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We have formulated the quantum rearrangement scattering of atom-diatomic molecules in phase
space from the viewpoint of the density operators within the framework of Torres-Vega's and
Frederick's phase space representation of quantum mechanics [J. Chem. Phys. 98, 3103 (1993);93, 8862
(1990)]. This formalism has a remarkable feature in that it naturally includes the on-the-energy-shell

coherences of the initial system that are important for depicting actual scattering experiments. We have

found that the full density operator describing the rearrangement scattering is closely related not only to
the usual reactive transition operator 1'&, but also to the function Fdefined in the paper which is nonlo-

cal in position vector and could re6ect some fine structures of the reactive scattering in strong interac-
tion region. The time-dependent reactive scattering in the quantum phase-space representation is also
discussed.

PACS number(s): 34.10.+x, 34.50.Lf, 34.90.+q, 03.65.Nk

I. INTRODUCTION II. METHODOLOGY

The phase space is a classical-mechanical concept that
cannot be utilized directly in quantum mechanics due to
the limitation of the uncertainty principle. However,
since the first quasiprobability function in phase space
was introduced by Wigner [1] to study quantum correc-
tions to classical statistical mechanics, the phase-space
representations of quantum mechanics have made consid-
erable progress [2—9] and found extensive uses in many
areas of physics and chemistry. Most earlier works on
phase-space treatments of scattering problems have con-
centrated mainly on using the Wigner distribution func-
tion and coherent-state representation [10—16]. Takatsu-
ka and Nakamura [6] proposed a new semiclassical
theory by introducing a new distribution function (called
dynamical characteristic function) to be propagated in
phase space to describe molecular collisions such as reac-
tive scattering. Their theory is, of course, applicable to
intramolecular processes including bound-state problems,
too. Just recently, we have formulated the inelastic
scattering of atom-diatomic molecule from the viewpoint
of wave functions in phase space [17] on the basis of the
quantum-mechanical representation in phase space
developed by Torres-Vega and Frederick [8], whose
theory shares many of the mathematical and physical
properties of the usual representation in coordinate or
momentum space and overcomes shortcomings of the
Wigner distribution function. Since the cross section is
always connected with probabilities, it would be reason-
able to formulate the cross section in terms of density
operators. In this paper we shall present the phase-space
treatment of reactive scattering from the viewpoint of
density operator in phase space within the framework of
the Torres-Vega and Frederick theory.

+(pp 2/i At)/t)r—tt) ]/2p

+ P„,(r~/2+isa/ap, )] (r,~~), (2)

respectively, where I =(P,p; R, r ) is a group of
phase-space variables in channel a. R is a mass-scaled
position vector of atom A relative to the center-of-mass
of molecular BC; r denotes a mass-scaled position vector
between atoms B and C; P and p are the momentum
vectors conjugate to the position vectors R and r, re-
spectively. I &=(P&,pt3,'Rt3, rt3) is a group of phase-space
variables in channel P. R& is a mass-scaled position vec-

For the sake of simplicity we only consider the rear-
rangement scattering of atom-diatomic molecules, i.e.,
A +BC~ AB +C under the Born-Oppenheimer approx-
imation. The other two arrangement channels ( AC+B)
and ( A +B +C) are assumed to be closed at the energies
considered. So this is simply a two-channel rearrange-
ment scattering. In the following discussion we are work-
ing in the mass-scaled and center-of-mass coordinate sys-
tem. As usual, the total Hamiltonian 8 of the system un-
der consideration can be split in terms of the entrance
channel a (initial system A +BC) into Ba+ P'~ or in
terms of the exit channel P (final system AB+C) into
8&+ P'&. The operators 8 and Pt3 can be expressed ac-
cording to Torres-Vega's and Frederick's theory as

(r.~A. ~e) = [[(P./2 —ilia/aR. )'

+(p /2 —iA'8/Br ) ]/2p

+t (r /2+itrta/c)p )](I ~%'),

( r~~g~~ e) = [[(P~/2 —tAB/BR~)'
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tor of atom C relative to the center-of-mass of molecule
AB; r& denotes a mass-scaled position vector between
atoms A and B; P& and p& are the momentum vectors
conjugate to the position vectors R& and r&, respectively.
p=[m„miimc/(m„+ms+me)]' represents the re-
duced mass of the system under consideration. le) is
any of the states of the system considered. The terms f'
and f ti are interaction potential operators in the initial
channel a and the final channel P, respectively. Thus, the
total potential operators f', of the system in phase space
can be expressed, either in terms of I or in terms of I &,

as

(r.l ~, lq') = {f'.(R./2+isa/BP. , r /2+i%a/ap )

+ t&„(r./2+isa/ap. ) j ( r. lq &,

(I til 0; le) = {f ti(R&/2+iABIBPti, re/2+i AB/Bpti)

+ OB(r't3/2+if&a/apt3) j ( I til%') . (4)

Eigenvectors { l P,m ) j of 8~ form an orthonor-
a

malized and complete set whose element lP, m ) be-
a

longing to the eigenenergy E =P /2p+ e is ex-
a a

pressed in the phase-space representation as [8,18]

e, (r.)=(r.lP, m )
a' a

=(P R lP &&p.,r.lm. &

= Up (P,R )g (p, r )
a

=(2~+A, M) 3~~exp{iR (P —P /2)/irij exp{ —(P —P ) /2A Ajg (p, r ) (& &0)

where Up (P,R ) represents an eigenfunction common
m a

to the momentum operator P =P /2 —ilia/BR and
kinetic-energy operator k~ =P /2p with eigenvalues
P and P /2p; A, is an arbitrary parameter [8,18];

a a

(p, r ) is a normalized rotation-vibration eigenfunc-
a

tion of molecule BC with quantum number m in chan-
nel n, which satisfies the stationary Schrodinger equation
in phase space,

{(2p) '(p /2 —iAB/ar )'+t sc(r /2+ilia/ap )j

and the property of the unit norm of exponential factors
e*'&q " to show that properties of the Hamiltonian,
especially the potential operator required by the station-
ary scattering theory in the coordinate or momentum
representation, which we shall employ without proofs in
the following developments, are valid in the phase-space
representation as well.

In the Schrodinger picture the time evolution of the
density operator for the system under consideration
satisfies

Xg (p, r )=e g (p, r ), (6) pg t ) e ILES0 ) e leaf Iiig 0 )e lPf Is (8)

where e is a bound-state rotation-vibration eigenenergy

of molecule BC in channel o;. It is important to note that
the eigenfunction g (p, r ), as indicated in Ref. [8],

a
would contain an arbitrary real parameter independent of
the quantum number m; that is to say, the solutions of
Eq. (6) are not unique. So far one has not yet found a
general rule for choosing this arbitrary parameter. As far
as the harmonic oscillator is concerned, for example, the
parameter might be chosen in such a way that the proba-
bility density made up of g (p, r ) in phase space is not

a
only a function of the classical Hamilton, but also a sta-
tionary solution to the classical Liouville equation [8].
Here we suppose for the moment that it is already
known.

Completely parallel results for the operator Std in
channel P are obtained as long as the channel label a in
the above presentations for the operator P is replaced
by the channel P. For any phase space (p, q) we may uti-
lize the relation [8]

e '~ q "( i%a/aq)e—'t'q "=p/2 ilia/aq, —
e' ~ "(i%a/ap)e ' ~=q/2+i A'a/ap,

if the system is governed by the full Hamiltonian 8, and

(9)

if the system is controlled by the a-channel Hamiltonian
or by the P-channel Hamiltonian 8&, where

L=A' [8, ]=L + V =Lp+ Vti, (10)

is the full Liouville superoperator corresponding to the
full Hamiltonian; L and V are the a-channel Liouville
and potential superoperators, respectively; L& and V& are
the corresponding P-channel operators. These super-
operators are all Hermitian due to the Hermiticity of the
Hamiltonian and the potential operators. p (t) stands for
the initial (a-channel) incoming density operator and
p&(t) for the final (P-channel) free density operator. In-
cidentally, a superoperator is an operator which trans-
forms an operator on Hilbert space to another new opera-
tor on Hilbert space [19]. p (t) and pic(t) are related to
the full density operator p(t) by [11,12]
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p(t)=Q'+'p (t),
p(t) =

QtI 'pti(t),

where Q'+' and 0& ' are referred to as the Me(lier su-
peroperator in channels cc and P, respectively, which exist
depending on the operator limits on Hilbert space

factors e*"may be viewed as adiabatic switchings which,
in terms of the intertwining relations, turn eigenoperators
of the free Liouville superoperators into those of the full
one with the same eigenvalues. Therefore when treating
the stationary scattering from the viewpoint of the densi-
ty operators, we must use them to carry Eq. (11) over to
alternate useful forms,

lisp t) —p.(t) II
— o

IIP(t) —p~(r) II, „o, (12)

saying that the freely evolving and fully interacting densi-
ty operators of trace class on Hilbert space coincide in
the remote past or in the far future. From the norm-
preserving property of e ' ' the limits above are
equivalent to the existence of the strong (trace) super-
operator limits

p„,=[I —i f dte"e' 'V e ]p
= II +(co L+iE—) 'V Jp

=Q'+ '(co+ i e )p

p, = [I&+if dte "e' 'Vpe e
J p&

= [I&+(co L —i—E) '
Vti Ipti

(16)

~
— —iL t — . 0 ~

—— —iL tQ'+'= hm e' 'e =I —i dt e' 'V ea a at~ —ao 00

(13)
~
— —iL t — . + oo .—— —iL t

Q = ljm eiLe ~ =I +j dg eiL y e P
+- 0 13

which we regard as the definitions of the Me(lier super-
operators. Note that the existence of these limits requires
potential superoperators, or equivalently, potential opera-
tors to satisfy certain conditions [20]. If the Mdller wave
operator Q in the standard scattering theory exists in the
strong operator limits, then for any operator of trace
class A on Hilbert space we have the alternatives to Q'+ '

and Q&
' [11,12],

n'.+'~ =n'+'w n'+",
n'-'w =n'-' "n'-" .

(14)
p

=
p A p

In addition, using von Neumann equations for the full
Liouville superoperator I. and the free ones L and L&,
whose formal solutions are Eqs. (8) and (9), respectively,
we are also led to the intertwining relations for the
Me(lier superoperators, namely

I.n'+'=n'+'La a a

Ln~ '=@~ 'L~ .
(15)

It is well known that in the stationary scattering theory
wave packets (i.e., square-integrable functions) must be
used so as to guarantee the convergence of the problems.
Here this is equivalent to requiring the density operators
p and p& to be of trace class on Hilbert space, otherwise
the limits in Eq. (12) do not exist. If p~ (or p&) is an
eigenoperator of the L (or L&), i.e., L~p =co~ (or
Lt3p&=co~&), the convergence difficulties are then inevit-
able, for p (or p&) is not of trace class in this case. One
way to circumvent this inconvenience, is, as Jauch [21]
did in the standard scattering theory, to insert a conver-
gence factor e" with c)0 into the integral definition of
Q'+' (or e "into that of QIt '). This defines another sort
of superoperators Q ~&~, whose strong (trace) superopera-
tor limits as c,~0 are again 0 ~&~. Although the
definition of Q ~&~, is now outside of Hilbert space, they
allow us to employ density operators of nontrace class
that get out of Hilbert space. Moreover, the convergence

(17)

0& '(co —is) has an analogous equation with e replaced
by —c. It is necessary to state that the superoperator
(co L+ic)—is no,w non-Hermitian and causes the full
density operator to be also non-Hermitian. Some
mathematical details concerning non-Hermitian opera-
tors resulted from the stationary scattering theory, and
its variational principles may be referred to Dolph and
Schwartz [22,23].

With these weapons we can attack the problems of
describing reactive scattering processes in the phase-
space representation in terms of density operators.
Without the loss of generality we start with the time-
dependent full density operator p(t), which is assumed
for the moment to be of trace class. Using the first equa-
tion in Eq. (9) and the complete set of eigenvectors
I I

P~,m ) ] for 8 the full density operator p( t) can be
decomposed in frequency into

ice

p(t)= g f fdP dP' e
ma, ma

X(P', , m' Ip (0)IP,m

XQ'+'IP', , m' )(P,m (18)

where co, =iit (E, E)=R '[e ——e +(Pm m a a—P )/2p] is the frequency associated with the energy
difference E, —E; summations extend all over the

bound states of the molecule BC and integrals are per-
formed over the whole momentum spaces. Obviously,
the operator IP' ~, m' )(P,m

I is an eigenoperator ofm a
the free Liou ville superoperator L with eigenvalue

and is not of trace class. In view of Eq. (16) we

=Op '(co is)p—tt „,
where 0'+'(co+is) [or 0& '(co iE)—] is called the fre-
quency co parametrized Me(lier superoperator, which
satisfies the Lippmann-Schwinger integral equation

Q'+'(co+iE)=I +(co L+is—) 'V 0'+'(co+is) .
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may obtain another useful form for Eq. (18),
t

p(t)= g f fdP dP', e
m, m

X &P', , m'
~p (0)~P,m &p(co, },

(19)

where

P~, )=n'+'(~, +is)~P', , m' &&P,m

tion describing clearly the reactive scattering, we must
express p(co, ) in terms of the P-channel Liouville su-m'm

peroperator I.I3 and interaction potential superoperator
Vp.

Following Lippmann [24], we can derive the desired
equation

p(co, )= [ie(co, L—tt+ l E )

+(co, L—it+i E)

=0'+'(co, +is)p~(co, ); XTf) (co, +is)]p (co, ), (21)

+(co, 2+i —)e'V~p~(co ~ ) . (20)

Although this formal expression for p(co, ) is of little

use, we can see from the second equality that all possible
outcomes of the scattering, inelastic and reactive, are
contained in p(co, ) because L is the full Liouville su-

m m

peroperator of the system considered. To have this equa-

p( co, ) with e dropped for short notation and

p~(co, ) are called the a-channel frequency com-
m m

ponents of the full density operator P(t) and the a-
channel incoming density operator p (t), respectively.
Using Eq. (17) further we can get the Li pmann-
Schwinger integral equation for p(co, ) and p (co )

immediately,

p(co )=p (co ~ )

where Ttt (co, +is)= Vt)Q' '(co, +is) is named

the frequency parametrized reactive transition super-
operator. This equation, which explicitly include features
of the P channel, is our starting point for treating reactive
scattering with density operators. It is clearly seen from
Eq. (19) that once the asymptotic behavior of P(co, }

at large distance R& in I & phase space is found out, then
that of p( t} follows immediately. In particular, if we wish
to depict a stationary scattering process, then the p (t)
becomes an eigenoperator of the I. and the frequency
decomposition of the p(t) [Eq. (18)] reduces automatically
to Eq. (16). As a result, Eq. (20) [or Eq. (21)) becomes
central to the stationary. In subsequent developments we
are preferably concerned with p(co, ).

m m

The diagonal matrix elements of Eq. (21) in the phase-
space basis vectors ~I t)& of the P channel are given ac-
cording to Torres-Vega's and Frederick's theory by

&I pip(~ ~ )II p&= a&I pl(~ ~
—Lt)+is) 'p.(~ ~ )II p&

+ & I pl(~ ~
—Lp+is) 'Tt). (~ ~ +iE)p.(~ ~ ) II t) & . (22)

Using the complete set of eigenvectors [ ~P„,nt) & I for the P-channel Hamiltonian 8t) to decompose the right-hand side

of Eq. (22) we get

&I t)lp(~ ~ )II t)&= g f fdP'„dP. &I t)IP'„,nt) &&P. , nt)ll t)&(~ —~„„+is}'

I
n», n»

X[iE&P'„n, ~p (~, )~P„,n, &+&P', , n, ~T, (~, +is)p (~, )~P„,n, &I,

where we have utilized the fact that 8t) ~P„,nt) & =E„~P„,nt3 & =(e„+P„ /2p)~P„, nt) & and for any operator 0,
n» n» n» » n» »

(23)

&P', , nt~( )c,oLtt+ie) 'O~P„, nt) &
=—(co, —co, +ic) '&P', , &~nO~P„, nt &)

a a

Moreover, the operator product T& p has the identity

T A) g —)
[ ie(f A)Q(+)t+Q(+) A) ft )+g ~gt Q(+)t Q(+)g Pope (24)

where f'& = P't)Q'+' and CI)+' are the usual reactive transition operator and P-channel Green's operator. Making use
of this identity and p (co, ) = ~P', , m '

& & P,m ~, we have that
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&P', , np~)Tp (co, +is)p (co, )~P„,np)
a a

&P', , np~f'p ~P', , m' )&P,m ~P„,np)

E —En —i c.

&P,m ~f'p ~P„,np&&P', , np~P', , m' )
+ E —E, +is

m np

&P', , np~f'p ~P', , m' )&P,m ))fp ~P„,np&

(E E„——ie)(E E,—+is)
a p m np

R(co —co, +i E }m ama n pnp
(25)

&P
~
f (+)tQ(+)t~P

where use has been xnade of the following results:

&P', np~f'p ~P', , m'
&

&
P' „np~)C p+'f'p. ~P', , m.' &

=
a I

m np

&P,m ~f'pt ~P„,np)

(E —E i e—)m np

(26}

&
P' „np~C,

")IP', , m.'& =

&P,m. ~Cp""~P„,np) =

&P', np~P', , m'
&

(E, E, +iE—)m' np

&P,m ~P„,np)

(E —E —ie)m np

Using Eq. (25) we can write Eq. (23) as a sutn of two parts P) and Pz with

&I p~P', , np)&P„, np~rp)
P, =iE g f fdP', dP„

I
np np m a np p

X r&P', , np~p (co ~ m )~P„,np)

&P', , np~f'p ~P', m' )&P,m ~P„,np)

E —E —is.m np

&P ~f'p
~ „P,n &p&

'P, , np~ 'P, , m')

+ E, —E, +is
m np

(27)

P2= g f fdP', dP„&rp~P', , np) &P„,np~l p)
np, np

&P' „np'[f'p. [P', , m'. ) &P, m~f",.(P„,np&

(E E„—ie)(E—, E, +iE)—m np m np

(28)

(29)

Clearly, the double integral in P2 is well separated with respect to integration variables P', and Pn, and can be evalu-
np p

ated analytically. %'e now show concisely the integration procedures of one of them below. Setting
P „=2@(e —e„)+P,we have then

a p ma np ma

&P,m ~f'pt ~P„,np)

np

&P,m ~f'p ~P„,np)
=2p fdP„&P„,np~rp& .

m np np
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To perform the integration we need the complete set of eigenfunctions for the position operator Qp =Rp/2+iAB/BPp
in the phase-space representation whose element is

I 18]

(Pp, RpIU, ) =U (Pp, Rp)

2m&m

' 3/2
A,p(Rp —Rp)

exp( —i Pp. ( Rp
—Rp/2 ) /A) exp (Ap) 0), (30)

with Rp denoting an eigenvalue, and its inner product with eigenvectors [IP„)] for the momentum operator
p

Pp
=Pp/2 i AB—/BRp,

(P„ I U, ) =( U, IP„) =(2M) exp( iP—„.Rp/A') .
p Rp Rp p np

Insertion of the unit operator I, = f I
U, )d Rp( U,

I
into I~ twice gives rise to

p p p 2

(31)

Ip =2pfd ,P„ f f d Rpd Rp
&P. , m. If",.IU„„,n, &

& U „npIrp&(U„„IP„&&P„ IU„, &

P —P —is.m~np np

f fdRpdRp( U, , npII p)(P, m If'p I UR„,np) fdP„
exp( i P—„(Rp—Rp )/A)

(32)

where we have used Eq. (31). Taking into account the integral

fdP„
exp( iP„—(Rp —Rp ) /A)

P —P —is.m np np

2

exp( iP „ I

—Rp —Rp I /A),R' —R"
p p

a p
(33)

Iz becomes
2

4 exp( —iP „ I Rp —Rp I /A)
Ip =

3 f fdRpdRp( U, , npII p)(P, m If'p IU „,np)
p p

exp( iP „ I

R—
p Rp I

/A)—' "",f fdRpdRp&U . ,nplrp&;' „ fdP„(P,m If'p IP„,np)(P„ IU „,np)
p p

= —4n. Ap fdP„(P,m If'p IP„,np)F(I p, P „;A~)*, (34)

where use has been made of the fact that Ip =f IP„)dP„(P„ I, and «denotes complex conjugate. The function F
np "p "p np

in I~ is defined as
2

F(I p,'P „;Ap)=
'3/4

g
exp( i (Pp. R—p/2A) )

(2M)

d Spd Spexp( (A pS p/2A) )—
X f f exp(iI'Pp. Sp+P„.Sp+P „ IRp —(S p+S)p]IA/' ].

Rp —(Sp+ Sp)
(35)

Another integral in P2 can be computed in exactly the same way as the above. So the final expression for P2 is

P2=( 4m Ap) g f f—dP', dP„(P,m If'p IP„,np)
I

np, np

X(P', , npIf'p IP', , m' )F(I p,P, , ;Ap)F(l p, P „;Ap)' . (36)

In connection with P& we may adopt similar integration procedures to P2 to carry it out. The result is simply
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P, = 4—m fipiE g f fdP', dP„'A'(P', , nplp (co, )lP„,np)F(l p,'P, , ;Ap)
I

np, n&

(P', , nplP', , m'
&

E, —E, +is
m n&

(P,m lP„,np)

E —E —iEm n&

, m. leap'. IP, np)F(I p,'P, , ;A,p)*

x (P', , n pl f'p lP', , m' &F(rp,P, , ;Ap) (37)

with P, , = 2p(E, +E E, ——e„) and P, , = 2p(E„+E, E ——e, ). It may be shown
n&m m' np n& ma m np n&m m n& p m ~ np

that as long as the P-channel interaction potential in the configuration space V(R, rp) fulfills the condition
limz V(Rprp)~O(R p ) (E)0), then the asymptotic behavior of ( I pip(co, ) lI p at large distance R p in I pa a
phase space is asymptotically dependent upon that of the function F defined in Eq. (35) [25]. For a given vector Sp+Sp
we are led to

Rp —+ oo

1

lRp —(Sp+ Sp) l
R p

(3g)
Rp —moo Sp+ Sp

lRp —(Sp+Sp)l ~ Rp Rp (Sp+—Sp)+0
Rp

where Rp is the unit vector along Rp. Substituting these results into Eq. (35), the asymptotic behavior of the function F
is then obtained

Rp~ oo

F(l p, P „;Ap) 5(P„P„Rp)(—I plP „Rp,np)/Rp,

where we have employed the integral

f hiR (Pi —P2)/s ia2/2g ~ g 3/2 ( )
—P2) /2XR

dRe

(39)

After working out all the asymptotic behavior of I in P, and P2 we can arrive at the asymptotic behavior of
( I pip(co, )l I p) at large distance R p in I p phase space

(rplp(co, )lI p)= lim (P +P )
m m

= —~ ~p X ie fdp. &p„~ „Rp,nplp (co, )Ip„,np&(r pip, , Rp, np&
I

n&, n&

(P', , nplP', , m' )
+ fdP',

x (P,m
l
f'p lP, , R,,n, &(P, , k, ,n plr, &

(P,m lP„,np)—fdP„. (P, , Rp, npl1'p lP', , m' )
m n&

x(rplP, , kp, np& R p 4m tip ( I'pl P, , Rp, n p )—

x(P „Rp,npll p)(P, m lf'p lP „Rp,np)

X (P. . .n p l
f'p

l

P', , m ' ) /R p
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It can be demonstrated that the integrals involved in Eq. (40) are convergent owing to the locality and analyticity of
the integrands, and hence, when s goes to zero, the asymptotic behavior of ( I pip(co, )II p) becomesm, m

gp~ oo

&rplP~, )Ir, & ( —4~'ri )' g &r,lP, , kp, n,'&&P „k,, n, lr, &&I,m.

leap.

lP „k,,n, &

I
np, np

X (P, , Rp, nplf'p IP', , m' )/R p . (41)

If we expect that the present formulation includes both the reactive and inelastic scattering, then taking into account
the orthonormality of I IP„,np) I as a=P, we can get from Eq. (40) a universal expression appropriate for these two"p
processes,

gp~ oo

( rpl p(a), ) Irp& ~ 4m'A—p

.R., n. lr. &&P,m l~ IP, R, n )
8

+&P .„R,n lf' IP, , m' )(I IP „R,n )]/R.
a a

—4~ &p g ( P~ „kp,n p I rp ) & I'pl P „,k p, n p &
I

npnp

p IP', m')
a p a

X(P,m If'p IP „Rp,np)/Rp ' . (42)

III. REACTIVE CROSS SECTION

We first discuss the stationary reactive scattering. The energy conservation of the system considered yields the condi-
tion co, =A '(E, E)=0 under—which we can easily compute the particle flux of the rearrangement scattering

m m m a

from a channel to P channel at large distance R p in I p phase space. It is apparent that we only need to consider zero-
frequency component contributions in the stationary case. As indicated in the preceding section, the density operators
p, p., and pp are eigenoperators of the Liouville superoperators L, L. and Lp under the circumstances, respectively.
Using the completeness of rotation-vibration eigenvectors of molecule AB and Eq. (41), the rearranged flux J with
co, =0 at large distance R& in I & phase space reads

m m

PpJ"(Rp)= f fdppdrpf dPp &rplp(0)lrp&

gp —+ oo

g J"(P „Rp,np~P', ,m';P, m;Rp)
np

= y kp2~&P „(Rp'e)-'&P „R,, n, l &p. iP', , m.' & & P
Pf

(43)

where we have employed P, =P „due to the energy
m 7fp a p

conservation E, =E
m a

If the initial system was in a pure state with m' =m
long before scattering, then the rearranged Aux in this
case becomes

J"(Rp) =g J"(P „Rp,n p~P, m; Rp)
1fp

=Q Rp2npP „(Rpfi)
n

Pf dP (P,R IP )(P IP, R )

P

p(2mb)
(45)

I

Note that the initial incoming Aux J'" in the a chan-
a a

nel is calculated according to

gin —
I

Jin
mama mama

X I & P „kp, npl Pp. I p, m. ) I' . (44) Therefore the state-to-state differential reactive cross sec-
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tion in usual reactive scattering theory is readily obtained
m m m m

o(I' „Rp np~P, m )
a P a

P= fdP.
lim R&R& J"(P „Rtt,n&~P, m;Rtt)/J'"

—+ oo
P

a P a a a

P
~f (P „kp,np~P, m )~',

P (46)

with f = 4~ Ap—(P „k&,n&~f'& ~P, m ), which is

identical to the standard definition of the scattering am-
plitude for the rearranged scattering.

If the initial system was prepared in coherence states
with m' Wm long before scattering, the incoming flux is
then

/P, +P.
/

exp( —[(P, —P ) /4A, fi]) .
2p(2vrR) m m

(47)

It is seen that momentum vector coherence effects in
different energy states of the initial system could affect
greatly the initial Aux contributions. This is also reflected
in the rearranged flux J"(R&) [Eq. (43)]. We refer to this
kind of coherence effects as the on-the-energy-shell
coherences. With the aid of Eq. (24) and the Baranger's
notation [26] for superoperator matrix elements
together with Eq. (47) we can convert Eq. (43) to a useful
form,

o(Rtt, n&, R&, ntt'+ P', , m— ';P, m )= lim R&Rtt J"(P „R~,n~+ P', ,—m';P, m. ;R~)/J'",
a

P
a P m, m

n n n Rp& p&Pn Rp~op iTpa ' &~ a& m &~a

(48)

o(R&,k~ P', ,m';P, m )

=g rr(R&, ntt', R&,n&~P', ,m';P, m ) .
n&

(49)

The importance of the state-to-state generalized
differential reactive cross section or generalized
differential reactive cross section is that they reveal ex-
plicitly influences of internal state coherences ~m

' ) ( m
and momentum vector coherences ~P, ) ( P

~

of the in-
m a

which we cali the state-to-state generalized differential
reactive cross section. If summed over all the final states
of molecule AB, it is then converted to the generalized
differential reactive cross section

itial system on reactive scattering processes. This is use-
ful for describing actual scattering experiments since, in
some cases, it would be difficult to prepare experimentally
a uniform incoming beam of particles.

With regard to the time-dependent reactive scattering
density operators of the system are in general of trace
class and the frequency components m, are accord-

m ama

ingly, not equal to zero, and thus the initial system (a
channel) involves both the on-the-energy-shell and off-
the-energy-shell coherences. In practice, however, zero-
frequency components play a crucial role in the time-
dependent case. We show this statement by defining the
time-dependent rearranged Aux at a given position Rp for
a given time t in I p phase space as

J"(R&,t)= f fdppr&f dP& (I &~p(t)~r&)

m, m
f fdpgr&f fdP, dP e

Pp&P', , m' (p (0)(P,m ) fdPp &rp(p(co, )(r~) . (50)

In the whole course of the scattering a fraction of rearranged particles detected in a given unit solid angle along the
direction Rp is defined as an integral over all time contribution of the rearranged spherical Aux
J"(R&,t)=lim~ R&k& J"(R&,t) acco.rding to

P

¹'(k&)=f dtJ"(R&, t)

litn R&k&. g f fdpPr&f fdP, dP 2n5(co, )&P', , m'
~p (0)~P,m )

m, m

Pp
xdptt (r&le~ ~ )Ir~) .



52 EXACT TREATMENT OF REACTIVE SCATTERING IN THE. . . 3789

Clearly, the integration over time only contributes a 5
function with argument co, . Thus we can come to the

conclusion that it is sufficient to consider the zero-
frequency components for treating the time-dependent
reactive scattering.

IV. CONCLUSION

We have thus far rigorously formulated the quantum
rearrangement scattering of atom-diatomic molecules in
phase space from the viewpoint of the density operators
within the framework of Torre-Vega's and Frederick' s
phase-space representation of quantum mechanics. As a
special case we have inferred the results identical to the
standard scattering theory. This formalism has a re-
markable feature in that it naturally includes the on-the-
energy-shell coherences of the initial system that are im-
portant for depicting actual scattering experiments since,
in some cases, it would be difficult to prepare experimen-
tally a uniform incoming beam of particles. Unlike other
phase-space formulations for the reactive scattering
[10—13,27 —29], the present formalism does not require
Weyl correspondence rule for operators and various dis-
tributions in phase space. It has been proven that the
Wigner distribution function is not well behaved [2] and
could lead to incorrect results in some regions of the

phase space. Nevertheless, the density operators or den-
sity matrices utilized in the paper, as we know, are every-
where positive in phase space. Actually, the frequency-
spectral decompositions made for the density operator
p(t) in the paper cannot ensure the hermiticity of p(t),
and thus the derived particle current cruxes are in general
complex. But this does not affect our developments and
conclusions. In order to give real particle cruxes, one
should add to Eq. (18) the conjugate parts of the
frequency-spectral decompositions for p(t). Further-
more, we can see from Eqs. (36) and (37) that the diago-
nal elements for the full density operator with frequency
co, is related not only to the usual reactive transitionm'm

operator 1'&, but also to the function F defined in Eq.
(35), which is nonlocal in position vector and could reflect
some fine structures of the reactive scattering in strong
interaction regions. So it would be possible to use this
formulation to explore transition-state behaviors of the
reactive scattering that underlie statistical theories of
chemical reactions. Generally speaking, the phase-space
description of a quantum event could provide a way to
make the classical and semiclassical approximations to
this event and a correspondence between quantum and
classical events. In subsequent work we shall go over to
numerical researches on this formulation so as to more
profoundly understand the reactive scattering.
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