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Distribution of electrons in double photoionization of helium and heavier atoms
in the asymptotic region
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This paper presents an analysis of the energy distribution of the outgoing electrons in the double ionization

of helium by photons with energies much larger than the ionization potential. The analysis improves on the one
carried out by Amusia et al. [J. Phys. B 8, 1248 (1975}]in the framework of the special model for the wave

function of helium. Now the energy distribution is expressed through certain expectation values averaged over
the initial state described by the wave function of the general form 0"(r, , r2) A. larger interval of values of
photon energies is considered. The limit equations for the angular distribution are obtained. The general
features of the process with heavier atoms are also analyzed.

PACS number(s): 32.80.Fb, 32.70.Cs, 32.30.Rj

I. INTRODUCTION

In recent years interest in the problem of double photo-
ionization of helium has been renewed. The experimental
facilities developed and the investigation of the processes
caused by photons as energetic as 12 keV became possible
[2]. Physicists are interested now by such problems as the
relative roles of ground state and final state interactions (GSI
and FSI) [3,4], the energy and the angular distribution of the
outgoing electrons [5—9], the breakdown of asymptotics at
large and small energies [7,10], the role of the Compton
scattering in formation of doubly charged ions [11—13], the
connection of the cross section to that of other processes
[10), etc. The earlier papers are reviewed in [14].

In this paper we investigate the energy and angular distri-
bution of outgoing electrons at large values of photon ener-
gies tu (corresponding, however, to nonrelativistic energies
of outgoing electrons)

J(& +&&m

with J standing for the ionization potential and I the mass
of the electron. We expect also that the results obtained will
help us to solve the other problems in the field discussed
nowadays.

It was shown in Ref. [1] that there are three possible
mechanisms of double photoionization. Each of them domi-
nates in a certain part of the spectrum. If one of the electron's
energies is e&

—co, while e2-J, the well-known shake-off
mechanism is at work [15].When both et and e2 become
much larger than J, but the difference iet —e2i is not too
small, the final state interaction mechanism dominates. In
these two regions large momentum is transferred to the
nucleus. However, if the difference of the energies of the
outgoing electrons is small enough, the quasifree process
with small momentum transferred to the nucleus determines
the energy distribution. The concrete calculations in [1]were
carried out in a special model of the initial state wave func-
tion which included the interaction between electrons in the
lowest order of perturbation theory. Photon energies co in the
interval 1.5 keV&(co((0.5 MeV were considered. The spec-
trum was calculated for several values of photon energies.

4y
A(f) =

O (f2+4 2)2 (2)

being the Fourier components of the well known functions

Ph(r) =Noexp( —ry), No ——P„(r=0). (3)

The function presented by Eq. (2) explicitly provides the
scale for momentum f, i.e.,

0(f) v)
0(f- v)

(4)

We use the relativistic units fi=c= 1, e =u= 1/137 (see the
Appendix). In these units

In the present paper we improve the analysis carried out
in [1] mainly at two points. We describe the initial state by
the general function 'P(r t, r2). We show that for et 2&)J the
energy distribution in both regions can be presented as the
product of "electrodynamical" and "atomic physics" fac-
tors. The former describes the interaction of two free elec-
trons at different kinematics. The latter is expressed through
expectation values of certain operators averaged over the
ground state, containing all atomic physics effects. Also a
larger interval of energies (tu&) 50 eV instead of cu&) 1.5 keV)
is considered now. These two improvements enable us to
follow the change in the shape of the spectrum curves with
photon energy ~, matching the three singled-out regions of
the spectrum. One more point is the limit equations for the
angular distribution. We also discuss the general features of
the process for heavier atoms.

Following Ref. [1] we describe the outgoing electrons
with energies e& 2))J as well as the intermediate electrons by
plane waves. The interaction between the two fast electrons
is included in the first order of perturbative theory. Both
approximations are true with relative accuracy
(J/e)-(J/cu)((1. The initial electrons are described by a
function of the general form 'Ir(r, , r2).

In the calculations carried out in [1]the initial state of the
atom was described by a product of single-particle hydrogen-
like functions. In the momentum space they are
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(5)

with Z the charge of the nucleus. The main point of the
analysis of the energy distribution was that the process yields
large momentum q &) g to be transferred to the nucleus unless
special kinematics is chosen. Indeed,

q=p&+p2

with p; and k standing for the momenta of the outgoing
electrons and that of the photon [ ~ p; = (2m e,) ', ~

k
~

= ru] .
Equation (5) leads to 1= r/ /2m, thus p, ~)& r/if e;&)J. Since
only the initial state electrons interacted with the nucleus
they transferred momentum q. Hence the amplitude con-
tained a small factor P„(q)—see Eq. (4). However, if both
e& 2 were close to the center of the energy distribution one
could make ~p, +p2~ &&p». Thus the momentum q becomes
smaller leading to a strong enhancement of the amplitude.

Here we present the result of an investigation of the spec-
trum which does not clarify the form of the initial state wave
function. The basic point is that the wave function of an atom
of helium 'Ir(rt tr2) is a superposition of the terms contain-
ing exponential factors of the form presented by Eq. (3) with
r = r, z or r =

~
r, —r2~. Thus the existence of a scale for mo-

menta ft 2 for which Eq. (4) is true is the general feature of
any function 'Ir(ft tfz) which is the Fourier component of
'Ir(rt, rz). This enables us to present the energy distribution
as the superposition of terms of two types. In the first ones
all the dependence on the energies co and e is singled out
while all the dependence on the structure of the initial state
enters through certain expectation values. The terms of the
second type are the integrals over q of the distribution
do. +/d edq. The latter is expressed through certain integrals
over r, 2. The integrals contain 'Ir(r r2t )rand certain func-
tions explicitly depending on q and r; . Thus there are two
scales for the values of r;. The first one is r;-q '. The
second one is determined by exponential factors of the form
of Eq. (3). We can write that the second scale is r, —r/, &f
with y,ff being a certain "effective" value of y. At q&& y,
the leading contribution to the integrals over r; is determined

by r, -q ' and these terms are quenched. However, if the
values of the energies of the outgoing electrons are close
enough, i.e., if the value of the parameter

(c)

FIG. 1. Diagram describing single (a) and double (b) and (c)
photoionization in the asymptotic region at e& 2&&J for the double
process. The wavy line shows the real photon. The dashed line
presents the hard photon with f&) y. The dark circles stand for
photons with f —r/ exchanged by bound electrons with the nucleus
and with each other.

smoothly at p-1. Note, however, that the latter should be of
the same order of magnitude as those calculated with the
hydrogenlike functions with Z= Zv= 27/16 coming from the
variation principle [16], i.e., we expect g,fflr/-1, while

nZv= 6.3 keV.

The reason is that the function 'Ir(r t, r2) at r, 2- r/, ff deter-
mines the value of the binding energy of the atom. The hy-
drogenlike model reproduces the latter value with the accu-
racy of about 2%. We shall present the values of several
parameters in the framework of this model. In the general
case we shall present the values also "in units" of rg. Note
also the value of the single-particle binding energy
J= y /2m and that of Nz= y /vr in the hydrogenlike model.

The spectrum do. +/de2 is shown to be dominated by a
special part of the angular distribution of outgoing electrons.
All the results can be generalized to the knockout of two
electrons with the binding energy of the same order of mag-
nitude from any multielectron system.

In Sec. II we shall recall the picture of the single photo-
effect. In Sec. III we show qualitatively how the three parts
of the spectrum emerge. In Secs. IV and V we present the
energy distribution in the two parts of the spectrum of fast
electrons. The general outlook of the energy distribution ~n

helium is given in Sec. VI and for heavier atoms in Sec. VII.
The angular distribution is discussed in Sec. VIII. Results are
summarized in Sec. IX.

II. THE ASYMPTOTICS OF SINGLE-ELECTRON
PHOTOIONIXATION

is small enough, the values of q~ y,ff become available.
The integrals are determined now by r; —y,ff, i.e., the val-
ues are determined by the structure of the initial state. Thus
the possibility of making q~ r/, ff at small values of p leads
to strong enhancement of the distribution der /dedq at

q 77 ff, If the value of co is large enough, the region

ff gives the leading contributior' to da. +/d e if the
value of P is small enough.

The "effective value" rg,ff can be calculated for each
special choice of the function I'(r t, r2). But we need not do
this since we present the contribution to do. /de by the
explicit functions of P expressed through certain integrals
containing qr(rt tr2). The integrals provide large contribu-
tions if the values of P are small enough and vanish

It is instructive to start with the asymptotics of this well
known process. Since the energy of an outgoing electron
e&=p, /2m=~ —J&&J the latter can be described by a plane
wave and the amplitude of the single-electron photoioniza-
tion is

», (ept)F~= (47rrJ)" P(p t
—k).

Here k(e) stands for the momentum (vector of polarization)
of the photon and P stands for the single-particle wave func-
tion in helium. Since

~ p t ~

= (2m to) ' &) r/ the argument of the
function P is much larger than r/ The single photoionization.
thus yields large momentum q = pt —

k~ &) r/ to be transferred
to the recoil atom. This corresponds to the impossibility of
the process with a free electron.

One can see from Fig. 1 that each interaction of the bound
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electron with the recoil atom in which large momentum
q&& y is transferred leads to a small factor q . Thus the
bound electron exchanges an infinite number of soft photons,
carrying momenta f- g, with the recoil atom and one
"hard" photon carrying momentum q=p&&&y. The latter
exchange takes place in the cell closest to the ionizing pho-
ton. Both electron and photon propagators give the factors
-q . The momentum q should be transferred directly to
the nucleus, otherwise new small factors -q emerge.
Thus we obtain for the amplitude of single photoionization at
co&+J

(4~n)" 4~nZ&&2m (ep, )
4 Np

PL

with p, =(2m&0)", No=+(r=0), and Z the charge of the
nucleus.

Equation (10) can be obtained in a more formal way from
the Lippman-Schwinger equation (see, e.g. , [17])

qtd f
&qlp)= „2', &qlGo(J, )lqt)&qtlvlf)&fig) (ll)

with Gp the free electron propagator, V the self-consistent
field in which the electron moves, and J&= —J. Since the
large momentum q] = q should be transferred to the nucleus
directly, we immediately come to Eq. (10).

Substituting Eq. (10) into the expression for the cross sec-
tion [18]

are the wave functions of initial and final states. The func-
tions cp; in Eq. (15) are the single-particle functions of con-
tinuum electrons with the energies e;. They are normalized
as

d rq;{r)q', {r)=(27r) 8{p;—p, ). (16)

(17)

Here F~ is the amplitude of the single photoeffect. The pro-
cess yields large momentum q-p&&)y transferred to the
nucleons. Thus the amplitude is quenched by a small factor
y /q contained in the amplitude F~. The overlap matrix
element involved in Eq. (17) is the well known probe for the
model of the ground state function 9' [15].

Substitution of Eq. (17) into the expression for the cross
section of the double photoionization

do. +(o))=—B(e)+ e2 —o) J+)lFl—
(Is)

A. The edge region

One of the electrons is slow: e2- J. This region is well
known to give the leading contribution to the cross section
o. (co). Hence one of the electrons (say, the one with en-

ergy e& ) can be described by a plane wave: q&, (r)
= exp(ipr). Thus the amplitude is

d p)do.+(co) =—6(ei —co+ J)lF l (12)

we present the well known asymptotics [16] in the form

29 2 2 7i2 1

III. THE THREE REGIONS OF THE SPECTRUM

There are three regions in the spectrum with different
mechanisms of the process [1].We recall the analyses of [1],
carried out in momentum space adding analyses in configu-
ration space. Though the momentum space is more conve-
nient for the analyses we show also how the results can be
obtained from the general equation for the amplitude in con-
figuration space.

F=&C (ri, r2)le' "' /(e Vt)+(1~2)l%"(ri, rq)).
(14)

Here %{rt,r2) and

1
~'(ri r2) = [q t(ri)~z(~2)+V ~(rt)~t(r2)l (15)

2

Here Z is the charge of the nucleus. Hence the asymptotics
of the single photoeffect contains one model-dependent
parameter —the value of Np.

singles out the cross section of the single photoeffect
o.+(co). The integral over e2 is saturated by e2- J [the ma-
trix element in Eq. (17) falls as e2 at e2~&J]. It does not
depend on co and determines the coefficient of proportional-
ity between a. +(co) and o+(t0).

To estimate the role of the final state interactions it is
sufficient to compare the diagrams describing the interaction
of the electrons in the lowest order of perturbative theory
[Figs. 1(b) and 1(c)].Using the Coulomb gauge for the pho-
ton propagators one can see the ratio of the contributions to
be determined by that of the electron propagators. Consider-
ing the problem in momentum space one immediately finds
the FSI contribution [Fig. 1(c)] to be e2/co-J/co(&1 times
smaller than that of the GSI.

Note however that the division of the interaction into GSI
and FSI is a conventional one since it depends on the gauge
of the photon propagators describing the interaction (not to
be confused with the term "gauge" used sometimes for the
form of the dipole interaction between photon and electron).
Really, adding the longitudinal terms to the photon propaga-
tor (see, e.g. , [19]),one can replace part of the GSI into the
FSI, and vice versa. We consider the problem in the Cou-
lomb gauge, usual for atomic physics. Note that a similar
picture emerges in the Feynman gauge.

B. The region of domination of the FSI

Here e, 2&& J and le, —e2l/co-1. The exchange of elec-
trons by a hard photon, carrying momentum p2&) y, can be
taken into account in the lowest order of perturbative theory
in both GSI and FSI graphs, Figs. 1(b) and 1(c).
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Unless a special region of kinematical variables is chosen,
the two graphs give a contribution of the same order. How-
ever, if the value of

P=Ip+pl

is close to

i.e.,

po = (2m')) ", (20)
FIG. 2. The general form of the final state interaction. Block A

stands for single photoionization; block B denotes ionization by
electron impact.

(21)

the electron propagator in the graph of Fig. 1(c) is close to
the mass shell and the contribution is increased by the factor
po/r/ &) 1 with respect of that of Fig. 1(b).

Now let us see how the picture emerges in configuration
space analyses. Since e] 2&)1 the final state function can be
built from the two plane waves interacting in lowest order of
perturbative theory. Using Eq. (15) for the final state function
we present the contribution as +(1 2)]'P(ri r2) (23)

involved are at the distance of their largest concentration
(r, 2- r/) and the amplitude increases. The distance between
electrons is still

I
r, —r2I-po '(& g

Let us see how it looks in configuration space. Putting the
plane waves as the functions q&; in Eq. (15) and substituting
into Eq. (14) we come to

F- d rtd r2d rs[e ' "'" ' "2'2 V(r3 —r2)

&&Go(cu;rt —rs)i(eV&)+(1~2)]'P(rt tr2). (22)

The values of r; which dominate in the integral (22) are
determined by the power of the exponent. Since
Go- e '"o 'l '3~ we find all r;—po for arbitrary values of
po, p&,p2&~ y. Thus the integral is quenched by the small
value of the three phase volumes.

However, if Eq. (21) is true and r2= r3 we find the expo-
nents to contribute =e ' o"~e'~ o '2. Thus only the phase
volumes d rt and d (r2 r3) appear t—o be limited while
r2- g '. This increases the value of the integral.

The physical picture becomes quite clear [1].The photon
produces ionization at small distances r&=p, from the
nucleus. Since Irs —r tI

—r/
' the electron passes through the

atom, interacting with the second electron at the distances
where most of the latter is concentrated.

Hence it is almost obvious that the energy distribution
reproduces that of free electron-electron scattering and con-
tains the cross section of the single photoeffect as a factor. In
Sec. IV we prove the statements and determine the factor
depending on the structure of the initial state which enters
the energy distribution Eq. (37).

However, if the values of the energies become close, an-
other mechanism of the process emerges.

Ie, —e, I

i co~ '"
t, mlp—= &

/ r/2&
"2

co i cumi

for co&) y

for o) && y.

(24)

(25)

IV. THE REGION OF DOMINATION
OF FINAL STATE INTERACTION

If e] 2&)J the amplitude is determined by the FSI until we
are not too close to the center of the distribution —see [1]and
Sec. III of the present paper.

The process passes through the intermediate state in
which the system consists of a free electron and ion He+.
The latter can be in an excited or the ground state. Starting
with the case of the function 'P(r, , r2) being presented
through the single-electron functions ['P(r, , r2)
= P(r, ) P(r2) in the case of helium] we present the ampli-
tude as (see Fig. 2)

The exponential factor can be presented as

exp[ —i(qrt) —i(p2, r, —rz)]. Thus at q —r/ both r, and r2 be-
come of the order g

' while Ir&
—r2 is of the order

p2 &v
The condition IqI ~ y becomes true if

C. The central region

Here e& 2- cu and I(e, —e2)/t0I(& I. In order to understand
why this region is singled out we must recall that the Fourier
component of the wave function of a bound electron W(f) is
large if f- xg but obtains the small factor (r//f) if f&) r/.
Thus until the momentum transferred to the nucleus —see
Eq. (6)—is large, one of the arguments of the wave function
of helium in momentum space 'P(f, ,f2) is large (f&) r/) and
the amplitude is quenched.

However, in the vicinity of the center the value of mo-
mentum q can become of the order of y. Thus both electrons

1

(p f)'—
co —J—fo — +i8

2 Pal

Here y denote the states of He+ with the energies of ex-
citations over the ground state cok. Block A describes the
interaction Vz in the ion caused by removing the fast elec-
tron. In the shake-off approximation Vz= 1. Block 8 stands
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for scattering of the ionized electron on the ion in the state

I
y~"~) and F~ is the amplitude of the single photoeffect —see

Eq. (9).
The integral in the right-hand side of Eq. (26) can be

evaluated as the sum of the residues at the points fo=co„.
Since only the states with cuI, -J are important (the wave
functions of the higher ones are suppressed), the propagator
of the free electron does not depend on co&, as its denomi-
nator is of the order pop/m&) J. Thus the sum over

I
yt"~)

can be calculated by closure, leading to

leading to 120]

do. +(co) do.„(co,e2) (r )'( )d E'2 de2 4m
(37)

A similar analysis leads to the expression for the energy
distribution for the more general form of the function
%(r),r2):

Since e2&&J

3 ( 'F21 ~B I 0) (p f)'-
6)+ E2

(27) with

(~(0, )I -'l~(0, ))
(r ')—=

Wo

('%211 Bl e) =F„(~.e.) 0(f) (2g) It is sufficient to put

with F„ the amplitude of the inelastic scattering of the free
electron with the energy ~ on that at rest while the energy of
the secondary electron becomes e2. As e2&&J, the latter am-
plitude can be treated in the lowest order of perturbative
theory. Thus the amplitude is

do.„pro. I' 1
I

—+

V. THE CENTRAL REGION

(39)

with

F= —Fq(P) F„((u,e2) X 2m p, (po, P)

d f 1
p(po P) =

) (2 )s 0(f (p f)2 2 .

(29)

(30)

If the energies of the outgoing electrons do not differ
much, the process can take place with small momentum
q» y transferred to the nucleus. Thus both bound electrons
are at the distances r- g

' from the nucleus. This causes a
strong enhancement in the energy distribution.

In this section we calculate the distribution of electrons at

I
e, —e21(to. Assuming et) e2 we introduce the variable

The function p, (po, P) has a sharp maximum at P =po.
Really, Eq. (30) can be presented as

P(& 1, (40)
1 I 1

4m' r (31)

Since P,po&) rg, while important values of r are of the order
', we can evaluate Eq. (31) as

which describes the distance of the value of the electron
energies from the center of the energy distribution. The elec-
tron energies and momenta are

i
u(po, a) = P( )e"d

2poJ
(32)

e;=—(1~P), p, =p (1~P), p =ma). (41)

with 6 =po —P.
Putting P=po in the argument of the amplitude F we

obtain

do (co) doree(cot, e2)=o (co) K
d62

(33)

t dA
K=4poJ 2 lw(po ~)l'. (34)

Using Eq. (32) we find

with o.„the cross section of the scattering of the free elec-
tron with the energy co on the free one at rest. The last factor
involved is

In order to calculate the energy distribution in the whole
region p(&1 note that at p- 1, q-p the amplitude is domi-
nated by its imaginary part, see Eqs. (29) and (32), while the
real part can be neglected. At p(&1, q(&p the real part is
strongly enhanced while the imaginary part is of the same
order as at p-1. Thus the contribution of the imaginary part
of the amplitude is presented by Eq. (37) at all values of
P, coming from integration over large q-p. Thus to obtain
the energy distribution at p(&1 one should add the contribu-
tion of the real part of the amplitude integrated over q((p.
The enhancement of the distribution is most effective for the
values of p limited by Eqs. (24) and (25) when q~ rg How-.
ever, to match the two contributions one has to consider
larger values of p for which still p(&1.

Hence we present the energy distribution as

dk
drdr' P(r)P*(r')e' ~"

J 2~ (35)

d~2+ 'l

+
d&2 ) d&2

(42)
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Here the first term is caused by large momentum transferred
q-p&) xg. It is described by Eq. (37). The second term is
determined by small momentum q(&p.

In this section we find the energy distribution do. +/de
(e—= e2(cu/2) as a function of P= 1 —e/(ru/2) at P(&1. Spe-
cial attention will be devoted to the intervals of the values of
P limited by Eqs. (24) and (25). For the contribution
(da +/d e)~ we immediately write

To prove the statement, consider the explicit form of the
amplitude F

&

=F»+ F&, where the two terms correspond to
the diagrams of Figs. 1(b) and 1(c):

(epi)
Fib=(4wn) v2 D(p2 f)Gb(el &,pi k)

m

+ (1~2),

1 ~do +) 4n (r ')
1+2 )'

CT I de Jy co
(43) Fi, = (4mn) Q2 D(p2 f)G—,(co+J, , k+ q f)—

see Eqs. (37)—(39).
It is convenient to present the cross section as

dp2dq
~(el+ e2 ~)IFI 2 3 2 3 (44)

(p2k)
(45)

if ~=lkl) v and

(46)

if co=lkl(i7 —see Eqs. (24) and (25).
Describing the intermediate and final state electrons by

the free functions we present the general form of the ampli-
tude as

d fF(k p; q)=
2 2 +(q f.f)Fi(k.p; —q.f) (47)

J 27T

with the contribution (da. +/de), coming from integration
over q- y(&p. The latter limit causes the dependence of the
values of the energies of the outgoing electrons on the other
variables. We find from Eq. (6)

+{1 2) (51)

(ep2)(p2k)
Fo(co, (pzk))=(4mn) ' 4+2 (52)

Now we calculate the energy distribution for the intervals
of the values of the photon energies mentioned above. It is
instructive to start with the larger values of cu.

with D(Q) = 1/Q and G(E, Q) = I/(F. Q /2—m) the propa-
gators of photon and free electron and J

&
~0 the eigenvalue

of the energy of the bound electrons. Putting f= q = 0 we
eliminate the term Fi, . The two terms of the amplitude
F» cancel unless we take into account the corrections of the
order (p;k)/m co in the expansions of the propagators
Gb= 1/co[1 —(p;k)/mao]. To find the region of the values of
co where the account of finite values of q and f is more
important than that of corrections -(p, k)/mes we put k=O
in the propagators of the electrons. Neglecting the terms of
the order y /mao in the propagator G, we find the amplitude
F, to be proportional to the sum (e,p i f)/—
(p, f)2+(1——+2). The latter changes sign under the trans-
formation f ' = q f and the —integral in the right-hand side of
Eq. (47) becomes zero. Thus the finite contribution is
(q/p)(y /mao) times smaller than each term in Eq. (51) for
F». This leads to the limit presented by Eq. (50). The ex-
plicit form of the amplitude is

with 'Il' the initial state function, while the function Fi con-
tains the propagators carrying the large momenta p, )& y. At
q- y the integral over f is saturated by small f- y. The
amplitude F depends on five independent variables com-
posed of the vectors k, p;, and q.

The limit q- y(&p yields additional ties between the vari-
ables of the amplitude. At co&) r/ we can put q =f= 0 in the
arguments of the amplitude F, as well as in Eq. (6). The
amplitude F

&
becomes just that of the process with two free

electrons at rest, Fo. The latter should depend on two vari-
ables, say m and (p2k). Thus

A. The region of free kinematics ao&& @=6.3 keV

The amplitude is described by Eq. (48) in which it is
convenient to consider Fo as a function of co and P. Straight-
forward calculation gives

4(ep2) P
Fo(a), P) =(4mn) ' Q2

m m
(53)

Fo(~ P) =(epi)f(~. P)+(ep~)f(~. P) (54)—

becoming zero at P=O. The latter can be easily seen from
the general form of the amplitude

F(cu, (p2k), q )= S(q )Fp(co, (p2k)) (48)
being proportional to (ek) = 0 at P=0. This leads to

with

(49)
d3f

5'(q') = 2„3+(q f.f)—
with

(do. +l 12+2 I m) mp l
1 2Q

ir+( de ) mZ' (a)j CO ]
(55)

Equation (48) appears to be true in the broader region

co&) g(nzv)" =700 eV. (5o)

1 t' d3q 1
s I

~(q') I'= 2 I +('r) I'd'r. (56)
NO) (2m) NOJ
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the dimensionless number depending only on the character-
istics of the initial state. It can be expressed through single-
particle functions as

1

I y(r) I'd"
Npg

(57)

In the special case of hydrogenlike functions C= 1/8 for any
value of Z.

The distribution (do. +/de2), becomes finite at P ~0 if
finite values of q are taken into account in Eq. (6). The
equation becomes more complicated; for the order of mag-
nitude estimation the factor P in the right-hand side of Eq.
(55) should be replaced by r/ /cp at P (&J/cp. Note that the
distribution becomes zero at the end points of the interval
described by Eq. (24), matching (do +/de2)~ —see Eq.
(43).

Comparing Eqs. (43) and (55) one can see that at

P =(I/2)(co/m) where (do. +/de), reaches its maximum
value the contribution is more than 10 times larger than that
of (do. +/de)r.

B. The dipole approximation region cu(( y
[but still co&) y~=—y(nzv)" =700 eV]

In this region we can neglect momentum k in Eq. (6).
Thus the limits for q are

we find

1
Pt(p/3) =

z ~ d'rd"'0(r. r)
Np

sin (pPlr —r'I/2)
x I,I2

W(r', r'). (65)

These equations show how

cosp plr —r'I
('/') 2 'N " "~("'")

I

— 'I' e("'")
2m Npg ~r

—r'
(66)

vanishes smoothly at P- 1.
In the very vicinity of the center of the energy distribu-

tion, at P(&(J/to) ", we obtain

1 ~pP ' r/'h'
yt(P/3)=4 P P=N2 24( q Npn

1

Pp —P(0) —
g 2 d rd r i/J(r, r), 2 %(r, r )No2~ J

(64)

and

2p (1 —
v I —P )(q (2p (1+gl —P ), (58) h= d r'P(r, r). (67)

which gives at P(&1

pP-q-2p (59)

1 (do. +l 12+2( to&"
(60)

with p = (m cu) ", t = (p2k)/p2k,

In this region Eq. (52) for the amplitude is still true. We
express the energy et through E2 and (p2q) [Eq. (46)] and
use the 8' function in Eq. (44) for the integration over the
azimuthal angle of the vector q. The distribution is

If t'ai(r, r) is the product of single-particle functions we find
h=1.

Comparing Eqs. (43) and (62) we see that in the
while region cp&) r/, = g(nZv)" the total distribution
(1/o.+)(do. +/de) reaches a local maximum at the point
P=0. The contribution (do. /de), exceeds (do. +/de)~ at
larger energies co since P enters the function P being mul-
tiplied by the large factor p /y ))1. One can see that
(da /de), &)(do +/de)~ if co&) r/(aZ) —1.3',—1 keV.

To illustrate the matching of the two terms of Eq. (42)
consider the region 1&)P&)(J/co)' . Since here q) Pp&) r/

we can obtain

1 ~ dqq, , l5(q)l',
Np pp 27r

(61) 2 8 vent5(q) =N P(q) =Np
q

(68)

while S(q) is defined by Eq. (49). We replaced the upper
limit of integration by infinity since the integral over q is
saturated by q&&p;.

To deal with dimensionless functions we introduce

$(pP) = r/H(p/3) and thus

and Eq. (42) takes the form

(69)

d(7 +i 16/2
d, ,

=
5Z (62)

4(pP) = 4'o- At(p/3), 4'o= 4(0) (63)

with p=(mao)'~ . In the argument of the function @ the
value pP is compared to the characteristic momentum of the
bound electron. Equation (61) shows @ to be a decreasing
function of P. Presenting

The distribution reaches its minimum at P=Pp with

32+28

5 (r 2)m m]
(70)

Thus Eq. (70) indeed determines the point Po(&1. Note that

Pp depends on co very weakly.
We conclude this subsection by adducing the function P

calculated with hydrogenlike functions of the initial state,
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I (
4' pP =3 „2p2+4„2' . (71)

m ~2v dq q
V(q) = —

s qJ(q) A(p pP) =
2 2 lV(q)l'

N~g pp 2m
(78)

In this model po=0.5; the energy distribution in the central
region is dominated by (I/sr+)(do. +/de), at co~2.5 keV. At q= 2/, p~(J/co)", V and A are of the order of unity.

Equation (75) takes the form

C. The region co= y=6.3 keV

Keeping both k and q finite in Eq. (6) we find now

q~ pp+ tot (72)

1 (do'+l 4Q2x)"

0 i de j m COZ

Comparing Eqs. (43) and (79) we find

(79)

Thus the distribution of outgoing electrons is described by
Eq. (60) with H(pp) being replaced by H(pp+ tot)

Now we see how the maximum of the distribution
(der +/de), at p=O for co(& r/ converts into a minimum at
co&) r/. Putting co&) 2/ we find that at

l
tl —1 q can be made as

small as y only if the two terms in the right-hand side of Eq.
(72) do compensate each other to a large extent. Thus the
limits of the values of t become a function of to and p with
t~O at p —+0. This leads to the zero value of the distribution
at to&) 2/ and P~O.

F=(4' )n' 2 s T(q) (73)

with

jf
T(q)=) s W(q f f) —Ji—(ef) (74)

leading to the distribution

1 (do 'I 4+2 1
+ d 3 Z2N2 g( p) (75)

with

D. The region to~ y(nZv)" =700 eV

This is the part of the dipole approximation region in
which many of the earlier experiments were carried out. We
start the analysis with the case co(& 27i = r/(nZv)" when the
amplitude is the result of strong cancellation between the
contributions of the terms F» and F„presented by Eq. (51).
It does not vanish due to the finite difference between the

propagators Gb= I/co and G, = I/[to+ J,—(q —f) /2m].
The amplitude of the process is

(do-2+ ~

de

to) it2(dtr2+ (dtr2+)

Jj I de i de j

We shall see how the account of (do. +/de), in the total

energy distribution

1 do-'+ 4n2272 (r 2)

( 2 1/2( ) 2

I, 2mto ( mnZ(
(80)

influences the 1+2p law of the first term.
Note first that the shape of the spectrum curve in the very

vicinity of the center p —+0 is determined by the first term of
Eq. (80). One can see this by presenting

A(p, pp) = A(p 0) Ai(J P)— (81)

4mqNO No l
T(q) =

2 (eq), V(q) =4mI (82)

and finding Ai —p at pp(& r/since V(0) =0—see Eq. (78).
Equation (78) shows that A(p, pp) is growing while e ap-
proaches co/2, i.e., while p diminishes. Thus the second term
in Eq. (80) makes the spectrum curve fiatter than the pa-
rabola 1+2p . One can see from Eq. (78) that the effect is
of the same strength in the whole region p(&1, vanishing
smoothly when p approaches unity —see Eq. (58).

To find the dependence on co of the influence of the con-
tribution of the second term on the shape of the curve it is
instructive to analyze the function A(p, pp) in the center of
the energy distribution p = 0. The general form of
A(p, pp) can be obtained by considering x =pp&) r/. This
yields q)& y where

"2adq q
~(p, p)=

2 2 IJ(q)l',
~JP

while the function

(76)

leading to

x,'
A(p x)=4 3 ln 2 +0

x ix j
(83)

t . ( i(qV)1
J(q) = d re'(~"lU(r) 1 —

2 0"(r,r)
4q

(77)

and to the general equation

(pp~
A(p, pP)=4 3 ln—2

—k
7 ( 7 l. (84)

originates from Eq. (74) with U(r) the potential energy of
the atom at the point r.

To deal with dimensionless functions, introduce
with X-ln(p pl g) if pp&) r/. Returning to Eq. (80) we find

the inhuence of the second term to increase with cu while
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ln—2~2+)i.(0).p
(85)

with X(pp) =4' /(p p +4g ). This leads to X(0)=1.3.
Thus the effect of flattening of the spectrum curve increases
with the value of the photon energy while co~1.3 keV.

Now we turn to the case co- r/i= g(nZi/)" where the
two contributions to the amplitude described by Eqs. (52)
and (73) are of the same order of magnitude. Since the inte-
gration over the direction of the vector q in Eq. (44) elimi-
nates the interference between the two terms we write for the
energy distribution

1 do-2+ 4n2272 (r 2) j
, (1+2 ')+2

o dE co r/ ( 2m. co j

4+2 1
x&(J,J P)+ 5 Z, 2

— — 4(J P) .
nZ) Lmj (&j

(87)

Here the first term in the square brackets comes from
(1/o. )(do. /de)~, while the second and the third come
from (1/o. )(do. /de), . Using Eqs. (62) and (79) we find
that at a certain value of the photon energy

co —cU i =c r/( nZi/) =c r/i X 0.795/9 (88)

the character of the spectrum curve changes. At ~~~& it
reaches a local maximum at the point p = 0. The coefficient c
is related to the parameters of the initial state wave function
by a rather clumsy relation

j pP (
—2) l, 2/9

c= 5x2+2~x, x, xh'
2V

(89)

—see Eq. (67) for h. Note that at co= cut the second and the
third terms of Eq. (87) obtain extra factors (nZV) ' and

(nZ&) ' with respect to the first term.
For the hydrogenlike functions of the initial state the three

last factors in the parentheses of Eq. (89) become unity. This
leads to e = 2.3. Thus in this model the character of the spec-
trum curve changes at co=1.5 keV.

VI. THE OUTLOOK OF THE ENERGY DISTRIBUTION
IN HELIUM

Now we can have a general view of the energy distribu-
tion. Starting with the values of e2~ J we increase the energy
e2, observing the replacement of the GSI mechanism by that
of the FSI.

Where does the replacement take place? Strictly speaking
we must calculate the total contribution of the FSI giving the
correction of the order J/cu to the GSI contribution. A con-
sistent way of calculating the FSI correction to shake-off-
type processes was described in Ref. [21]. One must calcu-
late

The value k(0) depends on the initial state wave function.
For hydrogenlike functions we find

4j /'
A(p, pP) = —ln—2+ lnX ——X+ —X ——X

3 18 27 )
(86)

do-'+ J I' d
+ d,

——(~2lk) 0 ~ad—„~~)—(~~l/)
E2

x ( pl ln2(r —r, ) l y2)

(9o)

with the z axis direction being that of the fast electron mo-
mentum p& and ro the Bohr radius.

To feel the size of the effect one can try, however, the
simplest equation, which just includes the interaction of the
secondary electron with the bare nucleus of helium,

1 do. + (r ) N($2) 7m
o.+ de2 4m (e2+ J+) (91)

with $2=(J+/e2)" while J+ is the ionization potential of
the ion He+ and

27r (2
N((2) = '

exp( —4(2cot '$2). (92)1-exp -2m

Equation (91) approximates the right-hand side (RHS) of
Eq. (90) if we assume the overlap integral (y2l p) to be an
additional small parameter. In this case the RHS of Eq. (90)
is dominated by the last term.

One can see that the smaller are the values of co the
sooner the replacement takes place. The values of ez where
the replacement occurs depend on the model used for the
ground state function. Comparing Eq. (91) to the energy dis-
tribution caused by the GSI in the perturbation theory model
[1]we find the two mechanisms to give the contribution of
the same order at e2-30 eV for all the photon energies
co~5 keV. At larger values of e2 the FSI term dominates.

Certainly more realistic models of the GSI can change the
numbers. However, the main result of the analysis, the early
replacement of the GSI mechanism by that of the FSI, re-
mains the same. The reason is that the FSI contribution con-
tains the small factor (J/ru) and the GSI term also contains
the small factor l(y2l/j/)l .

Now let us increase the value of e2, moving to the center
of the spectrum. While we keep co~i keV the spectrum
curve drops monotonically, being described by Eq. (87). The
dependence of the energy distribution on p= 1 —e2/(cu/2) is
expected to be fiatter than the 1+2p parabola of the first
term. The effect of flattening increases with cu. The interval
of the values of p where the phenomenon manifests itself
does not depend on co. At cut —r/(nZ) ' the character of the
curve changes and it obtains a local maximum at P=O. We
expect the value to be about 1.5 keV. At this point the distri-
bution is still dominated by the first term of Eq. (87). Thus
the maximum is a broad and low one. However, due to the
strong dependence of the third term of Eq. (87) on cu, at
co ~ 1.7~

&
the latter dominates the distribution at

p~(J/ )1/2

Increasing the value of co but still keeping co~ y=6 keV
we find the spectrum curve growing strongly in the region
p~ (J/co)" . The positions of the points po where the dis-
tribution reaches the minimum value are estimated by Eq.
(70). The values of po vary slowly with co. The magnitude of
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the relative enhancement in the center of distribution in-
creases quickly with co—Eqs. (43) and (62).

Note that until we deal with the energies co(& y=6.5 keV
the size of the region of quasifree kinematics grows as
co" . Its relative part ~P~ falls as t0 ", reaching the smallest
value ~P~

= (nZv)" =0.11 at co= xg.

At ~= ran=6. 3 keV the equations for the energy distribu-
tion are rather complicated —see Sec. V. But at co) g correc-
tions to Eq. (55) are of the order t/ /co . Thus, say, at
au= 12 keV we can use Eq. (55) to describe the spectrum.

Equation (55) is true in the region of free kinematics de-
termined by Eq. (24). The contribution matches that of the
FSI, becoming zero at the borders of the region. The cross
section changes rapidly in the interval. Say, at co= 12 keV its
values at the points of maxima P=(co/2m)" are about 150
times larger than that on the borders of the region. The cross
section diminishes if we make

~ P~ smaller. At P = 0 the value
is four times smaller than that on the borders of the interval.

If cu&) g the size of the central region grows as co ' while
the distribution (I/o+)(d. cr +)/(dE2) diminishes as co

The contribution of the region to the total cross section is of
the order o.+co/m. Thus at the values co-m=500 keV the
region contributes a value of the same order as the edge
region. The case c0-m was considered in Ref. [22].

VII. THE OUTLOOK OF ENERGY DISTRIBUTION
IN HEAVIER ATOMS

being proportional to Z in the region of FSI domination.
Thus the FSI mechanism replaces that of the GSI at smaller
values of e/J than in helium. In the central region the con-
tribution of (da. +/de), at co~ r/, &&(uZ)" [Eqs. (75) and
(79)] is proportional to Z . Thus the effect of flattening of
the spectrum curve is stronger than in helium. It drops with
cu as co ", while the contribution which increases with
c0—Eq. (87)—contains the smaller factor Z . This leads to
minor altering of the shape of the spectrum curve predicted
by (da +/de)~ caused by the FSI in the whole region
e&)J at larger values of cu.

VIII. THE ANGULAR DISTRIBUTION
OF THE ELECTRONS

In the edge region the distribution is quite simple. The fast
electron succeeds that of the single photoeffect while the
slow one is the isotropic s wave.

In the two other regions of the spectrum we find a strong
correlation between the directions of momenta of the two
electrons. In the FSI region the maximum of the distribution
over the angle 0&2 between electron momenta p & 2 is reached
at 0&2= ~/2. The width of the maximum is y/p
=(J/co)" (&I. The dependence on the angles between p;
and n = k/~k~ is the same as in the single photoeffect with the
electron's momentum p&+p2. Thus in the region of domi-
nation of the FSI the distribution in t;=(p;k)/p, k is

Let us see how the whole picture is modified for the case
of double photoionization of an atom with the charge of the
nucleus Z.

In the case of two external electrons experiencing the ef-
fective charge Z,ff=1 we find rg,ff=mn=3. 7 keV in the
edge region and in the FSI domination region the cross sec-
tion o. + is singled out as a factor in a natural way since in
the distribution do. +/de both values depend on Z in the
same way. Since [23] N0=~$(r=0)~ -Z they are propor-
tional to Z —see Eq. (13). On the other hand, in the central
region the distribution depends on Z,ff rather than on Z.
Thus, the interplay between FSI and GSI mechanisms is the
same as in helium until we come to the central region of the
spectrum determined by Eqs. (24) and (25). Here the role of
the small momentum transferred q- g,ff is less important
than in the case of helium. The relative contribution of the
second term in the right-hand side of Eq. (42) is (Z/Zv)
times smaller than in helium (recall that Z&=27/16). The
contribution of (da. +/de), becomes of the same order as
that of (do +/de)~ at co-2(Z/Zz) ' keV, i.e. , co&) r/, ff.
Hence the spectrum in the central region can be described by
Eq. (42) with the two contributions to the right-hand side
given by Eqs. (43) and (55).

The role of (der +/de), in the central region increases
again if the orbital moments of both ionized states 8, 240.
Really in this case the cross sections in the edge region and
in the FSI domination region contain o.+ as a factor. The
latter cross section is suppressed for 840. The GSI mecha-
nism in the central region does not yield this quenching.

In the case of ionization of two K electrons we find

Np Z J Z and y,ff= m nZ; thus o.+ —Z . Since the
shake-off matrix element in the right-hand side of Eq. (17)
drops as 1/Z, we come to do. +/de-Z in the edge region

do-'+ tdo- +~ 3 ~ (3e
X— 1+ ——t ——1

dEdt ( dE ] 8 co ( co J
(93)

do + do+ 15
x—t'(1 —t'),

d ddt de (94)

reaching maximum values if the values of the angles be-
tween p; and k are ~/4 or 3 m/4 (recall that 0= m,

tl t2)
Note that at larger values of cu&) y=6.3 keV the distribu-

tion of electrons in the central region is dominated by free
kinematics which yields a certain relation between t and
e—Eq. (45). Thus

do
o.+ d ddt

12+2 t ml t'2
~ mP(e) ~

t'(1 —t') Bi t Ci~)
(95)

with P(e) = 1 —e/(co/2), P ~co/m. Thus we expect the dis-
tribution (I/o. ")(do2+/dt) to reach. maximum values at

with da. /de determined by Eq. (37).
At ~(&2 keV the angular distribution is determined by

Eq. (93) in the whole region Et2&)J. At co~2 keV it is
violated in the central region (Sec. V), being a more compli-
cated interplay of several contributions if P~(J/cu)" . If
~&)2 keV the directions of momenta of outgoing electrons
are strongly correlated in the central region. The electrons
move mostly in opposite directions, the value of the angle
0&2 between p &

and p2 does not differ from ~ by more than
(J/cu)" . The angular distribution in the central region takes
the form [Eq. (60)]
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0. I QIQ

{a)

The distribution do. +/dt integrated over e again takes the
form r (1 —t )—Eq. (55). At t=O and at r= ~1 the finite
value is provided by the distribution of Eq. (93).

IX. SUMMARY

We analyzed the distribution of electrons in the double
ionization of helium and heavier atoms. We calculated the
cross section in the two regions of the spectrum correspond-
ing to large energies of outgoing electrons e] 2&&J discovered
in Ref. [1]without specifying the model for the initial wave
function IIr(r, , r2).

We show that at rather small values of the energies of the
secondary electron ez the ground state interaction mecha-
nism is replaced by the final state one. The value of e2 where
the replacement takes place becomes larger as the value of
co increases. The FSI contribution is presented in factorized
form —Eq. (37). All the atomic physics effects are contained
in the first two factors while the last one is of purely elec-
trodynamical origin, describing the interaction of free elec-
trons.

When the values of the energies of outgoing electrons are
not too close to each other a large momentum should be
transferred to the nucleus. Thus one of the electrons should
approach the latter at distances much smaller than its classi-
cal orbit. When the values of e] 2 become close enough-
Eqs. (24) and (25)—it becomes sufficient to transfer small
momentum to the nucleus. However, while sharing the en-

ergy transferred by photons the electrons should approach
each other at small distances r-(m )co". Note that this
mechanism is caused by interaction in the ground state at
ro&& r/(uZ, )"=700 eV. At smaller energies it is the result of
the strong cancellations between the contributions of the fi-
nal state interaction and ground state interaction in the real
part of the amplitude. For energies co~ y= 6 keV the energy
distribution is expressed through certain integrals depending
on the form of the initial state wave function and on the
energy of the outgoing electron —Eqs. (60), (62), and (75)—
(79). In the very vicinity of the center of the energy distri-
bution we can again single out certain factors depending only
on the structure of the initial state —see, e.g. , Eq. (67). Note
that for co&& y=6 keV the energy distribution is also pre-
sented in factorized form containing an "electrodynamical
factor" depending on co and e and an "atomic physics fac-
tor" depending only on parameters of the initial state wave
function —Eq. (55).

The directions of momenta of outgoing electrons are
strongly correlated. In the region of FSI domination the
angle ~/2 between p& and p2 is preferred. In the central
region they move mostly in opposite directions. In the region
of FSI domination the angular distribution is expressed by
Eq. (93). In the central region it is expressed by the factor
t (I —t ) [see Eq. (94)] becoming zero at t=0, 4-1.

In the heavier atoms the role of the FSI increases. If the
charge of the nucleus Z is large enough the FSI can dominate
in the whole region e;)& J—Sec. VII.

In Fig. 3 we show how the form of the spectrum of double
photoionization of helium is modified when we change the
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FIG. 3. The energy distribution (1/o +)(d o. /d P)
=(cu/2o+)(do +/de) as a function of P. (a) corresponds to
co=500 eV; (b) and (c) to aI=3 keV and co=12 keV.

value of m. The figure illustrates the analyses presented in
Sec. VI.

The distribution of outgoing electrons was analyzed in
Refs. [5,6,9] where various precise wave functions were used
for the description of initial and final states. Describing the
outgoing electrons by plane waves, we may lose in accuracy
as compared to [5,6,9]. However, we expect the approach to
clarify certain general features of the distribution and the
evolution of the shape of the spectrum curve with co.

We find our results to be consistent with those obtained in
[5,6,9] for several special values of the photon energy. In-
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deed, the energy distributions in Fig. 5 of the paper by Hino
et al. [5] show a fiat part of the curve near the center of
distribution. Its size increases while the value of photon en-
ergy increases from 200 eV to 500 eV and then to 1 keV. The
effect of flattening also increases with co. Both results are in
agreement with those coming from our general analysis. Un-
fortunately, the scale used in the figure does not allow us to
see if it reproduces the "fine structure" of the curve expected
at co=5 keV.

The energy distributions obtained by Kornberg and Mira-
glia [6] for co = 1 keV, 2 keV, and 3 keV shown in Fig. 2 of
Ref. [6] also agree with our picture of evolution of the shape
of the spectrum curve with co. At ~= 1 keV the curve has a
flat bottom, obtaining the Hat top peaks at larger energies.
Recall that we predict a change in the shape of the curve at
values of co between 1 keV and 2 keV. The values of
P= i(e, —ez)/coi where the curves for co=2 keV and su = 3
keV reach the minimum value are practically the same, in
agreement with our results. The peak is sharper for co=3
keV; this also coincides with the results of our calculations.

The energy distributions of outgoing electrons at
co=625 eV and co=2.8 keV obtained by Teng and Shake-
shaft [9]are presented by a curve with fiat bottom in the first
case and with a very Oat top peak in the second case. The
peak obtained in Ref. [6] for &0=2 keV is sharper but this
can be explained by the different wave functions of the initial
state in Refs. [6] and [9].The evolution of the shape of the
curves with ~ agrees with our results. Note also that in Ref.
[9] a general analysis of the asymmetry coefficient at to=2
keV was carried out. At these values of energies (i.e., at
values close to the point of co where the curve changes its
shape) our limit equations (93) and (94) do not work in the
central region. The results of analysis of the angular correla-
tions of outgoing electrons in [9] support the earlier state-
ment [1] that the regions Oi2=7r/2 and 0i2= m are singled
out and shows it to be true also for calculations with more
precise wave functions of the final state.

We expect the analysis carried out in the present paper to
help us in approaching the other problems connected with
double photoionization mentioned in the Introduction.

APPENDIX

Here we recall some of the features of the system of units
and normalization scale used in Ref. [18].Putting A. =c= 1

we express all the velocities in units of that of light. The
energies e and co of the electron and photon are related to
their momenta p and k as

P co=k.
2m

(Al)

The velocity of the bound electron in the ground state of the
hydrogenlike atom is nZ while the binding energy is
J= y /2m with y=mnZ the characteristic momenta of the
E electron. The dipole approximation is true if co= i(& y.

The single-electron wave functions are normalized in
such a way that there is one particle per unit volume. This
normalization condition is expressed by Eq. (16) of the text.
The wave function of the free electron is

%„(r)=exp[i(pr)]. (A2)

Let us show how Eq. (12) of the text, which is Eq. (56.1) of
Ref. [18]can be presented in the more traditional form of Eq.
(69.5) of Ref. [16].Indeed, Eq. (12) of the text can be pre-
sented as

dAdo-' =—iF,i'mp (A3)

with

(4~~) '"
(F~);=i d r e '(~"lV;(P(r) (A4)

(2 vr)
(A5)

while averaging over the polarization of the photon is im-
plied. On the other hand, putting A, =c= 1 in Eq. (69.5) of
[16] we present it as
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D;=i d3 re '(""lV', P(r),
m 277 J

leading to the identity of Eqs. (A3) and (A5).

with vector D defined by Eq. (59.3) of [16] as

(A6)
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