Tic;(1)

and

co(t)=cy(1),

Egs. (20) and (21) become

d N
S0l ="—ig 2 &(1), (22)

d X
2 GN= 1080 =i 2 TiEn)~igeor).  (23)
where
=1 e, 4)
The initial condition of Egs. (22) and (23) is
co(0)=1, c¢0)=0. (25)
As before, we begin by studying the case of uniform J ij=J

for all (i,j) and &;=0. Equations (22) and (23) then have the
form

d N
77 Co()= —igj:E1 e, (26)
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d N
a—tej(t)=—u; Elt)—igéo(n)+idE ().  (27)

It is clear from Egs. (25)—(27) that ¢ ;(¢) is the same for any
j#0. Equations (26) and (27) can be written as

d
E;Eo(t)= —igc(t), (28)
d _ - -
Zc(t)=—iJ(N—l)c(t)—icho(t), (29)
where
N
5(:)5}21 é(n). (30)

The solution of Eqgs. (28) and (29) can be easily found in the
form

~i)\11+a2e—i)\2t, (31)

C~0(t) =a;e
E(t)=bre M+ bye Nt (32)
where

No=3(N=1)J £3[(N—1)2J2+Ng?]'2, (33)

Here a;, and b, are defined by the initial condition (25).
The mean photon number {(n(t))=|cy(¢)|* and the probabil-
ity of the jth atom being excited, P;(¢)=|c;(t)|?, are ob-
tained from solutions (31) and (32) as

Ng2

<I’l(t)>=1“ (N_1)2J2+Ng

ssin?{[ (N —1)2J%+Ng?]"1},
(34)

2
. = 8 in2 — 272 21172
P(t) E +Ng251n {[(N=1)*J*+Ng*]"*t}.

(35)
In the case of J=0, Egs. (34) and (35) reduce to
(n(1)y=1-sin?(\Ng1), (36)
P(1)= %sin2(\/ﬁgt). 37)

That is, the photon is absorbed and reemitted by atoms, and
the only difference from the single atom (Jaynes-Cummings)
case is that the energy exchange rate is much faster (propor-
tional to \/]_V_). This is in agreement with Ref. [16]. In the
case of J# 0 and the number of atoms large enough to satisfy
the condition

(N—1)2?>Ng?, (38)
there is no photon absorption, (n(#))=1, although all atoms

are unexcited. Using the order-of-magnitude estimates for J
and g, Eq. (38) becomes the condition that
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FIG. 3. Mean photon number (n(z)) as a function of the scaled
time gt for N=20 atoms, detuning 6=0; and for RDDI variance to
cavity mode coupling ratio J/g =0.1 [Fig. 3(a)], 0.5 (dotted curve),
1 (solid curve), 5 (dashed curve), and 15 (dashed-dotted curve).

R3
> __’
(agéioe)™

where R is the volume occupied by the atoms. By assump-
tion R3<\3. The quantity r=(R3/N)!” describes the aver-
age distance between nearest-neighbor atoms. It follows that
transparency occurs when r<€(agé,.) 2 For an optical PBG

we expect &,,.= 10 A and ag=1 A. This suggests that con-
dition (39) is satisfied at typical gas densities (r<<10? A).
This transparency effect is a purely collective property analo-
gous to the excitation trapping phenomenon discussed in the
preceding section. That is, the atoms strongly (but randomly)
correlated by RDDI do not absorb the localized, defect mode
photon, and energy transfer from the defect mode to atoms
does not occur.

We now study the influence of the random atomic posi-
tions on energy transfer from the defect mode to the impurity
atoms. For simplicity we assume that §; and J ij are Gaussian
random variables with zero mean values and with variances
S and J, respectively. As in the preceding section, for each
set of the Gaussian random numbers J; and J ij» We integrate
Egs. (22) and (23) using the fourth-order Runge-Kutta
method [18]. The configurational average is taken over a
large number (~2 X 10%) of sets of the random numbers S;
and J ij-

N (39)

In Fig. 3 we plot the mean photon number as a function of
gt for the case of N=20, 6=0, and for various values of J.
At small J [Fig. 3(a)], (n(r)) exhibit almost sinusoidal Rabi
oscillation in agreement with the analytical solution (36). At
J=0.5g [dotted curve in Fig. 3(b)] the sinusoidal Rabi oscil-
lation collapses. In this case the collapse of the Rabi oscilla-
tion is a result of random RDDI interactions between atoms.
This leads to an effective off-diagonal inhomogeneous line
broadening that damps out the single atom Jaynes-
Cummings oscillations [20] and [21]. This is distinct from
the diagonal inhomogeneous line broadening due to the ran-
dom static field in the photonic crystal. At the value
J=g[solid line in Fig. 3(b)], the maximum amount of pho-
ton energy is transferred to the atoms. In the long-time limit,
each atom and the defect mode can get a fraction of the
photon energy proportional to 1/N. Further increase of J/g
(dashed and dashed-dotted curves) leads once again to sup-
pression of the energy transfer and the system remains more
and more in the form of the defect photon. Large J/g may be
realized by operating close to a photonic band edge where
the localization length &, becomes considerably larger than
the optical wavelength.

The process of energy transfer from an excited atom to
N —1 unexcited atoms and a defect mode can be studied in a
similar fashion. The only change is that the initial condition
(28) becomes

50(0):51';&1(0):0, ci1(0)=1. (40)

We find that the defect mode, in general, absorbs only a
fraction proportional to 1/N of the energy of the excited
atom, in agreement with Ref. [16]. In the case of large & or
J, energy transfer from the excited atom to the defect mode
decreases with increasing & and J.

IV. DISCUSSION

We have studied photon-hopping conduction between im-
purity atoms in a PBG via RDDI, both in the absence and in
the presence of a defect mode. The randomness of atomic
positions was described in terms of inhomogeneous line
broadening, as well as Gaussian random RDDI between pairs
of atoms. Many collective quantum features of photon-
hopping conduction were manifest. In particular, collective
enhancement of the energy-transfer rate, excitation trapping,
and collectively induced transparency have been predicted.
These results suggest that photon-hopping conduction pro-
vides immunity for the resulting photonic impurity band
from nonradiative extinction processes such as multiple pho-
non emission. Although our discussion focused on photon-
hopping conduction in a PBG, the above results apply also
for a system of Rydberg atoms in a near-resonant and reso-
nant cavity [16,22—-24]. Our results apply to the single exci-
tation and low-excitation density limits. In the high-
excitation density case we expect many different quantum
features. In particular, we note that the model Hamilton (1) is
similar to the spin-glass model in condensed matter physics
[25]. For the single excitation it is apparent from Eq. (5) that

[(o])].=0, (41)

Kolople=[lc,(1)]*].=P;(1)>0, 42)
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and
[Kof)ap)]=0. (43)

Equation (43) describes the Edward-Anderson order param-
eter, which appears in the definition of a spin glass [25]. We
have shown previously [8] that an incoherently excited col-
lection of atoms near a photonic band edge can exhibit spon-
taneous symmetry breaking |<(r;)| >0 in the steady-state
(long-time) limit as a result of photon localization. It is pos-
sible that macroscopic coherence may likewise occur for the
model Hamiltonian (1) with Gaussian random J;; if a large
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finite density of excitations is present. Deep within the PBG,
the above system may then tend to a new collective state, an
optical analog of the quantum spin-glass state.
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