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Degenerate as well as nondegenerate three-level two-photon laser (TPL) models are derived. In the limit of
equal cavity losses for both fields, it is shown that the nondegenerate model reduces to the degenerate one. We
also demonstrate the isomorphism existing between our degenerate TPL model and that of a dressed-state TPL.
All these models contain ac-Stark and population-induced shifts at difference from effective Hamiltonian
models. The influence of the parameters that control these shifts on the nonlinear dynamics of a TPL is
investigated. In particular, the stability of the periodic orbits that arise at the Hopf bifurcation of the system and
the extension of the self-pulsing domains of the system are studied, revealing the role played by the detuning
and ac-Stark parameters.
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I. INTRODUCTION

Although a definitive experimental implementation of a
two-photon laser (TPL) has not been possible until very re-
cently [1],TPL's have been the subject of continued theoreti-
cal attention since the early days of the laser era [2]. The
theoretical interest of the TPL lies in the intrinsic nonlinear
nature of the two-photon interaction. This fact makes this
system a potential source for nonclassical light and thus the
major part of the literature has been devoted to the quantum
description of such a laser [3].

Contrarily there is not much work on semiclassical mod-
eling of TPL's and, in particular, there still lacks a complete
understanding of its stability and dynamical properties. In a
classical paper [4] Narducci et al. established a semiclassi-
cal two-photon amplifier model. By assuming quasi-two-
photon resonance between the field and two atomic levels
(not dipolarly connected) and large detuning between the
field and other transitions involving intermediate atomic lev-
els, the variables related with the latter were removed. Nev-
ertheless the resulting equations still retained important in-
formation concerning the intermediate levels through (i) the
ac-Stark shifts, (ii) a frequency shift due to the population
inversion between the two lasing levels, and (iii) a static
frequency shift that depends on the intermediate levels popu-
lation. If these three shifts are neglected one can speak of an
effective Hamiltonian model since the resulting equations are
the same that one obtains by considering the TPL as a two-
level laser with a pure nonlinear interaction with the field. If,
on the contrary, one preserves the shifts one speaks of an
exact model since it is obtained via a microscopic (or com-
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piete) Hamiltonian. The different TPL behavior predicted by
effective and microscopic Hamiltonians has been the subject
of interest from the quantum viewpoint [3(a)] but not from
the semiclassical one until our recent paper [5].

The first paper devoted to the TPL dynamics seems to be
that of Ovadia and Sargent [6] in which the stability of an
effective Hamiltonian TPL model [7] was analyzed. They
describe two important features of the TPL: (i) the nondesta-
bilization of the trivial solution with the consequent neces-
sity of triggering, and (ii) the existence of a Hopf bifurcation
that destabilizes the steady lasing solution. This instability
occurs for pump parameter values belo~ that corresponding
to the bifurcation as can be deduced from that paper. This is
a difference from the majority of laser systems [8]. In a
subsequent communication Ovadia, Sargent, and Hendow [9]
did a preliminary investigation of the inhuence of the ac-
Stark shifts on the TPL dynamics, but their results were not
clearly quantified and they did not take into account the rest
of the frequency shifts.

Later, Ning and Haken systematically studied the dynamic
behavior of the effective Hamiltonian TPL in a series of pa-
pers. They extended the previous results of Ovadia and Sar-
gent, pointing out the direction of the Hopf bifurcation in
Ref. [10].They also considered the influence of cavity de-
tuning [11],studied the stability of the Hopf orbits [12], and
did a preliminary study of the phase dynamics [13]. Re-
cently, Concannon and Gauthier [14] have proposed a sim-
plified effective model for a class-8 two-photon laser with
injected signal that contains some of the more relevant char-
acteristics of the TPL.

A different kind of TPL model, namely, the dressed-state
TPL, was proposed by Zakrzewski, Lewenstein, and Moss-
berg [15], being that model appropriate for describing the
experimental situation of Gauthier et al. [1].In a subsequent
paper, Zakrzewski and Lewenstein [16]extended their previ-
ous model to the bad cavity limit, taking into account the
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competition between one-photon and two-photon processes.
They also paid special attention to the dynamical instabili-
ties, and showed that self-pulsing and chaos can be observed
in experiments on dressed-state lasers. As will be shown, our
TPL model is isomorphic to the dressed-state TPL model of
these authors. Apart from those works it is also to be men-
tioned the study of the chaotic behavior of a two-photon
micromaser model by Davidovich et al. [17].

Recently [5] we have proposed a microscopic Hamil-
tonian semiclassical TPL model and studied its emission
conditions and stability properties, paying special attention
to the deviations with respect to the predictions of the effec-
tive Hamiltonian models of Ovadia and Sargent and of Ning
and Haken. In the present paper we largely extend our pre-
vious analysis in several directions. In Sec. II we obtain the
TPL model both in the degenerate and nondegenerate cases,
discussing the possible connections between them, and show
that our degenerate TPL model is isomorphic to the two-
photon dressed-state laser model of Zakrzewski, Lewenstein,
and Mossberg [15]. We analyze the stability of the Hopf
orbits in Sec. III, where also the main results of [5] concern-
ing the stability of the steady state are summarized. In Sec.
IV the global dynamic behavior of the TPL is numerically
investigated. Finally the main conclusions are summarized in
Sec. V.
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FIG. 1 . The three-level cascade scheme considered in the two-
photon laser model. A large value of the one-photon detunings 6 is
assumed. See text for details.

II. TWO-PHOTON LASER MODELS

In the first two subsections below we obtain the Maxwell-
Bloch equations governing our TPL model, both in the non-
degenerate case, in which pairs of photons with different
frequency are created (Sec. II A), and in the degenerate case,
in which pairs of photons with the same frequency are cre-
ated (Sec. II B). In Sec. II C we establish the relations be-
tween both models. Finally, we demonstrate in Sec. II D the
isomorphism existing between our degenerate model and that
of Zakrzewski, Lewenstein, and Mossberg for a dressed-state
TPL [15].
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A. Nondegenerate TPL model

The starting point is the nondegenerate cascade laser
model of Ref. [18].We consider a ring cavity filled with a
three-level active medium [levels 2 (upper), 0 (intermediate),
and 1 (lower), with energies W and transition frequencies
01,&= (W,.—Wk)1'6(j, k=2,0, 1)] that interacts with two uni-
directional plane-wave, single-mode electric fields of the
form E,(z, t) = e,E,(t)cos[k, z —to„t p, (t)], with k,—the
wave number, co, the empty cavity mode frequency closest
to the transition 0 —j, @J'(t) a phase [(0~,J'+ @i) is the fre-
quency of the field E~'], and z the propagation direction
(j= 1,2) (Fig. 1).

Assuming that the field Ez(E() interacts only with the 2-0
(0-1) dipole allowed atomic transition, and in the usual
rotating-wave and slowly-varying-envelope approximations,
the semiclassical [19]Maxwell-Bloch equations of the laser
system are [18]

where p, , represents the population of level i, n; being its
value in the absence of fields [dz=—(pzz —

poo) and
dl —=(poo —pii) are population inversions], and p, is the
slowly varying complex amplitude of the coherence associ-
ated to the transition i —j(i,j= 1,0,2) being piz the respon-
sible for the two-photon processes. Here we have assumed
that all the populations (coherences) relax with the same rate
y~(yi). 2a, = (gs;,".e, /26, )E, is the Rabi frequency for the
field E, , po being the electric dipole element between states
~0) and

~ j) that is taken to be real (p, ,z= p~, =o). trJ and

g~ represent the cavity losses and the gain parameter

(g = cu,jpo N(2eoA„with N the density of active mol-
ecules) for the field E, . The atom-cavity detunings BJ are
defined as 62 = ~ 2 ~2O and ~i = ~

& ~o& and
8 i/= 6i + 62 = CO, 2+ co, I

—
M2$ represents the two-photon

cavity detuning.
This model is valid in both resonant and nonresonant situ-

ations. When resonance or small detuning is assumed we
speak of a cascade laser. The emission and dynamical prop-
erties of the resonant cascade laser have been studied in
Refs. [18]and [20]. The influence of moderate detuning has
also been preliminarily studied in Ref. [21].In order to ob-
tain a pure TPL, in which the laser works without one-
photon processes ' contributions, some conditions must be
fulfilled. Roughly speaking, these conditions imply that (i)
the detuning of the fields with respect to the one-photon
transitions be much larger than the relaxation rates and the
two-photon cavity detuning (in order to ensure that the cavity
is nearly tuned to the two-photon transition at the time that it
is highly detuned from the one-photon transitions); (ii) the
deviations of the field frequencies from the empty cavity
frequencies be negligible in order to ensure far off-resonant
one-photon processes; and (iii) the ac-Stark shifts do not
modify the above far off-resonance conditions. See Refs.
[22—25] for a discussion of these points.
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If the above conditions are verified we can apply the adia-
batic following model of Takatsuji [22] and Grischkowsky,
Loy, and Liao [23].As discussed in [24,25] it consists of the
adiabatic elimination of the dipoles and of the intermediate
level population. This is explicitly done in the Appendix.
Then, from Eqs. (A10) and introducing the adimensional pa-
rameters

g 1/+1 lg 1g2
X=g,/~, ' nzl = (nz —n 1),

nzl t Ritzr= e= sgn(8)e, z/yi, (2)

Ei
I, yi l~l x)

7= Pgt

~,= ~, ~ri b= ri~~Vi

(X is the relative efficiency of the two atomic transitions for
one-photon amplification [20], g is the effective two-photon
gain parameter, r is the pump parameter, and e, o. , and b
are the two-photon cavity detuning, cavity losses of mode j,
and population relaxation rate, normalized to the coherences
relaxation rate), and adimensional variables

no is usually set to zero in the literature [25] when applying
the adiabatic following model. Contrarily effective TPL
models neglect 0 (implicitly assuming no= —,

' [ll]). In Ref.
[5] we showed that a non-null value of 0' can deeply modify
the laser behavior. Along similar lines, 6 can be considered
as an effective frequency pulling that contains an ac-Stark
(second term) shift and a population difference (third term)
shift.

8. Degenerate TPL model

In this case we assume the frequencies of the two fields to
be equal and we deal with the only field
E(z, t) =eE(t)cos[kz —cu, t @(t)—] that interacts with both
the dipole-allowed atomic transitions. The Bloch equations

(la) —(lf) can be adapted to this case by substituting P,
and $2 by @, 01„and 01,2 by ~o, (e» ——201,—012, ,
8= cu, cozo)—, being now 2nl, =(gsok e/6)E The. field equa-
tions (lg) and (lh), however, must be substituted. The new
equations are obtained by taking into account that both the
coherences p02 and p&0 are sources for the only field E. One
easily gets

+~+ R 12[VX Im(Pio) + ( vX) 'Im(P02)] (6a)

@=g, 2[+XRe(P10)+ ( VX) 'Re(poz) j/n, (6b)

with u =u&u2, i.e.,2
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(4d)

(where 8= 82= —6, , since lelzl(l Sl is assumed), the non-

degenerate TPL equations read
In this case the relative efficiency for one-photon amplifica-
tion X takes the simpler form X= p, o,l p, 20.

2 2

In order to obtain the degenerate TPL model we must
consider again the conditions that ensure large one-photon
detuning enunciated in the preceding subsection for the non-
degenerate case (see Appendix). Then, from Eqs. (A14), de-
fining the adimensional parameters

g 12 21

where the derivatives are with respect to the dimensionless
time 7. Other symbols are and by introducing the adimensional variables

(5a)

o i+Xo20 = g(1 —3nll)
VX~ri ~rz
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the degenerate TPL model equations read [5]
From Eq. (4b), and following the analysis of [5], b, can be

interpreted as an effective atom-cavity detuning, which de-
pends both on the actual two-photon cavity detuning and the
intermediate level population through O'. Let us remark that

D = b(r —D) —Im (Q)I,
Q = —[1+i(A+ A)]Q+ iDI,

(loa)

(10b)
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I= 2 o I[Im( Q) —1],
0= —2o. Re(Q)+ g(I —2trD),

(10c)

(lod)

(a)

where the derivatives are with respect to ~. Parameters e and
b keep the same definitions as in the nondegenerate case
[Eqs. (2b) and (5a)] and

1+X5=e —O=e —g(1 —3nti)'
Px

(1la)

The ac-Stark parameter rg has been defined as

X

2' (1lb)

C. The degenerate TPL model as a limiting ease
of the nondegenerate model

The degenerate TPL model constitutes a limiting case of
the nondegenerate one. In effect, if we take equal losses for
both fields in the nondegenerate model of Eqs. (4), it is
trivial to show that E,(t) =Ez(t) =I(t) asymptotical—ly. Then
we can rewrite Eqs. (4) and (5) in terms of the only intensity
I(t). W'hat we obtain are Eqs. (10), i.e. , the degenerate
model. Thus, the laser behavior predicted from a nondegen
crate TPL model with equal cavity losses for both fields co
incides with that predicted from a degenerate TPL model

Nevertheless there is a difference in a factor 2 in the gain
parameter that makes the pump parameter different in both
cases: rd, s= 2r„,„d,s [Eqs. (2) and (8)]. In particular this im-
plies that the minimum population inversion n2& required for
laser action in the nondegenerate case must be twice that in
the degenerate case. This fact was first commented by Scza-

Notice that the definitions (8) and (9) are equivalent to
those corresponding to the nondegenerate case [definitions
(2) and (3)] except for a factor 2 in the gain parameter g (we
keep the same symbols for both models to not complicate the
notation unnecessarily) and in the definitions of D, Q, and r
It is also to be pointed out that in the degenerate case [Eqs.
(10)] only the field intensity is relevant, whereas in the non-
degenerate case [Eqs. (4)] the field amplitudes F cannot be
substituted by their intensities.

The connection between X and the ac-Stark shifts appear-
ing in Eq. (10d) is now evident: when X= 1 [rl=O, Eq.
(lib)] the ac-Stark ( ziI) and the population ( —2 zlcrD) shifts
become null. Contrarily, in the nondegenerate case, X=1
does not eliminate the ac-Stark shifts [Eq. (5c)] unless
o., = o.2 (see next subsection). On the other hand the static
frequency shift 0" becomes null for no = —,

' in both the degen-
erate and nondegenerate cases [Eqs. (5b) and (1la)].

When zI=O (i e., X= 1) and 0' = 0 (i.e., nn= —,') Eqs. (10)
are isomorphic to the Ning and Haken effective Hamiltonian
TPL model [10].Thus, the influence of the intermediate level
manifests through the ac-Stark frequency shift yI, the popu-
lation inversion frequency shift —2o.gD, and the static fre-
quency shift 0, their strength being a function of the param-
eters zI (or X, which is a more intuitive physical parameter)
and the intermediate level population no.

FIG. 2. (a) Dressed-state two-photon laser scheme. + and-
represent the dressed states (the thickness of the line is indicative of
the level population). coi and A ' are the driving field and general-
ized Rabi frequencies, respectively. (b) The equivalent multiphoton-
Raman semiclassical scheme, where col is the lasing frequency.

niecki when analyzing the steady solution of the TPL [26],
and was interpreted by Wang and Haken [27].What occurs is
that the validity conditions of both models do not coincide:
in the degenerate case the field interacts with both atomic
transitions, whereas in the nondegenerate case each field in-

teracts with only one transition. This explains, roughly, the
factor 2 in the gain parameter.

In any case, this is not relevant when studying the dy-
namic behavior of the TPL. Moreover, in the following we
will restrict to the degenerate model of Eqs. (10) for the sake
of simplicity.

D. Isomorphism between the degenerate
and the dressed-state TPL models

Up to now the only experimental verification of a TPL has
been carried out in dressed-atom doublets [1].This laser con-
sists of an atomic beam of two-level atoms which are
strongly driven by a dressing or pump field. If the pump field
is detuned from the atomic transition then the atom plus field
quantum states form a ladder of doublets such that the popu-
lations of the two states of each doublet are different in gen-
eral. If a high-Q cavity is suitably tuned one can obtain one-
photon [28,29] or two-photon [1]lasing between some of the
states [Fig. 2(a)]. From the semiclassical viewpoint this TPL
system can be understood as a multiphoton-Raman laser in
which the atom passes from the lower to the upper lasing
level through the absorption of three photons of the pump
(dressing) field and the emission of two photons of the lasing
field [Fig. 2(b)]. An appropriate model for describing such a
system is that of Zakrzewski, Lewenstein, and Mossberg [15]
and in this subsection we will show that our degenerate TPL
model [Eqs. (10)] is isomorphic to their dressed-state TPL
model. This constitutes an extension to the two-photon case
of the isomorphism existing between one-photon dressed-
state lasers and normal one-photon (two-level) lasers [30].

The equations describing the dressed-state TPL model
read [15]

&= —(y, +i&')&—i&,& a —2iA S(~a~ + —,'),
(12a)
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S3 ———y2(S3 —S3)—2iAi[(a*) S—S*a ], (12b) keep constant while the pump is varied, and this cannot be
applied to the dressed-state TPL.

a= —(I +ih2)a —2iAiSa* —iA2$3a, (12c)
III. STABILITY PROPERTIES

where S, S3, and a are proportional to the medium polariza-
tion, medium inversion, and field amplitude, and y1, y2,
and I are their respective damping constants. S3 is the pump
parameter, A'=(0, +hi)" with A the Rabi frequency of
the pump (dressing) field, b, i=(co2, —a~„) and 52=(co,
—ai„), co„being the frequency of the dressing field and A2
that of the cavity mode. A1 and A2 are defined as

In this section we address the problem of the stability
properties of the degenerate TPL model. In Sec. III A we
resume the linear stability since it was treated in detail
[5,6, 10,11].In Sec. III B we study the stability of the Hopf
orbits paying particular attention to the influence of y and

A i
= &,sin2n(1+ cos2a),

g (1+cos2a) (1 —cos2a)' =8 n 4~,+n
2 sin 2n(A' —262)

0, '(462 —A')

(13a)

(13b)
e1I + c2I+ e 3

=0,2 (17a)

A. Steady states and linear stability

It is straightforward to show that the trivial solution of the
TPL is always stable. Thus it is necessary to trigger the laser
for reaching the nontrivial steady solution, as has been dem-
onstrated experimentally [1].The lasing solution of Eqs. (10)
is given by (we only give its intensity I)

with g the gain parameter and a the "rotation angle" defined
through A=A'sin2n and 51=A'cos2a. It must be veri-
fied that 252=0'.

Let us note that y1, y2, and S3 depend on the pump
strength through the rotation angle

with

2o+b)2
+ 2

b 2o+1) (17b)

—2N cos2n
S3= 1+ cos 2a y, = —,

' y(2+ sin 2 n),
2o+b

2
2o+b

(2o+ 1) (2o.+ 1)
(17c)

y2= y(1+ cos 2a), (14)

2A1 A,I= [ae't "+~ ] D= S
y1

y being the relaxation rate of the bare atom occupation prob-
abilities.

With the change of variables

~a-2~« '
c3=b 1+' 2o+1 (17d)

This stationary intensity has two branches: in one of them
the intensity grows with increasing pump, and in the other
branch the intensity has an opposite behavior. Both branches
appear at a pump value rp that is given by

and of parameters

A1r= S3,
yl

A2
A1'

252 —A'

y1

g [Sg —2i(52t+ P)]2
2A,

(15)
1PP + d2I 0+ d3 = 02

d, =b [(1+2(T) +8oq ],
d2=4b rgh(2o —b),

(18a)

(18b)

ds= —4b[(1+2o.) +4 ]—4' (b+2o.) (18d)

y1

y2b=-
y1

(16)

and assuming ~a ~&)-,
'

(~a~ is the photon number expected
value), one recovers Eq. (10) of the degenerate TPL model.

Since b. does not contain now the 0 contribution [com-
pare Eqs. (16) and (lla)], no=-,' here, and this laser is less
sensitive to pumping through increasing gain (e.g. , increas-
ing the density of atoms) than a three-level two- photon laser
(see later in Sec. III A).

Although the results that we present in the following are
applicable to the dressed-state TPL, the relations (16) be-
tween both systems' parameters prevent a straightforward
translation of the results since we assume that the parameters

(some of these coefficients were incorrectly given in Ref.
[5]).

The most relevant new feature in the steady solution with
respect to the effective Hamiltonian models not considering
the intermediate level is its dependence on the static shift
O. As 0 depends on the gain parameter g, if the pump
mechanism involves a variation in the density of active mol-
ecules (for example by changing the gas pressure) then the
shift 0 becomes pump dependent, and so does the detuning
A. This can occur but in the case np= —,

' for which 0'=0.
This fact strongly influences the emission threshold and even
can prevent laser action [5].In the following we assume that
the pump mechanism involves variations only in n21, i.e., in
the inversion in the absence of fields.
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FIG. 3. (a) Steady intensity vs pump for o =4 ar o.=4 and b=0.2. The
continuous (dashed) curve denotes stable (unstable) solution. (b)
rHB vs o for b=0.2. Both figures correspond to the resonant
(a=0) effective limit(y=I' '

( = I 8=0) TPLmodel. SSS, stable steady
state; USS, unstable steady state; NLS, no lasing solution.

2o.(1 —b)

bg(I + b 2cr)(2o.—b b—)—(19)

whenever the bad cavity condition o.~o =b is verified
(F . 3). N t'ce that o. is much smaller than that corre-Flg. ). 0 ice
spon ing o ed' t th one-photon two-level laser Lorenz- a en
model P 1]).On the other hand the steady solution is always
unstable for o )o.,—=(1+b)I2 since rHn has an asymptote

solution is stable for o.&1 and unstable for o.&1 irrespec-
f the ump value (the Hopf bifurcation disappears . It is

to be marked that instabilities are still possible in the case o
adiabatic elimination of the medium polarization Q (class-8
laser) [14]. In this case the asymptote cr, = ~ and cannot be

With respect to the stability of the lasing solutions, the
one decreasing with increasing pump y

~ ~ ~

is alwa s unstable and
the other one can undergo a Hopf bifurca tion ~HB~. The most
relevant feature of this HB is that, at a difference from the
majority of lasers [8], the laser is stable for pump values
larger than (and unstable for values smaller than) that corre-
sponding to t e, rH&.h HB . An explicit expression of rHB can
only be given or eb f the effective limit of the model i.e., or
no=-3 and g= 1) and it was first obtained by Ovadia and
Sargent [6]. In the perfectly tuned case (5= 0) it reads

FIG. 4. Dependence of ro and rH& with o. for h-er for b =0.2 and several
values of y. In (b) the intersection zone is magnified.

reached since o., & is, b(&1 assumed in the class-B model. This
fact was not clearly identified in Re .f. 14 .

The dependence of rHB with the ac-Stark parameter and
the detuning was studied in detail in Re .f. 5 . There we
h d that influences smoothly the position of r „B (as

well as that of its asymptote o, ) when 0.15~y- I/O.
that o.BcL is a mosh

'
lmost not affected. For smaller values of y a

~ ~

new feature appears since the asymptote cr, disappears ( ig.
4). With respect to the influence of b, on rHn (previous y

d b Nin [11]with the effective Hamiltonian model it
was shown that the instability domain tends to increase wi
increasing an i cd t an be proven that the asymptote o.,
remains unaltered. For yW 1 there is an asymmetry of bot
ro and rHB with respect to positive and negative 6 (Fig. ).

B. Stability of the Hopf orbits
~ ~

Now we address the problem of determining the stability
of the Hopf orbits. For that we make use of a reelaboration o

32 that we carriedth general method of Iooss and Joseph
out in Ref. [20]. It consists basically in expanding the H pc theHo f
orbits close to the bifurcation (roughly speaking in terms of
their amplitude) and imposing a solvability condition ( re-
holm alternative . is a~. Th last condition together with the Flo-
quet theory of the stability of periodic orbits provides a cri-
terium for the stability of the orbits. In Ref. [12] Ning and
Haken addressed the same problem in the effective imit o
the perfectly tuned model by applying the normal form and
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FIG. 5. Dependence of rHB with 6 for b=0.2, o.=0.5, and
X=o.1.

slaving principle. Our calculations extend their results, repro-
ducing them in the appropriate limit (g= 1, no=-,', and
e = 0). In particular they showed that when the bifurcation is
subcritical (i.e., that the orbits are unstable in the vicinity of
the bifurcation) the laser turns off, i.e. , when the orbit is
unstable at the bifurcation the whole branch of the Hopf
orbits is always unstable. So the knowledge of the subcritical
or supercritical character of HB provides a large amount of
information in this laser model.

By defining u=U —Uo with U=(I, Reg, lmQ, D) and

Uo the stationary value of U, and choosing an arbitrary con-
trol parameter p, , Eqs. (10) can be written as

—u =L( p, )u+ —,
'
N( p„u, u), (20)

where L is the linear matrix (of elements L;,) and N is the
nonlinear vector (with components N, ), which are given by

a (du, l

;,( )= (21a)

(d
N;(p, ;a,b) = g akb&

uk»&L d7~
(21b)

X = Re(1 [N(p, HB;r, u2O)+ N(pHB;r*, u22)]) (22)

is negative (positive). In Eq. (22), r and I are the right and
left eigenvectors of L at HB corresponding to the pure imagi-
nary eigenvalue

irido,

and u2, (j=0,2) are Fourier compo-
nents of the second-order terms of the Taylor expansion of
the Hopf orbits and are obtained from

a and b being arbitrary four-dimensional vectors (we do not
give the explicit expressions of L and N for the sake of
brevity). In general, the expansion (20) contains higher-order
nonlinearities that should be taken into account. Nevertheless
Eqs. (10) only contain second-order nonlinearities and thus

(20) is exact in our case.
In Ref. [20] we showed that the Hopf bifurcation is su-

percritical (subcritical) and consequently the Hopf orbits are
stable (unstable) in the vicinity of HB whenever the quantity

FIG. 6. Domains of stability of the Hopf orbits for X=1 and
6 =0 in the cavity losses o. vs population decay rate b plane. The
value of r„a is given by Eq. (19).

[L(p, „n) —2i aio 8]u22= —N( p HB; r, r), (23a)

L(pHB)ufo= 2N(pHB ', i', i'*) (23b)

with p, H& the value of the control parameter p, at the Hopf
bifurcation, 6 the nn identity matrix, and n the dimension
of the problem (n =4 in our case). We address the reader to
the Appendix of Ref. [20] and to the book of Iooss and
Joseph [32] for details.

An explicit expression for X cannot be obtained in gen-
eral. Hence we will make a numerical study of it. In Fig. 6
the different domains of stability of the Hopf orbits are dis-
played in the plane (b, o)for the per. fectly tuned effective
limit of Eqs. (10), i.e., y= 1 and 5=0. This is the case
investigated by Ning and Haken [12] and we have verified
that our results are exactly coincident. Three main domains
can be clearly appreciated in the figure: a domain of stable
steady state on the lower right-hand side (that corresponds to
o (oiicL), a domain in which the steady solution is always
unstable on the upper left-hand side (that corresponds to
o ~o,), and the domain of dynamic behavior between the
other two. This last domain is subdivided into two zones
corresponding to stable (unstable) Hopf orbits in the left
(right) side. Thus, for b)0 4the Ho. pf orbits are always
unstable and the laser turns off when the Hopf bifurcation is
trespassed (with decreasing pump r), and for b(0.4 the or-
bits are stable if o. is larger than a certain value and unstable
below it. Let us finally point out that when HB is degener-
ated (i.e., when it passes from subcritical to supercritical) the
Hopf orbits do not exist as already noted in Ref. [12].

In Fig. 7 we show analogous representations for two rep-
resentative values of the detuning 5 keeping y=1. A con-
tinuous and smooth deformation of the border between the
subcritical and supercritical domains can be appreciated and
it tends to increase the domain of stable orbits. It can also be
appreciated that instabilities can be observed for cavity
losses below the bad cavity condition as 5 is increased, as
already stated by Ning [11].Notice also how the asymptote
o., cannot be trespassed, as commented above.

In Fig. 8 we go back to resonance conditions (6 =0) and
we show the dependence of the extension of the domains for
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FIG. 7. Same as Fig. 6 for y=1 and two values of 6: (a)
5=1 and (b) 6=4.

1.4

1.2

three values of the ac-Stark parameter y. As in the case of
5 a deformation of the domains of supercritical and subcriti-
cal Hopf bifurcations is observed. The most relevant feature
is that for y different enough from I, there is no value of b
for which the bifurcation is always subcritical. There is al-
ways a value of o. for which it becomes supercritical, at
difference from the perfectly tuned effective case (Fig. 6).
For very low values of y [Fig. 8(c)] there is a "splitting" of
the supercritical domain for low values of b into two do-
mains separated by a subcritical zone. In this case instabili-
ties for cavity losses larger than the asymptote o, can be
found, as already commented.
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IV. DYNAMIC BEHAVIOR

The dynamical instabilities of the TPL have been investi-
gated in the past by Ning and Haken in the effective model
[12] and by Davidovich et al. in a two-photon micromaser
model [17].In both cases it was found that the periodic or-
bits follow a classical Feigenbaum route to chaos through
period doubling with decreasing pump.

We study here quantitatively the extension in the param-
eter space of the different domains of periodic and chaotic
behavior and the influence of y and 5 on them. We have
chosen a constant value of b =0.2 which is not singular and
represents qualitatively other cases as we have tested.

Figure 9(a) shows the domain of self-pulsing behavior on
the plane (o., r) in the resonant effective Hamiltonian TPL

FIG. 8. Same as Fig. 6 for 5=0 and several values of y: (a)
y= 0.5; (b) g=0.15, and (c) y=0.1.

limit (y= 1 and 5 =0). This domain is delimited by the
curves rHB and r,ff. A surprising fact is the small width of
the domain. It could be expected that the dynamic behavior
should increase in complexity as r decreases from rHB, but
the strongly stable zero-intensity solution attracts the sys-
tem's trajectory in the phase space and laser emission turns
off at r,&&. Thus, most of dynamic behavior in Fig. 9(a) cor-
responds to single-orbit periodic emission (period-1 attractor,
or P~). Complex behavior (periodlike or chaoticlike) found
below r,&f is metastable. Then, self-pulsing instabilities tend
to switch off the laser. On the other hand the inexistence of
dynamic behavior when the HB is subcritical (i.e., for
rr~0 32ca in this ca.se, see Fig. 6) is to be pointed out, as we
stated above in general.
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FIG. 10. Dynamic domain in the plane r vs 5 for b=0.2,
o =0.5, and y=1.

The influence of the detuning 5 and ac-Stark parameter

y (or rj) is shown in the rest of Fig. 9: 5 = 1 and y= 1 (b),
5=0 and y=0. 1 (c), and b, = 1 and y=0. 1 (d). Clearly,
making 640 or y41 increases the domain of self-pulsing
behavior: the r,«curve shifts down approaching the first la-
ser threshold ro. The only differences between varying 6 or
y are on the behavior of rHB and on the fact that the value of
o. for which HB passes from subcritical to supercritical is
different in both cases [see Figs. 7(a) and 8(d)].

If a fixed value of o. and b is chosen (o.= 0.5, b = 0.2) the
extension of the self-pulsing domains as a function of y or
6 can be easily analyzed. For this particular value of o.,
rHB is always supercritical for y= 1 irrespective of the value
of 5 (Fig. 7) and the effect of varying 5 is to increase the
extension of the self-pulsing domains, as can be clearly ap-
preciated in Fig. 10 [the behavior for negative 5 is the same
due to the symmetry properties of Eqs. (10) for kg=0]. Even
the period-doubling zones can be partially appreciated if 5 is
large enough but the chaotic domains continue being very
narrow in r. This case exemplifies well what normally hap-
pens when 5 is increased: zones that are supercritical for
6=0 continue being supercritical while most of the zones
that are subcritical in resonance become supercritical for
large 5 (see Fig. 7).

Contrary to the case of 5, as y is varied from 1 the
subcritical or supercritical character of rHB normally changes
(Fig. 8). Thus, for a fixed value of 6 and o., variations of
y from 1 usually tend to lead the system from no self-pulsing
to a self-pulsing domain (and vice versa), the larger the do-
main in r the larger

~
rj~. In this sense, Fig. 11 illustrates how

the dynamic domain diminishes as y becomes different from
1 (and even disappears), for o.=0.5 and 5 = 1. If the value
5 =0 had been chosen the figure would be symmetric with
respect to g= 1 due to the symmetry properties of Eqs. (10)
[5]. Contrarily in the case of Fig. 11 the system does not
behave symmetrically for y)1 and y(1.

V. CONCLUSIONS

FIG. 9. Dynamic domain in the plane r vs o. for b=0.2 and
several values of g and 6: (a) b, =0, y= 1; (b) 6=1, y= 1; (c)
6=0, y= 0.1, y=0. 1, and (d) b, = 1, g=0.1.

In this paper we have derived a two-photon laser (TPL)
model from a cascade laser model [18,20,21] by applying the
adiabatic following approximation [22—24]. Our model gen-
eralizes previous effective Hamiltonian models [6,10] since
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APPENDIX

In this Appendix we apply the AFM [22—25] to the cas-
cade laser models of Secs. IIA and IIB. Let us begin with
the nondegenerate cascade laser model of Eqs. (1). Formal
integration of Eq. (ld),

4
0.0 02 04 06 0.8 1.0 0.8 0.6 04 0.2 0.0 with

P02
—[ri + 1 ( 4 2 + ~2 )]p 02+ h 02 (Al)

FIG. 11. Dynamic domain in the planes r vs y and r vs 1/y for
b=0.2, o =0.5, and 5=1. gives

Ap2= l N2d2+ l A'~ pi2 (A2)

it contains information about the intermediate level through
its population no and the ac-Stark parameter y. We have
concentrated on the infIuence of these two parameters on the
TPL model stability and dynamical properties.

We have shown that the presence of no and rg is essential
for demonstrating the isomorphism that exists between our
TPL model and the dressed-state TPL model of Zakrzewski,
Lewenstein, and Mossberg [15],which applies to the experi-
mental situation of Gauthier et al. [1].Another isomorphism
existing between the degenerate (one frequency) TPL and the
nondegenerate (two frequencies) TPL with equal losses for
both fields has also been demonstrated.

From the point of view of the stability properties of the
degenerate model we have discussed the infIuence of xg and
6 on the Hopf bifurcation, HB, that can affect the lasing
solution. This HB has unusual properties in the sense that (i)
the laser is stable for pump values r)rHB and unstable be-
low rHa, (ii) the bad cavity condition a.)o Bc„can be veri-
fied even when adiabatic elimination of the medium polar-
ization is made, and (iii) there exists a maximum value of the
cavity losses o. above which the lasing solution is always
unstable. We have seen that the infIuence of rg on HB is
mainly quantitative although qualitative new features (such
as the disappearance of the limit o „) may appear for 27 large
enough. Special attention has been paid to the stability of the
Hopf orbits. We have shown how the ac-Stark parameter y
and especially the detuning 6 tend to extend the domain of
existence of stable orbits (supercritical HB) as a function of
cavity losses and population relaxation rates.

Finally the extension in pump parameter r of the domain
of self-pulsing behavior as a function of o., y, and 5 has
been studied. The quite surprising result is that chaos is hard
to be observed (it exists only in very small regions of the
parameter space) and that the domain of self-pulsing behav-
ior with decreasing r is much smaller than the region be-
tween rHB and the lasing solution threshold, ro. The trivial
solution seems to have a wider basin of attraction than the
dynamic solutions. We have shown that y and especially 5
tend to increase notably the extension of the domain of self-
pulsing behavior.

I' t'

po2(t) = dt'h02(t')exp[(rt+i82)(t' —t)+i/2] .
Jo

(A3)

Repeated integration by parts of Eq. (A3) leads to

ho2(t) —hp2(0)exp[ —(ri+i 82)t —i@2]
Po2(t) =

ri+ t(~2+ 42)

ho2(t) —ho2(o) exp[ —(ri+ t ~2) t —i 42]+ + ~ ~ ~

[r.+ (~+4.)]'
(A4)

Now we impose large one-photon detuning, i.e.,

(A5)

Then, in the long-time limit

h02(t) hp2(t)
Po2(t) .~

+ (.~ )2+ (A6)

For 82 sufficiently large [22—24]

&112( t) (+ 8'2 h 02( t ) (A7)

and consequently

ho2(t) 1
P02(t) g (~2d2+ ~lpl )2i 62 8'2

(A8)

h 111(t) 1
plo(t) ~ (Mldl &2P12)i6) (A9)

Now, substitution of Eqs. (A8) and (A9) into Eqs. (2)
leads to

which is the same result that one obtains by adiabatically
eliminating p02.

Proceeding with p&o in the same way one obtains
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4
d21 y~~(n21 d21) p

~1~2™( P12) (A10a)

g2
cr2 2cr2+

p al (P12) (A10c)

t 2 2)0!2 CI~ t

P12 yJ + t e12+ 9 t+ 42+ p P12+ ™1~2
(A lob) 4

d21 y~ ( 21 d21) g (P12) (A 1 la)

assumed that pun=no. Equations (A10) constitute our non-
degenerate cascade laser model.

In the degenerate case the procedure is exactly the same
and after adiabatic elimination of the dipoles the degenerate
TPL equations read

tl') = Kt &t+ Cl'21m(pt2) (Alod)

X cr d2t
p» ——— y~+i a»+2/+

&
p»+icr' &,

l x ~).
(Al lb)

~ g2
(1 —3 no) + d2t+ 2—Re(p~z), (A10e)26' u2

g&2
c'r = —trn+ 2 u Im(p, 2), (A 1 lc)

~ g& CY2

(1 —3no) —d2t+ 2—Re(pt2) . (A10f)
CFi

where we have made 82= 8' and 8, = (e,z
—6) and we have

(1+x) (1 —x)
(1 —3no) + d2t+4 Re(pt2)

X X
(Al 1d)
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