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We develop an extension of a class of degenerate Gel’fand-Levitan and Marchenko equations previously
used in the theory of isospectral Hamiltonians and in the theory of continuum bound states. The formalism
allows the generation of new exactly solvable Schrodinger equations, whose potentials extend the class of
Bargmann potentials. The scattering theory is developed using the Jost solutions of the new Schrodinger
equations, leading to exact expressions for the Jost function and the scattering phase shifts. The theory is

illustrated by a simple example.
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I. INTRODUCTION

The purpose of this paper is to develop an extension to the
particular class of degenerate Gel’fand-Levitan equations
whose solutions we studied in Ref. [1]. We were motivated
by a desire to extend the formalism so that it would apply to
the Jost scattering solutions [2] of the Schrodinger equation
as well as to solutions which satisfy physical boundary con-
ditions. However, the extended formalism which we present
here far exceeds this goal. Indeed, the formalism permits the
creation of a class of exactly solvable Schrodinger equations
similar to but much more extensive than those generated by
the theory of isospectral Hamiltonians [3,4].

The Gel’fand-Levitan [5] and Marchenko [6] equations
were first developed in the context of inverse scattering
theory. These original applications are discussed in detail in
the standard monographs on inverse scattering theory [7,8],
and also in the monograph by Newton [9]. We follow the
latter reference in our choice of notations. These integral
equations relate the potentials, spectra, scattering data, and
wave functions associated with two different Schrodinger
equations. In each case, the kernel of the integral equation is
expressed in terms of solutions of one of the Schrodinger
equations (usually taken to be the free particle equation),
together with the scattering data from both. The difference
between the potentials associated with the two Schrodinger
equations is directly related to the solution of the integral
equation. Thus knowledge of the solutions of one Schro-
dinger equation together with knowledge of the scattering
data (obtained from experiment) in principle permits the
computation of the unknown potential associated with the
second Schrodinger equation.

Our concern, however, is not with inverse scattering
theory. It was realized quite early that the Gel fand-Levitan
equation could be applied in a much wider context. In these
applications, the kernel is not constructed from experimen-
tally obtained scattering data, but instead a degenerate kernel
is chosen in order to construct simple theoretical models for
studying selected physical phenomena. Moses and Tuan [10]
used the Gel’fand-Levitan equation to create potentials
which produced no scattering phase shift, and incidentally
discovered a procedure for generating bound states with en-
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ergies embedded in the continuum. The Gel’fand-Levitan
equation has also been used by Meyer-Vernet [11] to study
continuum bound states, while we [12] have used both the
Gel’fand-Levitan and Marchenko equations for this purpose.

The Gel’fand-Levitan equation has also been used in the
study of isospectral Hamiltonians. For quantum mechanics in
one dimension, this application was investigated by Abraham
and Moses [13]. For the same system, Luban and Pursey [3]
compared the Gel’fand-Levitan-Abraham-Moses system of
isospectral Hamiltonians with systems developed using the
Darboux trick [14] (best known today as the basis of super-
symmetric quantum mechanics [15]), while Pursey [4] ex-
tended the theory to include the Marchenko equation and
explored the relationships between the several approaches.
Of course the Abraham-Moses technique can be adapted to
the semi-infinite line, as in the radial equation associated
with rotationally symmetric problems in two or three dimen-
sions. Luban et al. [16] used a two-dimensional approach of
this kind to fit experimental results on a quantum dot system.
In the context of the radial equation for spherically symmet-
ric three-dimensional systems, we [1] developed a compact
formalism for those degenerate Gel’fand-Levitan and March-
enko equations which are relevant to the theories of isospec-
tral Hamiltonians and continuum bound states. It is this for-
malism which we extend in the present work.

The paper is organized as follows. For the sake of com-
pleteness, we use the next section to summarize and slightly
generalize our earlier treatment [1] of degenerate Gel fand-
Levitan and Marchenko equations, omitting the proofs. Be-
cause we shall make use of the Jost solutions of the Schro-
dinger equation, and because definitions are not fully
standardized, we summarize our definitions in Sec. III, again
omitting all proofs. Our extension of the Gel’fand-Levitan
formalism for degenerate kernels is developed in Secs. IV
and V, and the new formalism is used in Sec. VI to discuss
the Jost solutions and the Jost function associated with the
new Schrodinger generated by the method. In Sec. VII, we
sketch the manner in which Bargmann potentials [17] are
generated as a special case of our formalism. To assist in
understanding the method, we treat a simple example in Sec.
VIII. We discuss the significance of this work in Sec. IX.
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II. UNIFIED TREATMENT OF THE GEL’FAND-LEVITAN
AND MARCHENKO EQUATIONS

In this section, we summarize the results of Ref. [1] on a
particular class of degenerate Gel’fand-Levitan and March-
enko equations. As in that reference, we shall work with the
radial equation associated with a spherically symmetric
Schrodinger equation. For simplicity, we shall consider only
s states. The generalization to higher angular momentum is
straightforward. The treatment here differs only in minor re-
spects from that of Ref. [1], and readers are referred to that
paper for details.

We choose units such that 2m=1 and =1, and use the
radial equation in the form

2

d
——zi—r—f+V(r)—E Y(r,E)=0. (1)

We assume that V(r) satisfies

limr| V(r)|<ce. 2)

r—0

Then physically acceptable solutions ¢(r,E) must satisfy the
boundary conditions

¥(0,E)=0, (3a)
lim|(r,E)|<oo. (3b)

We shall use the Gel’fand-Levitan and Marchenko equations
to relate solutions of Eq. (1) to those of

d2
[— pwc(r)—E}cp(r,E):o, @

where V, (r) is a comparison potential, and we assume that
the solutions of Eq. (4) are completely known.

The class of Gel’fand-Levitan equations which we shall
consider have the form

K(r,r’)=g(r,r’)-JOrd§ K(r.§)g(&.r'), ®)

where the (degenerate) kernel g(r,r') is

g(r,r'>=]§1 N le(rE)e(r' E)), (6)

and the ¢;(r)=¢(r,E;) are solutions of Eq. (4) which sat-
isfy the boundary condition (3a). As we showed in Ref. [1],
the Marchenko equation with an analogous degenerate kernel
can be written

k(r,r')=g(r,r'>+fd§i<(r,§>g'(§,r'> o

where g(r,r’) is given by an expression similar to Eq. (6)
except that now the solutions ¢;(r)= ¢(r,E;) must vanish as
r—oo sufficiently rapidly for [7d&|@(£,E)|*<e, r>0.
Clearly Egs. (5) and (7) can be combined into the single
form

K(r,r')=g(r,r')—f dé K(r,§)g(&,r'), a=0,2 (8)
a
where g(r,r') is given by Eq. (6) and the functions
¢(r,E;) satisfy

ej(a)=¢(a,E;)=0. ©

The Gel’fand-Levitan equation is given by a=0, while the
Marchenko equation is given by a ==; however, the follow-
ing development remains valid for any non-negative a.

The formalism becomes more compact in a matrix nota-
tion. We define a row matrix (Z)(r) and a column matrix

¢(r) by
bi(r)=¢(r)=¢(r)=¢(r,E)), (10)

so that (in this and the next sections only) &(r) is the trans-
pose of ¢(r):

d(r)=¢(r)". (11)

It follows that ¢~S¢ is a scalar while ¢<;~5 is an nXn square
matrix. We also take the set {\ j} of parameters to be the
diagonal elements of a diagonal nXn matrix \; thus we
define

Equation (6) may then be written
g(r.r')=g(N\"'(r'). (13)

Equation (8) with the kernel of Eq. (13) has the unique
solution

K(r,r')=g(r) A~ (r)p(r"), (14)

where A(r) is the nXn matrix [18] defined by

A(r)=x+er§ S(O)B(2). (15)

The potential in Eq. (1) is given by

d d?
V(r)-— Vc(r)z "ZEK(V,F)= —Za‘rjln[detA(F)], ( 6)
1

or

dé(r)
dr

V(r)— Vc(r)=2[K(r,r)]2—2{(2)(r)A“1(r)

+£1%’2A_1(r)¢(r)}. (17)

We now consider a solution ¢(r,E) of Eq. (4) which satisfies
the boundary conditions

¢o(a,E)=0, a<oo (18a)

lo(a,E)|<®, a=o.

(18b)
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With the Wronskian of two functions defined by

d d
W[f(r),g(r)]=f(r)Eg(r)—g(r)zf(r), (19)
it follows from Egs. (9) and (18a) that
Wle(a),e(a,E)]=0, j=1,...,n. (20)

Then

W(r.E)=o(r.E)— L’df K(rnOe(£E) (1)

is a solution of Eq. (1) which at r=a satisfies the same
boundary conditions, Eqgs. (18a) as ¢(r,E).

If E=E; then ¢(r,E) must be proportional to ¢;(r) be-
cause of Egs. (9) and (18a). If we choose @(r,E)=¢;(r),
then

YA = P(rE;) = @,(r) - fa'ds K(r.&)e,(6). (22)

If we consider the functions ¢;(r) to be the elements of a
row matrix ¢(r), then simple algebra shows that

P(r)=d(r)A~1(r)\. (23)

It follows that the solution K(r,r") of Eq. (8) may be written

K(r,r')y=g(r)\"1g(r"). (24)
From Egs. (1), (4), (12) and (24), it is clear that

32 d?
(5;7 - W) K(r,r")=[V(r)=V(r")]K(r,r"). (25)
IIL JOST SOLUTIONS
OF THE SCHRODINGER EQUATION

We shall follow Newton’s definitions of the Jost solutions
and Jost function, found in Chapter 12 of Ref. [9], which
differ slightly from the original definitions in Ref. [2]. A
physical scattering wave function ¢(r,E) is a solution of Eq.
(1) which satisfies the boundary conditions

¢¥(0,E)=0, (26a)

lim | (r,E)| <ce.

r—®

(26b)

Newton completes the definition by imposing the normaliza-
tion condition

lim[;—r t//(r,E)] =1. 27)

r—0

The Jost solutions f.(k,r) with k>=E are solutions of Eq.
(1) which satisfy the boundary conditions

lim[eT*f . (k,r)]=1. (28)

r—oo

The physical solution ¢(r,E) is a linear combination of the
Jost solutions, given by

1
Y(r.E)= s [F-(B)f + (kor) = F () f - (k,r)], (29)

where
Fo(K)=WIfu(k,r),4(r,E)] (30)

and #(k)=.%,(k) is the Jost function. Provided that the
potential V(r) satisfies some fairly mild constraints dis-
cussed in detail by Newton, .#(k) regarded as a function of
complex k contains full information regarding the energy
spectrum and scattering data. In particular, a zero of .#(k)
with k on the positive imaginary axis corresponds to a bound
state, while other complex zeros, if well isolated, may corre-
spond to resonances. The scattering phase shift §(E) is the
negative of the phase of .#(k):

Fk)=|F (k)| e~ 190, 31)

From Eq. (30) together with the boundary condition (26), it
is clear that

Fo(k)=f+(k,0). (32)

While one may extract all necessary scattering informa-
tion directly from the physical wave function ¥(r,E), it is
clearly desirable to work with the Jost solution f,(k,r).
However, this function satisfies the condition of Egs. (18a)
only if a=<. This makes it impossible to generate the Jost
solutions of Eq. (1) from those of Eq. (4) except when
a=, that is, when the relevant integral equation is the
Marchenko equation. This difficulty provided the initial mo-
tivation for the extension of the Gel’fand-Levitan equation
described in the next section.

IV. THE EXTENDED GEL’FAND-LEVITAN EQUATION

In this section, we generalize the degenerate kernel of the
Gel’fand-Levitan equation of Eq. (8) in two ways. We define
the kernel to be a bilinear combination of products of func-
tions drawn from two possibly different sets of solutions of
Eq. (1), thus dropping the condition Eq. (11), and we drop
the constraint on the functions at r=a given in Eq. (9). To
avoid breaks in the continuity of the discussion, we relegate
the more tedious proofs to a series of appendices. We choose
a set of solutions {¢;(r),j=1,...,n} of Eq. (1) with corre-
sponding energy eigenvalues {E ;»J=1,...,n}, and a second
set  {@;(r,j=1,... ,n}  with  energy  eigenvalues
{E;.j=1,...,n}. Some members of the set {E;} of energy
eigenvalues may coincide with members of the other set
{E;}; if so, we require that the corresponding functions ¢
and ¢ also coincide (at least up to a constant factor). If m
such energies and functions are common to both collections,
it is convenient to order the sets so that

E.=E,; and

J J (ﬁj(r)z‘npj(r) for
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where 0<m=n. As before, we shall consider the ¢;(r) to
be elements of a 1 Xn row matrix (Z)(r), and the ¢;(r) to be
elements of an nX 1 column matrix ¢(r).

We consider the Gel’fand-Levitan equation (8) with the
extended (but still degenerate) kernel

g(r,r")=d(r)N"'(r). (34)

Here N\ is an nXn matrix, no longer diagonal, subject to
certain constraints which we shall state presently. The unique
solution of Eq. (8) with kernel given by Eq. (34) is given by

K(r,r')=¢(r)A~ () o(r'), (35)
where A(r) is the n X n matrix
A =x+ [(ag o030, (36)
so that
A=A(a). 37)

We define two diagonal nXn matrices E and E by

Ejx=E;Sjk, (38a)

and an nXn Wronskian matrix W(r) by
W(r)=¢(r)d'(r) =o' (r)$(r). (39)
We now impose the constraint
Ex—NE=W(a), (40)

which determines the elements of the matrix N\ except for
\;; in the special case when Ej:Ej , that is, for j=<m. The
undefined diagonal elements X ;; for j<m, together with the
choices of solutions @(r) and of ¢(r) of Eq. (4) for all

values of j, are constrained only by the requirement that
detA(r)#0, 0=r<wx 41)

As a consequence of Egs. (36) and (40) we have
EA(r)—A(r)E=W(r). (42)

Equation (42) shows that A ;,(r) is independent of the lower
limit @ in Eq. (36) except when E;=E;. If E;=E; for
j=<m=n, then a must be chosen so that the integrals in Eq.
(36) are convergent. Since changes due to different choices
of a can be absorbed into the free parameter A;;, we may
even choose a to be different for different j<m=mn. For
most purposes, it is convenient to choose a =0. Because of
Eq. (42), K(r,r") still satisfies Eq. (25) with V(r) defined by
Eq. (16).

We define column matrices w(r,E), y(E), and I'(r,E)
by

w(r,E)=W[&(r),¢(r.E)], (43)
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(E—El)y(E)=w(a,E), (44)

where 1 is the n X n unit matrix, and
T(r,E)=y(E)+ f dE $(OQ(EE).  (45)

Then provided that E is neither one of the E ; nor one of the
E;, the solution ¢(r,E) of Eq. (1) which corresponds to the
solution ¢(r,E) of Eq. (4) is

W(r.E)=g(r.E)— L’dg K(r.8)@(£.E)

~¢(r)A T (1) ¥(E) (46a)
=¢(r,E)= $(r)A "' (1)L (r,E).
(46b)
It follows from Eqs. (44) and (45) that
(E—EVT(r,E)=w(r,E). 47)

Provided E#E,, Eq. (47) shows that I';(r,E) is indepen-
dent of the lower limit a in Eq. (45). If E=E,, the limit a
must be chosen so that the integral in Eq. (45) is convergent.
As for the integral in Eq. (36) with Ej=Ek, it is usually
convenient to choose a=0. We shall treat the special cases

when either E=E ; or E=E; for some j in the next section.

To conclude this section, we note that the energies E; and

E ; and the parameters \j; need not be real, although the
condition that V(r) should be real imposes constraints on the
acceptable choices of parameters and of the sets of solutions

¢o(r) and @(r) of Eq. (4).

V. SPECIAL SOLUTIONS
OF THE NEW SCHRODINGER EQUATION

In the present section we investigate the exceptional cases
when E is either one of t}le E; or one of the E iz

We first consider E=E, & {E;}. By Egs. (40) and (44), if
@(r.Ey)=gi(r) then

Yi(ED)=Nji, (48)
and by Egs. (42) and (47),
Li(r.EQ)=Aj(r). (49)
Substitution of ¢(r,E;)= &(r) into Eq. (46b) then yields
P(N=@(r)=[H(NAT(NA(N]=0.  (50)

Therefore in order to construct a solution of Eq. (1) with
energy E;¢{E;} we must start from a solution
o(r,E)=¢>(r) of Eq. (4) which is distinct from @,(r).
Then

PP (=8P (r)— d(r)A"(NTD(r,E),  (51)

with
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Wlei(r), &2 (r)]

= 52
T (52)

Ir'®(rE)=

Since any other solution of Eq. (4) with energy E, is a linear
combination of $,(r) and @{*(r), and since ¥(r,E) de-
pends linearly on ¢(r,E), different choices of qp(Z)(r) can
lead only to different multiples of the same solution of Eq.
(1), namely, that of Eq. (51).

We next consider the case of Egs. (46) with
E=E,¢{E;}. With o(r,E)=¢,(r), Eq. (44) fails to define
Y= v(E}), and for I' (r,E;) we must use

Tu(rE)= v+ f;dc’ [ou(OT, (53)

with v, a free parameter. Then

Y(r.EQ)=eu(r)— $(r) A~ (r)T(r,Ey) (54)

is a solution of Eq. (1) with E=E, . Different values of the
parameter 7y, will lead to different linearly independent so-
lutions, differing only by multiples of

PP () =[d(r)A~ (r) k. (55)

which must also be a solution of Eq. (1) with energy E; . If
we regard the functions w(z)(r) defined by this equation as
elements of a row matrix ®(r), then we may write

K(r,r')y=¢@(r)e(r"), (56)

which leads to a proof of Eq. (25).

Still with E=E, ¢ {E ;}» we may ask what happens if we
choose ¢(r,E;) to be a solution of Eq. ( 4) distinct from
@(r). The Wronskian of ¢, (r) and ¢(r,E;) will then be a
nonzero constant, say cy :

CkEW[QDk(r)’qo(r’Ek)]?&O. (57)

In this case, Egs. (46) cannot be directly applied, since Eq.
(47) cannot be satisfied with a finite value of I'y(E;). How-
ever if ¢(r,E) and its second derivative are analytic func-
tions of E in a small region of the complex plane containing
E=E,, then the same is true for ¢(r,E) and for the left side
of Eq. (1). Hence if # is a small contour in the complex E
plane containing £, then

1 d?

ﬁ %dE[—W‘FV(r)—E z/r(r,E)—O. (58)
From Egs. (46), (47), and the residue theorem, (r,E;) is a
solution of Eq. (1), where

W(r.E)=ci [ d(r)A™ ()]

This is just a multiple of the solution a//f)(r) given by Eq.
(55).

It remains to consider the case when E=E +=E;, which
also requires that @;(r) =c ¢,(r) where c¢ is a constant which
may be taken to be 1 without loss of generality. In this case,

with @(r,E) = @i(r)= @i(r) both Ny and =y (E) are
free parameters, and the relation between Aj(r) and
I';(r,E;) becomes

Li(rEQ) =Aj(r)+ 8 ve— M) - (59)

Equation (46b) then yields

YN =y(r.E) ==y (A1 ()],  (60)

a multiple of #{*(r) defined in Eq. (55). Any attempt to
generate a second solution using Eq. (51) fails because of the
singularity in I‘(z)(r E,) when E,=E,.

While in general the extended Gel'fand-Levitan method
can be used to generate two independent solutions of Eq. (1)
with energy eigenvalue E from a corresponding pair of inde-
pendent solutions of Eq. (4), we have shown that this is not
so when E=E « for some k, whether or not E « coincides with
E,. In order to obtain the second solution of Eq. (1) for
energy E,, we may use the fact that the Wronskian of two
independent solutions is a constant. If

W[y (r,E), P (r,E)]=const=c#0, (61)

then

yD(r,E)=cyV(r,E) f dE [YOEE)] . (62)

VI. JOST SOLUTIONS
OF THE NEW SCHRODINGER EQUATION

In Sec. II, a solution ¢(r,E) of Eq. (1) generated from a
solution ¢(r,E) of Eq. (4) was guaranteed to satisfy a
boundary condition at r=a. As a result, with either a=0 or
a= a solution ¥(r,E) generated in this way was guaran-
teed to satisfy physical boundary conditions at at least one
end of the physical range of r. In Sec. IV, however, we
abandoned any constraints at r=a on the functions
¢(r,E), including those in the sets {¢;(r)} and {¢;(r)}.
While the functions ¢(r,E) given by Egs. (46) are certainly
solutions of Eq. (1), there is no guarantee that they satisfy
any physically relevant boundary conditions even if a is cho-
sen to be either O or . Except for the special cases when E
is one of the E; or one of the E , We may generate two
independent solutlons of Eq. (1) w1th energy eigenvalue E
from two independent solutions of Eq. (4) with the same
energy eigenvalue, and use a suitable linear combination of
these to satisfy boundary conditions at =0 or as r—. It
will remain an open question whether such a linear combi-
nation will also satisfy physical boundary conditions at the
other end of the range. The Jost solutions of Eq. (4) provide
an especially convenient starting point, leading as they do to
the Jost solutions of Eq. (1), and this will be the topic of this
section. We shall use f. . (k,7) to denote the Jost solutions of
Eq. (4) and f.(k,r) to denote those of Eq. (1). We use the
technique of Sec. IV with ¢(r,E) chosen to be one or other
of f.+(k,r). This yields the solutions . (k,r) of Eq. (1)
given by
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Yo (ksr)=feu(l,r) = (A~ (NTE(r k), (63)
where from Eq. (47),

L= g —aWle Sk (69

Hence
lim[e:ikrwt(k’r)]zcz‘:(k)’ (65)

where

C.(k)=1+lm{¢(r)A~"(r)(E—k?1) "

r—o

X[¢'(r)*ikp(r)]}, (66)

and the prime denotes differentiation with respect to r. It
follows that

Felk,r)=CL (k) pu(k,r), (67)

where . (k,r) is given by Eq. (63). The new Jost function is
then

F(k)=f(k,0)=C7 (k)F(k), (68)
where
F(k)= (k)= ¢(0)A~(0)[H(0k). (69)

If .#(k)#0 then the physical scattering solution of Eq. (1)
with energy E=k? may be constructed using Eq. (29). If
F(k)=0 with k on the positive imaginary axis, then
f+(k,r) is the wave function of a bound state of Eq. (1) with
energy E=k?>=—|k|?. We illustrate these results with a
simple example in Sec. VIIIL.

VII. RELATION TO BARGMANN POTENTIALS

In Sec. 14.7 of Ref. [9], Newton discussed the Bargmann
potentials using a generalization of a treatment due to Theis
[19]. In this section, we show that Newton’s treatment is a
special case of the formalism we have presented in Sec. IV.
We shall continue to restrict our discussion to the case of
zero angular momentum, although the generalization to arbi-
trary angular momentum is easy. Newton seeks to create a
potential such that the new S matrix is related to the old by

_R(=B

where R(k) is a rational function having simple poles at
k= 3; and simple zeros at k= a;, where j runs from 1 to n.
We order the set of a’s so that

<0, 1<j=m=n

Im(a;) >0, m<j<n. 1)

In this section, ¢(k,r) denotes that solution of Eq. (4)
with E=k? which satisfies the boundary condition of Egs.

(26), while f.(k,r) is the solution of Eq. (4) with E=k?
which satisfies lim,_,.e  *"f.(k,r)=1. We choose the n
functions ¢;(r) to be

ei(r)=o¢(B;,r), Isj=<n (72)
and the n functions ¢;(r) to be

1<j<m (73a)

(ﬁj(r)=fc(_ajsr)’

¢i(r)=f—a;,r)—Cip(a;,r), m<j<n. (73b)

The C; are to be chosen in such a way that the matrix
A(r) is nonsingular.

With these choices, the theory of Sec. IV reproduces
Newton’s results in Sec. 14.7 of Ref. [9]. In particular, New-
ton’s matrix x in his Egs. (14.59) is identical with our matrix
A(r), and Newton’s X 5K 5(r) ¢§0)(,3,r) is identical with our
—K(r,r). Hence our formalism includes and extends the
class of Bargmann potentials.

VIII. A SIMPLE EXAMPLE

As an example, we choose V.(r)=0 so that Eq. (4) cor-
responds to a free particle. We choose n=1, and for conve-
nience we drop the indices on A, A, v, and T", since these
matrices have only one entry. We choose a=0 and

é1(r)=@1(r)=\2k(e“cosa+e *sina).  (74)

This choice can be used in the conventional Gel’fand-
Levitan equation only if tana= —1, and can be used in the
Marchenko equation only if cosa=0. If tana<<0O then the
slight generalization of the Gel’fand-Levitan equation treated
in Sec. II may be used provided a is chosen so that
2ka=In(—tana). If tana>0, then the only acceptable pro-
cedure is that presented in Sec. IV.
With ¢,(r) given by Eq. (74),

2k
g(r,r')= T(e"’cosa-l—e*"’sina)

X(e“"cosa+e"‘"sina), (75)
and

A(r)=A—cos2a+e?*cos?a+2krsin2a— e~ 2*"sina,

(76)
so that
X , 2K(e"’cosa+e_"’sina)(e""cosa+e“‘"sina)
r,r')= - — . .
( ) N—cos2a+ e cosla+2krsin2a—e 2*sina
77)

In general, the condition that A(7) be free of zeros requires
that >0, but if cosa=0 the condition may also be satisfied
by A<—1.

The potential in Eq. (1) is
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Vir.a) g 2 e?*"cos?a—e 2¥sin*a
r,a)=—8k ) = :
N—cos2a+e? " cosla+2krsin2a—e > sin‘a
(e*"cosa+ e “"sina)?
(78)

(A—cos2a+e?*"cos’a+2krsin2a—e 2*'sina)? |

If o= /2, so that cosa=0, this reduces to

T _8K2()\+1)e_2'“ :
rz)=ari—e o7 (79)

With the substitutions k—b and (A+1)— — 87!, this be-
comes the special case of a Bargmann potential given in Eq.
(14.81) of Ref. [9]. We shall comment on this result at the
end of this section.

Since we have chosen V_.(r) =0, the Jost solutions of Eq.
(4) are just e***". Hence

ei(N[xike(r)—¢(r)]
+

Yo(k,r)=e* 11 CETIIND (80)
and we readily find that
1, cosa=0
C=(k)= iii:, cosa#0. @D

From Egs. (68) and (69), if cosa=0 then the Jost function is

2k MNkt+i(AN+2)k

e Vs S VT S
while if cosa#0 then
1
F(k)= m{)\k2+2i(l+sin2a)ki<
+ (N —2cos2a) k?}. (83)

We temporarily ignore the special case cosa=0. Hence
A must be positive. The zeros of .#(k,a) are then

iK
ke=—[1+sin2a* VAZ=2xcos2a+ (1 +sin2 a)?].
(84)

The roots of w()\)E)\Z—ZAcos2a+(l+sin2a)2 are
cos2a*(sina+cosa)\ — 2sin2a, which are real only if 2« is
in the third or the fourth quadrant. Both roots are negative if
2 a is in the third quadrant, while both are positive if 2« is in
the fourth quadrant. If 2« is in the fourth quadrant and if
\ is between the roots of w(\), then the zeros of .%#(k) are
complex with negative imaginary parts and symmetrically
located about the imaginary axis. Otherwise, both zeros of
the Jost function are on the imaginary axis. Except when
0<N<2cos2a (which requires that 2« be in the first or
fourth quadrants), one of these roots will be on the positive
imaginary axis, leading to a bound state of Eq. (1). If
A>2cos2a so that a bound state exists, then the bound state

wave function is given (up to a normalization constant) by
Folk,r)=[(k—ik)/(k+ik) 1y (k,r) with ¢, (k,r) defined
in Eq. (80), evaluated at the zero of the Jost function. The
factor (k—ik)/(x+ik) is needed only if a= — 7/4.

The scattering phase shift is given by Eq. (31). From this
and Eq. (83) (still with cosa#0 and A\ >0) we see that

8(k)= m— 2arctanx — arctan7(x), (85)
where x=k/k and

2(1+sin2a)x

)= ANxZ+1)—2cos2a’ (86)
Hence
8(0)— 8() =7 — limarctan7(x). 87)
x—0
If O<A<2cos2a, then 7(x) is negative for

x< \/2)\_ic052a— 1, so that lim,_ garctanm(x)=7 and
8(0)— 8(2)=0. If A=2cos2a then lim,_,qarctan7(x)=1m7
and 8(0)— 8()=3m. If A\>2co0s2a, then 7(x) is positive
for all x, lim,_,qarctan7(x)=0, and &(0)— &(o°)= 7. These
results verify Levinson’s theorem [20] for this example.
Physical scattering wave functions are given by Eq. (29),
together with Egs. (32), (67), (80), and (81).

We next consider the special case cosa=0, in which case
either A\>0 or A<— 1. From Eq. (82), the Jost function has
a single zero, at k= —i(«/N)(A+2). If —2<A<-—1, this
zero is on the positive imaginary axis, and there is a bound
state with energy — («/\)2(\+2)2. The phase shift is given
by

2x

NTINT2) (8)

6(k)= m— arctan

From this, it is easy to verify Levinson’s theorem once again.

We now return to a discussion of the potential in the spe-
cial case cosa=0. We have obtained Eq. (79) using the ex-
tended Gel’fand-Levitan method with n=1 and
¢1(rN=¢(r)=+2ke “". However, in Newton’s approach,
as described in the preceding section, one should choose
@(r)= k~'sinhkr, while the choice of @1(r) should be
@1(r) =¢ *'" where k' = (k/N)(N+2). This yields New-
ton’s example provided 1-+2/\>0. It is surprising that two
quite different choices of ¢,(r) and ¢;(r) should yield the
same potential.

The example discussed in this section illustrates the ana-
lytic structure of the Jost functions discussed in detail in
Chapter 12 of Ref. [9].
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IX. CONCLUSION

The classical exactly solvable Schrodinger equations have
played an important role in the history of quantum mechan-
ics, and are the starting point for many approximation pro-
cedures. It has long been realized that the class of exactly
solvable Schrodinger equations can be extended using the
techniques of supersymmetric quantum mechanics or tech-
niques based on the Gel’fand-Levitan equation or on the
Marchenko equation, and indeed these methods are funda-
mental to inverse scattering theory [7,8] and to the theory of
isospectral Hamiltonians [3,4]. The development presented
here provides yet a further extension of the class of exactly
solvable Schrodinger equations. As demonstrated in Sec. VII,
our method creates a class of potentials which extends the
class of Bargmann potentials [17].

As with the original Gel’fand-Levitan and Marchenko
equations, our generalization is motivated by the desire to
attack a specific physical problem. We are interested in
whether continuum bound states (that is, bound states with
energies embedded in the continuous spectrum), first discov-
ered by von Neumann and Wigner [21] and recently investi-
gated in some detail in Ref. [12], can be regarded as the
zero-width limit of a resonance in the scattering from a per-
turbed von Neumann—Wigner potential. To investigate this,
we have studied several simple perturbations of a simple von
Neumann—Wigner potential. Reference [22], which is based
directly on the techniques of this paper, reports the results of
one of our studies.

Some aspects of the extended Gel’fand-Levitan technique
remain to be explored. While the restriction to a degenerate
kernel in the extended Gel’fand-Levitan equations is suffi-
cient for the immediate purposes of Ref. [22], it would be
interesting to investigate the possibility of such a generaliza-
tion with a non-degenerate kernel.

APPENDIX A: SOLUTION OF THE EXTENDED
GEL’FAND-LEVITAN EQUATION

The solution of Eq. (8) with the degenerate kernel given
by Eq. (34) follows the standard procedure for a degenerate
integral equation. The equation can be written as

K(r.r')=[¢(r)=K(r)IN""¢(r'), (A1)

where K(r) is the row matrix defined by

R(r)= fardg K(r.£) (). (A2)
Hence
K(r)=[$(r)=K(r)IN"(r), (A3)
where (r) is the nXn square matrix defined by
1= [ag p0aO=a00-1. a9
Equation (A3) may be rewritten as
RON AN =N TAM) AL, (A5
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which has the solution

K(r)=¢(r)— ¢(r)A " (r)\.

Equation (35) follows by substitution of this solution into
Eq. (89).

(A6)

APPENDIX B: PROOF OF EQ. (25)

Although Eq. (25) appears to be an immediate conse-
quence of Egs. (1) and (56), the proof that w,((z)(r)
=[(r)A~'(r)]; is a solution of Eq. (1) with E=E, de-
pends on Appendix C, which in turn depends on the key
result of this appendix, namely, that given in Eq. (B6) below.
Since Eq. (25) follows immediately from Eq. (B6), the use of
Eq. (56) does not really shorten the proof of Eq. (25).

With

2 2
L(r,r')E(EP——m)K(nr') (Bl)

and with
M(r)=¢(r)A~1(r) (B2)

we have

d? . -
L(r,r’)=[3;7M(r)}¢>(r’)+M(r)[E— Ve(r')1]e(r").
(B3)

We shall first compute d>M (r)/dr?. We simplify the nota-
tion by suppressing the argument » and denoting differentia-
tion by primes. Then

M"=G(VA-E)A " +2PA T pFAT ppA !
—2¢' AT PPN =GN (PP + ' HIAT.

Line (B4b) of this equation can be rearranged to be

(B4a)

(B4b)

—2M(P' A" p+PA ")~ GATIWAT!,  (BS)

where W is the nX#n wronskian matrix defined in Eq. (39).
Line (B4a) and the first term of line (B5) combine to yield
M(VI-E)+ @A 'E—EA™"), while from Eq. (42) the
second term of line (B5) is — (A " 'E—EA~!). Hence

M"(r)y=M(r)[V(r)1-E]. (B6)

Equation (25) follows immediately.

APPENDIX C: SOLUTIONS OF THE NEW
SCHRODINGER EQUATION

In this section, we verify that Egs. (46) do indeed yield a
solution of the new Schrodinger equation. Equation (46b)
may be written

Yy=¢@—MT, (C1)

where M (r) and I'(r,E) were defined in Egs. (B2) and (45),
respectively, and for compactness we have again omitted the
arguments » and E. Then
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—¢"+(V-E)Yy=(V-V.)e—N, (C2)
where
d? -
N(E,r)=(———7+V—E)MF. (C3)
dr
From Eq. (B6),

N={M(E-EDT (C4a)

—2M'po—M(po' +d'¢)},
(C4b)

and the second line of this equation is

2[K(r,r)Pe—2(d' A" ' p+ A" ¢ ) o—Mw, (C5)

where the column matrix w was defined in Eq. (43). The first
two terms of Eq. (C5) combine to give (V—V,) ¢, while
from Eq. (47) the third term is M(E1—E)I'. Hence
N=(V—V_)¢ and the right side of Eq. (C2) is zero, as we
wished to prove.
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