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In near-symmetric charge transfer at high-impact velocities and forward-scattering angles, the internuclear-

scattering component of the second-order Faddeev representation of the generalized Thomas mechanisms,

which, though generally associated with large-angle scattering, is valid at forward angles also, has been shown

previously to agree with both the eikonal treatment in a continuum distorted-wave theory and the experimental

data. A comparison of the multiple-scattering and eikonal methods using the same electronic amplitude is made

in this paper. Significant differences are found between the results of the two methods, especially in the region
where there is substantial cancellation among the partial amplitudes. At high velocities the Faddeev amplitude

is a factor of 2 larger than the eikonal amplitude, a result attributable to the inclusion of tvvo generalized

Thomas channels in the former. The leading asymptotic form of the amplitude is also given.

PACS number(s): 34.70.+e

I. INTRODUCTION

At projectile energies of a few MeV, a second-order Fad-
deev treatment of charge transfer [1] has been shown to
agree well with the experimental differential cross section in
proton-helium and proton-hydrogen collisions [2]. For these
energies, multiple-scattering contributions play a significant
role due to the importance of the Thomas double-scattering
mechanism [3]. The Faddeev scattering formalism [4,5] in-

volves a theoretical decomposition of the entire collision
process into two-body collisions treated using the corre-
sponding two-body transition operators. The Faddeev treat-
ment maintains the simple description of the Thomas mecha-
nisms in the second-order Born treatment while providing
quantitative agreement with the experimental data, which the
latter does not give. At projectile scattering angles beyond
the Thomas peak (at 0.47 mrad) where nuclear scattering is
the main effect, the agreement with experiment is maintained
because the internuclear interaction is included in the Fad-
deev treatment.

In the present paper, to study the Faddeev internuclear
contribution in more detail, a comparison with the eikonal
treatment is made for proton-hydrogen and proton-helium
collisions at two sets of incident energies, corresponding to
velocities of five and ten times the characteristic target or-
bital velocities. A simple method for inclusion of the contri-
bution of the internuclear potential is the eikonal transform
[6]. A general application, for projectile and target nuclear
charges Z~ and Z~ and velocity U, proceeds by transforming
the electronic amplitude in the wave picture over to impact
parameter space b, multiplying the transformed amplitude by
the eikonal phase factor b ' ", which derives from the
transverse components of the internuclear motion, and then
transforming this amplitude back to the wave picture.

An exact numerical evaluation of the Faddeev amplitude
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is not critical to the comparison presented here and is not
attempted. Rather, an approximate treatment is used which
relies on the smallness of the binding energy of the electron
relative its final kinetic energy. Near-the-energy-shell repre-
sentations of the two-body transition matrices are employed
and, further, factors which introduce errors of the order of
the electron mass to the heavy-particle masses are neglected

The plan of the paper is as follows. The second-order
Faddeev amplitude is specified in Sec. II, including both the
electronic and internuclear parts. In Sec. III A, the partial
amplitudes are either evaluated to a closed form or reduced
to a numerically tractable form; in Sec. III B, the eikonally
transformed amplitude is defined; and in Sec. III C, the high-
velocity limit of the internuclear part of the Faddeev ampli-
tude is derived. Section IV presents a comparison of calcu-
lated results along with a comparative analysis. Atomic units
are used. The normalization used is such that a plane-wave
state of momentum k in coordinate space r is @k(r) = e'"'".

II. SECOND-ORDER FADDEEV AMPLITUDE

Consider a three-body collision in a one-electron model in
which a projectile ion P is incident on a target consisting of
an electron e and a target ion T. The target or projectile may
contain nonactive electrons. Accordingly, the two-body inter-
actions between pairs of particles assume general modified
Coulomb forms. A detailed account of the application of the
Faddeev formalism to the charge transfer problem is given
elsewhere [1];only a few parts relevant to the present treat-
ment are reiterated. Working to divide the full collision into
two-body components, Faddeev obtained a set of coupled
equations for channel operators based on the two-body inter-
actions [4].A second-order approximate solution of the equa-
tions is employed here. After introducing Fourier analyses of
the initial and final bound-state wave functions and integrat-
ing the heavy-particle motion, an amplitude containing two-
body transition matrices T is obtained. These transition ma-
trices are subsequently approximated by near-the-energy-
shell forms.
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The second-order Faddeev amplitude AF2 consists of an
electronic part A, independent of the internuclear interaction
and an internuclear part A„dependent on it:

AF2=A, +A„.

In the electronic part, the double-scattering term is separated
giving

A, =A~)+Ae (2)

where Az& is the first Born amplitude. For the partial ampli-
tude A, the first-order part is split off as well,

(1)+A (2a) +A(2b)
n n n (3)

with the superscript- number in this and the previous equa-
tions denoting the number of separate interactions.

The first Born amplitude has the form

Apt = (27r) dk/dk;[@/(k/)]*/;(k, )

x Vp, (k& —K) 8(k, +J), (4)

where 8(k;+ J) is the three-dimensional Dirac delta func-
tion. The second-order partial amplitude in Eq. (2) has the
form

final heavy-particle velocities are defined using the wave
vectors: v;=K;/p; and v&=K&/v&. To order I/Mp and
m/Mr, u= 1 and P= 1, and one can show for forward-angle
capture that v~/v;= 1 and v&. v;= 1; thus the velocity is writ-
ten simply as v. Similarly, the scattering energies in Eq. (5)
are E;= 2v —v k;+ a; and E&= -2v + v k&+ a&. The mo-
menta transferred to the target ion and projectile during the
collision are J=uK; K—

& and K=PK&—K;. The compo-
nents parallel to v are IC, = —v/2+ (e, —e&)/U and
1,= —v/2+(a& —a;)/v, and those perpendicular to it are
K~ for K and —K~ for J. Momentum conservation takes the
form K+ J+ v=0.

Equation (5) represents an electronic "wave packet" of
momentum distribution P;(k;) centered about —v scattering
in the projectile frame. The energy of each component is
E;(k;). In the collision with the projectile, each component
of the packet suffers a momentum transfer of k&

—K, as de-
scribed by the transition matrix Tp, . After free propagation
(represented by Go ), the packet, as seen now from the target
frame, scatters off the target ion with each component suf-
fering a momentum transfer of —k; —J. The second scatter-
ing is described by the transition matrix Tz-, . The final mo-
mentum distribution is P/(k/) about v with energy E&(k&)
for each component.

For the internuclear part of the amplitude, the first-order
term in Eq. (3) is

At l=(2vr) dk/dk;[P/(k/)]*@, (k;) A„' = dk/dk;[@/(k/)]*/;(k;)

X Tr, (k/+ v, k;+ k/ —K;E/) Go (E,)

x T„(k/+k, +J,k, v;E,). —

The two-body transition matrix is defined as

1
T(k', k;a)—= (k' V )+ s+ V, —V+)V

2p
V k)

for a potential V. The transition matrices Tp, and T&, in Eq.
(5) derive, respectively, from the potentials Vp, and Vr, ,

they are completely off the energy shell: k 42p, a and k'
42p, e with p, denoting p, ; for Tz., or p& for Tp, . The free
Green function can assume either of two equivalent forms:

X Tpz'(U' k/+ K U' E)8(k/ k''+ v)

where U;= (1 —y)k, + [1—(1 —y)(1 —u)]K;= p, „v and
E„=E [k, —(1—u—)K;] /2v„. This term represents a con-
tribution of internuclear scattering either of momentum
transfer —k; —J for bound-state (electronic) momenta k;=0
in P; and k;= v in P&, or of momentum transfer k, —K for
bound-state momenta k; = —v in P; and k, =0 in P& . [See
also after Eq. (22).]

For the first of the second-order terms in Eq. (3) one
obtains the expression

3 f
A~ 'l= (27r) dk/dk;[p/(k/)]*/;(k;)

G,+(E,) =[E,——,'(k, +k/+ J)'+iq]-'
= [Ef 2(k'+ kf K) +t r/]

X Tr, (k/+ v, k; —(1 —u)(k/ —K);E/) Go (EI)

X Tpr(U( k/+ K, U( ', E~) . (9)

which are useful later.
The total energy of the system is given by

E=(1/2v;)I), +p;=(I/2v/)K&+ e&, where e; and a& are
the initial and final bound-state energies. Initial, final, and
internuclear internal and relative reduced masses and associ-
ated mass ratios for the two-body combinations are defined
as p, ;=mMr/(m+Mr), v, =Mp(m+Mr)/(m+Mp+Mz'),
u =M r l(m+ M7), p/= mM p /(m + M p), p/= Mr(m
+Mp)/(m+ Mp+ Mz') P = Mp /(m ™p))M ™pMz'/
(Mp+ Mr), v„=m(Mr+ M p) l(m + M p+ Mr), and

y =M r /(M p+ M r), respectively. (Mp, M r, and m are the
projectile, target-nuclear, and electronic masses. ) Initial and

The momentum-space Green function in Eq. (9) is given by

(

Go (E/) = E/ [k;+ (1 —u)(K —k/—)] +i rl2pi /

The picture represented by Eq. (9) is that of scattering via a
so-called generalized Thomas double-scattering mechanism
[3]: the projectile and target nucleus scatter (Tpr) and then
the electron and target nucleus scatter (Tr,). The projectile
of momentum U&= p,„v suffers the small momentum transfer
of k&

—K while the electron, initially of momentum k;, ends
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up with momentum kf+ v. Thus, the electron and projectile
travel in the end with nearly the same velocity, allowing
capture to occur. Originally, this mechanism was used to ar-

gue for the possibility of an enhanced cross section at pro-
jectile scattering angle of about 60', however, because of the
momentum spread in the bound-state wave functions, the
mechanisms can work at any angle, in particular, at forward
angles.

Similarly, for the second of the second-order terms in Eq.
(3), one finds

f
A„=(2~) dk/dk, [pf(k/)]*/;(k;)

&& TpT(U/, U/+ k&+ J;Ez) Go (E&)

&&Tp, ( k&+(—1 —P)(k;+ J),k; —v;E;). (11)

with U/= —ykf+ [1—y(1 —P)]K/. The momentum-space
Green function is given by

lomb (MC) potential and scattering near the energy shell, the
two-body transition matrix reduces to a generalized elastic
scattering amplitude multiplied by a so-called off-energy-
shell factor. The generalized elastic scattering amplitude is
the sum of Coulomb and short-range amplitudes. Because of
the presence of the bound-state wave functions, the integral
in the second-order electronic term is dominated by momen-
tum values in the regions k;~ZT and kf~zp. Following
previous work on modified Coulomb potentials [7], and not-
ing that the modified Coulomb potential is represented well

by a scaled pure Coulomb potential of charge Z, in the inner
region, the sum of the Coulomb and short-range amplitudes
is approximated by the Coulomb amplitude for the screened
potential [8]. Thus, the near-the-energy-shell approximation
to the two-body scattering matrix Eq. (6) for a screened po-
tential is written as

TMc(k', k;e)= —2mg+(Z", k', e)g+(Z, k, e) fk, „(e)
(13)

Go (E;)= E, [—kf—+ (1 —P)(k;+ J)] + l r/
2p/

(12)

where the scattering amplitude is

In this double-collision term, the electron and projectile scat-
ter (Tp, ) and then the projectile and target nucleus scatter

( TpT) . The electron, initially of momentum k; —v (in the
projectile frame), ends up with momentum k/, and the pro-
jectile of momentum Uf= p,„v suffers the small momentum
transfer of —k, —J. Again, both the electron and projectile
end up with almost the same velocity so that capture occurs.

The interference of the two terms of Eqs. (9) and (11)
together with that of Eq. (8) produces the nuclear scattering.
It happens that, to good approximation, the electronic and
nuclear scattering decouple as in Eq. (21) below, but it is the

proper treatment of both the off-shell and Coulomb aspects
of the scattering which leads to a nonzero contribution —a
second Born treatment gives a vanishing contribution. The
amplitude specified in Eqs. (4), (5), (8), (9), and (11) con-
tains only errors of the order of I/M p or I/M T . Finally, on
noting that Go —v, one sees that Eqs. (4) and (5) lead to
a momentum dependence of v Q whereas Eqs. (8), (9),
and (11) lead to a dependence of v Q, where Q is J or
K. Therefore, beyond a certain value of K~, the internuclear
terms will dominate.

III. EVALUATION OF THE AMPLITUDE

A. Near-shell approximation to the amplitude

The partial amplitude for Ap2 given in Eq. (5) is approxi-
mated to order (Zp/v) and (ZT/v) . For a modified Cou-

2Z, ~k' —
k~

2'"
C 2loo

(k' —k( k'+k (14)

and the off-shell factor is

k —vg-(Z",k, sc) =e " ' I'(1 ~i v")
k+~ (15)

with v, = p,Z, /z, v"—= p,Z"/z, and Ir= (2pe+i g)' . T—he
reduced mass is p, and I'(x) is the Gamma function. This
simplification works for large impact energies and hard col-
lisions (large momentum transfers).

Complete evaluation of the first Born amplitude in Eq. (4)
gives [9]

AB1= 4w (K +Zp)[@f(K)]*/;(—J), (16)

with i =f= 1s. Applying the near-shell approximation to the
electronic-nuclear transition matrices in A~ ~, neglecting the
slowly varying k; and kf dependencies of the integrand, and
introducing the 1s bound-state wave function in momentum
space, P„(k)=(2 Z )" /m(k +Z ), the amplitude takes
the form

I (1+ivp) I'(1 —ivp) Z, r' J ""
A =2(2/vr) Zp(ZTZp) ' e "P (4u )' ' 'P K + "Pe "&~I (1+ivr)~ (4u ) "T

I (1+ivp) J (2ui

x dk dk (k —2e ) "p (k —2e ) '"T [G (E )]'+'"T (17)



52 COMPARISON OF EIKONAL AND MULTIPLE-SCATTERING . . . 3863

The Sommerfeld parameters in this equation are defined as

pp Zp/v, pp = Zp /U, VT ZTIU ~ +T ZTIU.

A quadratic approximation

G&(E;)—= [-,'(U —K +e;)—
k& J+k; K

—
—,'(k', +kf)+ i q]-' (19)

to the free Green function G,+(F;) [Eq. (7)] has been intro-
duced: (k; —k&) =k, + k& . That is, consistent with the
spherical symmetry of the bound-state wave functions, a uni-
form averaging of all kf directions relative to k; is assumed.
The inclusion of the quadratic term gives a significantly bet-
ter representation of the free Green function [10].The six-
dimensional integral in Eq. (17) is evaluated as in previous
work [1].The calculated cross sections were checked to as-
sure better than four-digit accuracy.

A. =Sp f.'(J)+STpf.'(I:) (20)

where the internuclear scattering amplitude is defined as

2Z,Z, r(1+&v„)( g ~-""-
f'(0)= —

g2 ~(I .
) 2 (21)

The constants S» and STP are independent of J and E. The
former is

Introducing the near-shell approximation to the transition
matrices in the first- and second-order internuclear partial
amplitudes [Eqs. (8), (9), and (11)],performing the integra-
tions after retaining the momentum dependences only in
those terms in which the variation is rapid [which it is not in
Eqs. (10) and (12)], and regrouping various factors, one ob-
tains the expression

. r(I-,-,)r(-,'-
S =2 TTZ (Z Z )3/2e —mvpz, (4+ U2)

—2ivp7PT P P T . ~ )~ n

00

, - I ( +iv")I (1+iv")I (1 —iv ) Z
PT( +Z )

+ PT Z
' PT [ &

(
2 Z2)] —1+ivPT

(1+t vp) +vrl (I+i vp) ( 2U)
2+ 2l pp

(22)

and the latter is obtained by the interchange P~T in SPT.
The Sommerfeld parameters vT, PT, p~, and vp are given

by Eqs. (18) and vpT=ZPZT/v and vpT=ZPZT/v. The in-

tegral in the intermediate version of Eq. (8) has been evalu-
ated by treating the two dominant peaks in the integrand at
k;= 0 and k;= v as independent with the slow k; variation of
the other factors about the peaks being neglected. This is
justified if the two peaks are well separated in momentum
space, as is true for U&)ZP and U&&ZT.

Equation (20) is sytmnetric in the two sets of charges and
the momentum transfers. The dependence on E and J
reflects the nuclear Coulomb scattering. Noteworthy is the
appearance of two terms of opposite sign in the large square
brackets in Eq. (22). Ignoring the different multiplying fac-
tors and neglecting factors of order (Zp/v) and (ZT/v), a
cancellation of contributions is expected in Eq. (20). It may
be noted once again that the second Born approximation
does not give an internuclear contribution at high velocities
and forward angles (SpT~O and STp —vO).

B. Eikonal transformation of the electronic amplitude

The eikonal treatment of the internuclear contribution to
forward-angle capture transforms the transverse internuclear
motion in the wave picture to a form dependent on a quantity
analogous to the classical impact parameter [6]. Mathemati-
cally, it involves Bessel transforming the given electronic

amplitude A, (Ei) [Eqs. (16) and (17)], as a function of
transverse momentum transfer K~, to impact parameter
space b:

a, (b) =
~

dK~E3 Jo(b&~)A, (&3.),
30

(23)

multiplying a, (b) by the eikonal phase factor b '"PT, and
then transforming the result back to momentum-transfer
space

A, +„(K3 ) = dbb'+ "» J0(Kib)a, (b),
0

(24)

b ' "pr= 1 + 2i v PT lnb+ 0((vpT) ). (25)

where v&T is the previously defined internuclear Sommerfeld
parameter.

The notation A, +„denotes that the electronic and inter-
nuclear contributions are intertwined in one amplitude. This
manner of treatment of the internuclear contribution is appar-
ently radically different from that given by the sum of am-
plitudes A, +A„ in the Faddeev treatment Eq. (1). In general,
it appears that the two methods would not give similar am-
plitudes for all pertinent K~ values, but only so when
A„~)A, . However, at sufficiently high velocities one notes
that
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FIG. 1. Comparison of cross sections for charge transfer in 2.5-
MeV proton-hydrogen collisions calculated using the full Faddeev
amplitude, an eikonally transformed electronic Faddeev amplitude,
and the electronic Faddeev amplitude. The impact velocity is ten
times the characteristic velocity of the target electron.

FIG. 2. Comparison of cross sections for charge transfer in 7.12-
MeV proton-helium collisions calculated using the full Faddeev
amplitude, an eikonally transformed electronic Faddeev amplitude,
and the electronic Faddeev amplitude. The impact velocity is ten
times the characteristic velocity of the target electron.

Thus the eikonal treatment reduces to something akin to the
separable Faddeev result, provided the relevant b values are
not too small or large —a reasonable assumption for protons
on hydrogen or helium. Also, the approximate form on the
right hand side (neglecting second- and higher-order terms)
produces a convergent result because the complete integrand
is well behaved in both the small and large b limits.

Normalization of the double integration in Eqs. (23) and
(24) must be consistent with the definition of the amplitude
relative to its use in the differential cross section. This is
easily checked by setting v&T=0 and comparing the doubly
transformed amplitude with the untransformed amplitude, a
procedure which also provides a gauge of the accuracy of the
numerical quadratures. A further check on the errors deriving
from the imperfectly calculated amplitude, which is read in
at a tabulated set of values, is accomplished by performing
the double numerical quadrature with the analytic function

(c+K~) ~ [11].

to first order in vpT, vpT, vT, vT, vp, and vp, one obtains
from Eqs. (20), (22), and the corresponding one for STp the
asymptotic expression

2'vr(ZpZT)"' / 1 1 ~ (Zp~
A„=i 4 f„(Q) 2 ——ln vpr

U ZT/ k ZT/

v / Zp~ /ZT)
+ —1+2y 1 — ~+21n-

p/

v, / Z, ~ /Zp~
+ 1+2y 1 — +21n

ZT/
(26)

where

2ZpZr / Qf.'(Q) =
2

— (1 2i Vvpr) (27)—
(2pnU/

C. Leading-order expression for the internuclear amplitude

The asymptotic expression for the internuclear amplitude
is obtained by expanding in the ratios of the nuclear charges
(and their product) to the impact velocity. Noting that I'(-,'

+iv) =m' [I (1+2iv)/2 "I (1+iv)] and lnI'(1+iv)
= —i yv+ 2„,( —i v)"g(n)/n, one has I"(1+i v)I'(-,'

+ iv) =7r' 2 "(1—2iv) [12]. Using argI (1+iv)
= —yv+ X„OX, i[(—1)' '/2i+ 1][y/(n+ 1)] '+', one
finds I (1—iv)/I (1+iv) =e '"s t'+"i= 1+2i y Tvhe

quantity y=0.577 21 is Euler's constant. Thus, expanding
the factors multiplying the internuclear scattering amplitude

A„=i
2'mZ' v ( Z i /Z

4 f„(Q) 1+2y 1 — „+21n—
/

(2g)

Equation (26) is symmetric in the appearance of the nuclear
and asymptotic charges, including the first term in braces
since —in(Zp/ZT)=ln(Zr/Zp). It is noteworthy that the two
terms in Eq. (26) which vanish when ZP=ZP and Zr=Zz.
derive from Coulomb off-shell scattering.

For a symmetric collision where Z~=Zr—=Z, Eq. (26)
reduces to
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FIG. 3. Comparison of cross sections for charge transfer in 624-
keV proton-hydrogen collisions calculated using the full Faddeev
amplitude, an eikonally transformed electronic Faddeev amplitude,
and the electronic Faddeev amplitude. The impact velocity is five
times the characteristic velocity of the target electron.

FIG. 4. Comparison of cross sections for charge transfer in 1.78-
MeV proton-helium collisions calculated using the full Faddeev
amplitude, an eikonally transformed electronic Faddeev amplitude,
and the electronic Faddeev amplitude. The impact velocity is five
times the characteristic velocity of the target electron.

If, further, the case of Z"=Z (e.g. , protons on hydrogen) is
considered, Eq. (26) becomes

2'mZ' I' Z~
A„=i s f„(Q) 1+21n-

U lU/
(29)

These limiting forms are reached, however, only very slowly
as v ~~. In particular, Eq. (26) is not sufficiently accurate to
be used at the energies employed in the present work.

IV. RESULTS AND DISCUSSION

Differential cross sections have been calculated using the
second-order Faddeev approximation to the exact charge
transfer amplitude [i.e., the sum of A, in Eqs. (16) and (17)
and A„ in Eq. (20)] and the eikonally transformed electronic
amplitude [i.e., Eqs. (16) and (17) transformed according to
Eqs. (23) and (24)]. Incident projectile velocities have been
used which loosely represent the intermediate- and high-
velocity regimes. Specifically, velocities of five and ten times
the characteristic target orbital velocity are chosen. In the
calculations, the values assumed for the charges in the Som-
merfeld parameters are Zp= Zp = ZT= ZT = 1.0 for protons
on hydrogen and Zp = Zp = 1.0, ZT = 1.6875, and ZT = 1.0
for protons on helium. The cross sections calculated using
the Faddeev formalism exhibit a K (or J ) momentum
dependence in the region beyond 0.7 mrad, consistent with
the Coulomb scattering of the projectile off the target nucleus
and with Eq. (20).

The cross sections for 1s~1s charge transfer in proton-

hydrogen collisions at 2.5 MeV and in proton-helium colli-
sions at 7.12 MeV are presented in Figs. 1 and 2, respec-
tively. These impact energies, which may be taken as
representing the high-energy regime, correspond to velocities
of ten times the characteristic target orbital velocities. The
agreement between the Faddeev and eikonal cross sections is
good up to 0.3 mrad. For the hydrogen case, the eikonal
procedure washes out, substantially, the deep minimum in
the electronic cross section whereas the Faddeev curve fol-
lows the electronic one; this behavior is reversed in the he-
lium case. For both hydrogen and helium, the Faddeev result
is somewhat larger in the Thomas peak region. The most
surprising feature of Figs. 1 and 2 is that the Faddeev result
is larger by a roughly constant amount. This aspect of the
comparison is discussed below.

The cross sections for 1s—+1s charge transfer in proton-
hydrogen collisions at 0.624 MeV and in proton-helium col-
lisions at 1.78 MeV are presented in Figs. 3 and 4, respec-
tively. These intermediate impact energies correspond to
velocities of five times the characteristic target orbital veloci-
ties. Considering the relatively lower velocity, the Faddeev
and eikonal results agree rather well up to 0.3 mrad and
beyond 1.0 mrad. From 0.3 to 1.0 mrad, however, the differ-
ences are quite large and are likely due to the interference
between the first Born and second-order partial amplitudes.
The origin of the localized dip in the eikonally transformed
cross section, occurring at 0.75 mrad for protons on hydro-
gen and at 0.42 mrad for protons on helium, is unknown. A
very similar dip occurs in results of the continuum distorted-
wave theory (based on an entirely different theoretical frame-
work) for protons on helium at 293 keV [13]. Such a dip



3866 STEVEN ALSTON 52

10o

102

103

104

'tj
10-5

10-6

107

I I I

8&,b (mrad)

FIG. 5. Comparison of cross sections for charge transfer in 2.5-
MeV proton-hydrogen and 7.12 MeV proton-helium collisions cal-
culated using the full Faddeev amplitude scaled to the eikonally
transformed electronic Faddeev amplitude at large angles, and the
eikonally transformed amplitude.

seems to be a general feature of the eikonal procedure at
intermediate velocities.

Though the differences at intermediate velocities are not
unexpected, at higher velocities the differences at large
angles seen in Figs. 1 and 2 are very puzzling. One would
think that, of any angular and energy region, this is where
agreement should occur. The differences can be clarified if
the results are replotted with the Faddeev and eikonal results
normalized to one another at large angles (say, 2.5 mrad).
Figure 5 shows these results. This scaling affects only the
nuclear part of the Faddeev amplitude as the electronic part
is negligible there. The agreement of the scaled Faddeev and
eikonal cross sections is then generally good. Certainly, the

same total cross section would be obtained. The main re-
maining difference occurs where the electronic amplitude
has the deep local minimum and the eikonal procedure fills
this in. Also, there is still some difference in the Thomas
peak region. Beyond 1.4 mrad, the two cross sections are
identical in shape.

The ratio of the Faddeev results relative to the eikonal
results for both hydrogen and helium, to good accuracy, is
found to be 4. Thus a factor of 2 difference exists between
the two amplitudes (actually, their moduli). Since the Fad-
deev theory contains two channels of internuclear scattering,
represented by the two terms in Eq. (20), and the eikonal
transformation builds on a single electronic amplitude, it ap-
pears that this difference in theories is the origin of the factor
of 2 between the results at large angles.

In summary, it has been shown that the second-order Fad-
deev approximation to the transition operator for charge
transfer at forward angles gives a differential cross section
which varies considerably from the eikonally transformed
one. Since A, exhibits a K dependence at the larger
angles, so that its contribution can be neglected, it follows
that the total cross section factors into the product of elec-
tronic and nuclear parts. The eikonal transformation of an
electronic amplitude shows how the internuclear contribution
can be represented though a multiplicative phase factor but at
sufficiently high velocities a separation of the two can be
effected as Eq. (25) shows. Finally, it has been shown that a
multiple-scattering theory which includes two generalized
Thomas mechanisms gives a factor of 4 increase (amplitude
squared) in the internuclear contribution at large angles rela-
tive to the eikonal result.
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