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Time-dependent approach to electron scattering and ionization in the s-wave model
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The time-dependent Schrodinger equation is integrated for continuum states of two-electron atoms in the

framework of the s-wave model, in which both electrons are restricted to having vanishing individual orbital

angular momenta. The method is suitable for studying the time evolution of correlations in the two-electron
wave functions and yields probabilities for elastic and inelastic electron scattering and for electron-impact
ionization. The spin-averaged probabilities for electron-impact ionization of hydrogen in the s-wave model

reproduce the shape of the experimentally observed integrated ionization cross section remarkably well for
energies near and above the maximum.

PACS number(s): 34.80.Dp

I. INTRODUCTION

The correlated motion of two electrons in the Coulomb
field of an atomic nucleus constitutes one of the most inter-
esting and fundamental problems of atomic physics. There
has been considerable progress in the last few years, e.g. , in
measuring doubly excited states of the helium atom with
both principal quantum numbers near or above 7 [1—3], and
in reproducing the experimental cross section for electron-
impact ionization of hydrogen on the basis of an ab initio
calculation [4]. Many aspects of two-electron atoms are,
however, still far from being fully understood, e.g. , the role
of the largely (but not completely) chaotic classical dynamics
of the three-body Coulomb problem [5] and the asymptotic
structure of the wave function describing two electrons in the
continuum [6].

Considerable attention has recently been given to one-
dimensional models of two-electron atoms, defined by two
spatial coordinates, r& and r2 „corresponding to the distances
of the two electrons from the nucleus [7—16].A semiclassical
understanding of bound and resonant states of real helium
has been achieved by Richter and Wintgen on the basis of the
collinear model, in which both electrons are restricted to be
on opposite sides of the nucleus, corresponding to maximal
angular correlations between the two electrons [7,8]. A fur-
ther approximation to the collinear model has been studied
by Grobe and co-workers [10,11], who regularized the sin-
gularities of Coulomb potentials at the origin. The present
authors have studied in some detail the s-wave model, which
is complementary to the collinear model in that both elec-
trons are restricted to spherical states and all angular corre-
lations are eliminated [9,12—14]. The classical dynamics of
this model are described in [9,12,13]. Below the breakup
threshold the classical dynamics of the s-wave model are
remarkably similar to the classical dynamics of the collinear
model, in which angular correlations between the two elec-
trons are maximal [9]. A comprehensive account of the
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quantum-mechanical bound and resonant states of s-wave
helium (Z=2) for energies below the breakup threshold is
given in [14].The bound 1 sns states of real helium are de-
scribed well in this model. The s-wave model is not so real-
istic near the breakup threshold, where angular correlations
are important and the collinear model is more appropriate
[15,16].The threshold region in the s-wave model is of some
theoretical interest, because the ionization process is classi-
cally forbidden for a finite range of positive energies [12],
and the relation between the quantum-mechanical evolution
and the classical dynamics is not yet understood in this re-
gion.

This paper is devoted to a quantum-mechanical study of
continuum states in the s-wave model, and the method we
use is the direct integration of the time-dependent Schro-
dinger equation. This makes it possible to study electron-
impact ionization involving two escaping continuum elec-
trons, without having to specify the boundary conditions of
the wave function in coordinate space. We give a brief out-
line of the s-wave model in Sec. II. In Sec. III we describe
the time-dependent integration method and illustrate its use-
fulness for studying the decay of autoionizing states and the
evolution of two-particle correlations in the two-electron
wave function. In Sec. IV we present probabilities for elastic
and inelastic electron scattering by hydrogen as well as for
ionization, and we compare them with results from related
work. The spin-averaged probabilities for electron-impact
ionization of hydrogen reproduce the shape of the experi-
mentally observed cross section [17]remarkably well, better
in fact than all previous calculations, except for the essen-
tially exact ab initio calculation of Bray and Stelbovics [4].

II. S-WAVE MODEL FOR TWO-ELECTRON ATOMS

Assuming infinite nuclear mass, the Hamiltonian of a
two-electron atom is (in atomic units)

1 "2 l
2 Z Z 1

H= ——V', ——V', +
lrl —r2I

In the subspace defined by individual angular momentum
zero of both electrons, the interaction potential
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contributes only the first term in the sum, and the Hamil-
tonian of the s-wave model is

1 8 1 8
H, = ——

2
—

2 2+ V(rl, r2),2 jr1 2 gr2
(3)

with the total potential

V(r, , r2) = Z Z 1
+

r1 r2 r~ (4)

1
(rl ~72 it) [%(rl ~r2 ~t)+W(r2 ~rl ~t)]~ (5)

2

1

2

r~ denotes the larger of the two radii r1 and r2. As long as
r1& r2 or r1( r2 the electrons move independently, the inner
electron is affected by the naked nuclear charge Z and the
outer electron is affected by a screened charge Z —1. The
Schrodinger equation of the s-wave model is separable in
these regions, but coupling is introduced by the requirement
of continuous matching at the boundary r1= r2.

The s-wave model is a one-dimensional model with two
degrees of freedom, viz. , the radial coordinates r1 and r2 of
the two electrons. The assumption of spherical states elimi-
nates all angular correlations between the two electrons. The
s-wave model is thus complementary to the collinear model
I8], in which both electrons are on opposite sides of the
nucleus with maximal angular correlations, and where the
interaction potential of the two electrons is 1/(r, + r2), in-
stead of llr~ as in (4). The regularized modification of the
collinear model as studied by Grobe and co-workers

I
10,11]

is obtained replacing 1/r by 1/$1+ r in the various potential
terms.

Relativistic effects are not included in (3), but we distin-
guish singlet (S= 0) and triplet (S= 1) coupling of the two-
electron spins by requiring the spatial wave function
'P(rl, r2', t) to be symmetric or antisymmetric, respectively,

P„=Is, I' (7)

The probability for ionizing to a final state with both elec-
trons in the continuum (integrated over the distribution of the
available energy among the two electrons) is also a dimen-
sionless quantity, P&, 2,), and the conservation of probability
requires

X IS),.l'+P(e, 2e)=1
n=1

(8)

The potential (4) has been used by several authors as a
model potential in the Hamiltonian for two electrons in
three-dimensional space I

18—22]. The Hamiltonian with this
potential conserves not only total (orbital) angular momen-
tum, but also the individual angular momenta of both elec-
trons. If we assume an initial state with one electron bound
in the 1s hydrogen ground state and total orbital angular
momentum zero, then all orbital angular momenta are zero
and remain zero. In the three-dimensional picture, the same
S-matrix elements as occur in Eqs. (7), (8) define the elastic,
inelastic, and ionization cross sections which are isotropic
and have the dimensions of areas. The S-matrix elements are
related to the (angle-independent) scattering amplitudes f, „
by

2i Jkk+, „=S,„—6',

The integrated elastic (n = 1) and inelastic (n ~ 1) scattering
cross sections are then given by

~.=4~ k" Ifi,.l'= k2ISi,.—~i,.l'.

where o.
&, 2,) is the cross section for ionization, integrated

over the distribution of available energy among the two es-
caping electrons. With (10) Eq. (11) reduces to

and the conservation of particle number is expressed via the
optical theorem,

lk /

lm(fl, i)= Re(1 —Sl,l)= 4 g o„+o(,2, )
',

4'lr ( n=l
(»)

Unless explicitly stated otherwise, we shall always assume
that the wave functions are symmetrized or antisymmetrized
as in (5), (6), and equations which do not refer to S=0 or
S= 1 apply to both cases.

In a typical scattering situation one electron approaches
with an impact energy E;„=k t2 while the other electron is
initially in a bound state of the nuclear Coulomb potential,
characterized by its principal quantum number n; (which we
assume to be one). We are studying electron scattering by
hydrogen, so Z= 1. The probabilities for scattering to a final
state, in which one electron is in the bound state with quan-
tum number n, are described by the S-matrix element S1„.
Since the whole model is one dimensional, the usual cross
sections for elastic and inelastic scattering are replaced by
dimensionless probabilities, which are related to the S matrix
by

(12)

which agrees with (8) when we equate

7T

~(e,2e) k2 (e,2e) ' (13)

Except for the elastic scattering cross section, the cross
sections of the three-dimensional model based on the poten-
tial (4) (and total angular momentum zero) are merely the
dimensionless probabilities of the one-dimensional s-wave
model multiplied by the area erik, which is inversely pro-
portional to the impact energy of the incoming projectile
electron. This simply expresses the decrease of the weight of
the component with total angular momentum zero in the in-
coming wave as the projectile energy increases. The elastic
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scattering cross section in the three-dimensional picture also
contains the interference of the scattered wave and the in-

coming wave, an effect which is absent in the one-
dimensional model.

(a)
t=o

III. SOLVING THE TIME-DEPENDENT SCHRODINGER
EQUATION

The difficulties associated with formulating the correct
asymptotic boundary conditions [6] for the eigenstates of the
three-particle Coulomb Hamiltonian (3) can be circumvented
by solving the time-dependent Schrodinger equation

8
i—'P(rt, r2, t) =H, %'(rt tr2;t),

t
(14)

I

20
r& (a.u}

30 40

starting from an initial wave function at time t=o. The wave
function must vanish along the coordinate axes,

5"(r&=O,r2, r) =9'(rt fr~=0;r) =0 at all times t
(15)

On the diagonal r&=r2 the antisymmetric wave functions
vanish and the symmetric wave functions have vanishing
derivative perpendicular to the diagonal. We found it practi-
cable to propagate the unsymmetrized wave function and
extract the singlet and triplet components by symmetrizing
or antisymmetrizing a posteriori; this is permissible, because
the Schrodinger equation (14) conserves exchange symme-
try.

In order to time iterate the wave function we use an im-
plicit operator splitting scheme combined with finite element
representations (FER) of the operators in coordinate space,
as first introduced by Bottcher [23]. Introducing the split
Hamiltonians

1 8 1
H = —— + —V(rt tr2) (j=1,2),2 gy;. 2 (16)

the implicit equation

l i
1+ H, hr 1+ H—, hr 0"(r+Ar)—

2 2 2 /

i )l i
1 — H, d t ~ 1 — H—, ht 4'(1)—

2 I 2 '
/

has to be solved in coordinate space. The split-operator
method corresponds to propagation of the wave function
along one of the coordinates over one half time step At,
while the second coordinate is kept constant. In the second
half of each time step the roles of the coordinates are inter-
changed. Instead of discretizing the operators on a one-
dimensional equally spaced lattice we expand the wave func-
tion in linear B splines, thus taking the singularity of the
potential at r, =o properly into account. A detailed descrip-
tion of the method is given in [23—25].

Grobe and co-workers solved the time-dependent Schro-
dinger equation for their one-dimensional model of two-
electron atoms using the method of fast Fourier transforms
(FFT) and an equally spaced discrete grid supporting the
wave functions [10,11]. However, their model works with

»

I
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FIG. 1. Contour plot of the density ~'P(r, , rz)
~

of the initially
bound (closed-channel) part of the wave function for the 3s3s sin-

glet state of s-wave helium (Z= 2) [14] at time t= 0 (a) and of the
state into which the wave function has evolved after t = 100 a.u. (b).

regularized Coulomb interactions, and we believe that the
FER method is superior for potentials with singularities. The
time required by the FER method compares well with that of
the FFT method, which scales as N /lnN per time step,
where % is the number of lattice points along one axis [26].
In the FER method the operators reduce to tridiagonal ma-
trices. The solution of a linear equation involving a tridiago-
nal matrix scales as N, and N such calculations with one of
the coordinates fixed have to be performed during one time
step, thus making the total effort per time step proportional
toN.

One test of the efficacy of this time-dependent method is
to calculate the decay of an autoionizing doubly excited
state. Energies and widths of doubly excited states of s-wave
helium (Z=2) have recently been calculated by Draeger
et al. [14] by solving the time-independent Schrodinger
equation. Near the energy of an autoionizing resonance the
wave function contains localized (closed-channel) and scat-
tering (open-channel) components, and the resonance widths
can, e.g. , be derived from the asymptotic phase shifts of the
scattering components or, as long as they are sufficiently
small, perturbatively using the golden rule. Figure 1(a)
shows a density plot of the closed-channel part of the 3s3s-
( So) resonance of s-wave helium from Ref. [14]. The
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FIG. 2. The solid line shows the time dependence of the popu-
lation (18) of the 3s3s state of s-wave helium (Z= 2). The dashed
line shows the exponential decay P =exp( —I' t) with the width
I =0.001 167 a.u. as derived via the golden rule in [14].

N=n=3 double excitation is well recognizable by its nodal
pattern in the one-particle coordinates r& and r2.

The time evolution of the autoionizing resonance was
studied by iterating according to the procedure described
above, starting from the closed-channel component of the
resonant wave function as initial state 'P;(r i, r2)
='I(rt, , r zt=O). The two-electron wave function was iter-
ated on a grid with spacing 0.1 a.u. for 0~ r ~5.0 a.u. , spac-
ing 0.2 a.u. for 5.0- r ~ 15.0 a.u. , and a spacing of 0.5 a.u.
for r, )15.0 a.u. (j=1,2). We chose the time step to be
At=0. 1. Figure 1(b) shows the state into which the initial
wave function of Fig. 1(a) has evolved after a time span of
t= 100 a.u. Part of the wave function has spread out along
the axes as one electron is ionized while the other electron is
left behind in the N= 1 or 2 bound state of the He+ ion.

The decay of the population of the autoionizing state is
given by the square of the autocorrelation function [11]

P(t)=l(+ (ri V2)l+(ri'2 t)).. .,I' (18)

q)i(r) =2r e (19)

and the projectile electron is represented by a Gaussian wave
packet centered at a position s sufficiently far from the target
electron,

1
P( ~ v2r'i, tt=0) = 2)it4exp[ —ikor, ]

In Fig. 2 we compare the time evolution P(t) calculated via
Eq. (18) with the exponential behavior, P(t)-exp( —I t),
corresponding to the decay width I"= 1.167X 10 a.u. as
derived via the golden rule in [14].Fitting an exponential to
the time-dependent population P(t) yields the width
I = 1.123X 10 a.u. , which agrees to within less than 4%
with the value of Ref. [14].

For an electron colliding with a hydrogen atom (Z= 1),
the target electron is initially described by the radial wave
function y, (r) of the Is hydrogen bound state,

The wave packet has an average momentum kp of the pro-
jectile electron and a spread b in coordinate space, corre-
sponding to a spread 5k= I/(2b) in the momentum and a
kp-dependent spread in energy,

DE= kpkk=
kp

2b' (21)

f
p(r, , r,', ;t) —= dr, +*(r, , r2;t)W(r, , r, ;t), (22)

which contains all the information about the subsystem con-
sisting of one of the electrons (here the electron with coor-
dinate r2). For a simple uncorrelated product wave function
'Iv= i/i, (r, )$2(r2), the integration over r, in (22) yields
unity (for normalized i/t, ) and p is simply the density matrix
for the pure state described by the one-electron wave func-
tion $2(r2), and it obeys [p] = p. Any deviation from a
simple uncorrelated product leads to a violation of this equa-
tion, because p then describes a mixed state. The relevant
information is contained in the difference K(r2, r2, t) of the
reduced density operator and its square,

f
K(r2, r& ', t) =p(r2, r2, t) — p(r—2, r2, t)p(r2, r2 ', t) dr2,

(23)

The typical behavior of the time-iterated wave function is
shown in Fig. 3 for an incident wave packet with average
momentum kp=2 a.u. centered at s=10 a.u. with a width
b = 2.5 a.u. in coordinate space. The iteration was performed
with a time step At=0 05 .Fig.ures 3(a) and 3(b) show the
two-electron densities l'Iv(r, , r2, t)l at different times for
the symmetrized (singlet) and antisymmetrized (triplet) case,
respectively. The density reaches its maximum of compres-
sion in coordinate space at a time of about t = 5. At t = 15,
different zones of the two-electron density can be distin-
guished: Most of the density is contained in outgoing wave
packets along the coordinate axes, but, for S=O, a certain
fraction is concentrated in a broad wave packet around
r& = r2 which travels along rays emanating from the origin. A
similar behavior of the wave function at large times was
observed by Bottcher [23] in a time-dependent calculation
for the collinear model. Bottcher assigned the wave packets
along the axes to elastic and inelastic scattering and inter-
preted the broad packet along r

&

= r2 as the result of double
escape. A direct evaluation of the probability for double es-
cape from such a wave function in coordinate space is, how-
ever, problematic, because components from highly excited
Rydberg states of the target extend to large distances in co-
ordinate space. In the present paper we calculate the compo-
nent of the wave function corresponding to double escape by
projecting out the bound-bound and bound-continuum
parts —see Sec. IV.

It is interesting to study the time evolution of electron-
electron correlations. These can conveniently be described
with the help of the reduced density operator

X exp—(ri s)
4b y, (r2). (20)

and the trace of K(r2, r2, t) defines a convenient quantitative
measure of correlation
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FIG. 3. (a) Time evolution of the density ~%'(r,t, r2, t)
~

for an initial state (20) describing an incoming electron with average momentum
ko = 2 in a Gaussian wave packet of width b = 2.5 in coordinate space approaching a hydrogen atom (Z= I ) in its ground state (singlet case).
(b) Same as (a) but for the triplet case.

f
@'(t)—=

J
dr2+(r2 r2 t) I dr2dr2IP(r2 r2. t)l'.

(24)

W(t) is zero for a completely uncorrelated (pure) state of the
two-electron system and can assume a maximal value of
unity. The correlation measure 5' does not depend on the
representation used to express the two-electron wave func-
tion. Symmetrization (5) or antisymmetrization (6) of an un-
correlated product wave function, in order to satisfy the re-
quirements of the Pauli principle, yields a value —, for
8'(t). Thus any departure of 5'(t) from —,

' for a properly
symmetrized or antisymmetrized two-particle wave function
indicates correlations beyond the fundamental requirements
of the Pauli principle.

Figure 4 shows the evolution of the correlation measure
K(t) for incident wave packets (20) with a width b=2.5
starting at s = 15 for various average momenta ko of the in-
cident electron. The iteration was performed with time steps
given by At=0. 1/ko. The abscissa in Fig. 4 shows the
scaled time kot, so a free particle starting with the center of
the wave packet reaches the origin at kot= 15. The correla-
tion of the wave function increases during the reaction and
saturates at a constant value. A similar behavior of correla-
tions has recently been observed by Grobe, Rzyzewski, and
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2=1.1
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I

25
k,t (a.u. )
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FIG. 4. Time dependence of the correlation measure (24) for
various asymptotic average momenta ko of the incoming electron.

Eberly [27] in the regularized collinear model. In Fig. 4 we
see that correlation effects are much stronger in the singlet
states than in the triplet states, where the effect of the
electron-electron interaction is suppressed, because the wave
function vanishes on the diagonal rj =r2. Comparing the
three values of ko shows that the correlation measure in the
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singlet states rises to quite a high value near threshold and at

ko =4, whereas the increase is slower and to a smaller value2

at the higher energy, k0=10. Note that k0=4 is near the
maximum of the probability for double escape, see Sec.
IV C.

IV. SCATTERING AND IONIZATION PROBABILITIES

As the normalized wave function 9"(ri trz, t) evolves
from (20), the time-dependent probability p„(t) for finding
one electron in the hydrogenic bound state y„and the other
electron in a continuum state is given by

P (t) 2 dri I(+(ri, rz, t)
I V .( rz) ),,I'

(25)

p(. ,z.)(t) =1 —g p„(t)
n=1

I&+(ri.rz. t) I v.(rz) 'P '(r 1)).. ,.,I'
n, n'=1

(26)

The time-independent probabilities,

~(e,ze) 1™P(e,2e) ( t)
)~00

(27)

The subscripts on the scalar products refer to the coordinate
over which integration is performed. The first term in the
curly brackets in Eq. (25) gives the probability of finding
electron 2 in the bound state y„while electron 1 can be in
any bound or continuum state. The second term must there-
fore be subtracted to project out the probability that both
electrons are in a bound state. For large times there is only a
small probability of both electrons being in a bound state,
because this implies a total energy below ionization thresh-
old and hence can only come from the low-energy tail of the
initial wave packet. There can, however, be a substantial
transient contribution from such doubly bound states, and its
subtraction greatly improves convergence [25].The probabil-
ity for finding electron 1 in the bound state q&„and electron 2
in the continuum is given by the expression in the curly
brackets with the coordinates r1 and r2 exchanged. This
gives the same value of the curly brackets, provided the total
wave function 'Ij'(r, , rz, t) is properly symmetrized accord-
ing to (5) or antisymmetrized according to (6); hence the
indistinguishability of the two electrons is correctly ac-
counted for by the factor 2 on the right-hand side of (25).
The time-dependent probability p(, 2,)(t) for finding both
electrons in a continuum state is obtained by subtracting
from unity all the probabilities p„(t) of (25) for finding one
and only one electron in a bound state y„, as well as the
probability for finding both electrons in bound states,

are obtained from the time-dependent probabilities (25) and
(26) by following the evolution until convergence is
achieved. Unless otherwise stated, calculations were per-
formed for an initial wave packet (20) of width b = 8 a.u. in
coordinate space and starting at a distance s=45 a.u. The
probabilities obtained in this way are functions of the initial
average energy or momentum ko of the projectile electron.
The probabilities for elastic scattering, inelastic scattering to
the n=2 and 3 channels, and for ionization are listed in
Table I for values of ko ranging from 1 to 17.5. The prob-
abilities listed in Table I are related to the bare probabilities
appearing in Eqs. (7), (8) by convolution with a Gaussian of
width 1/(2b) (=—0.0625 a.u.) in momentum, corresponding
to the uncertainty of the initial wave packet. The bare prob-
abilities defined with respect to fixed incoming energy or
momentum can be derived from the probabilities (27) by
deconvolution. Except for the ionization probability near
threshold, this was found to be unnecessary, because the bare
probabilities are smooth functions and the uncertainty width
of the wave packet was always much smaller than the range
over which they vary substantially. The special case of ion-
ization probabilities near threshold is treated in Sec. IV D.

k
Pi =1 ——(~1.1—~i) (28)

where o.„,=X„,o.„+o.&, 2, &
is the total cross section ap-

pearing in (11).
The resulting probabilities for singlet symmetry are

shown in Fig. 5 as a function of k =2E;„, where E;„is the
impact energy of the incoming electron. Near k =1, the
elastic scattering probability P, is in excellent agreement
with the results of Bhatia, Schneider, and Temkin [22], ob-
tained by a T-matrix variational principle, and those of Cal-
laway and Oza [20], who solved the stationary Schrodinger
equation by expansion methods numerically on a grid. Our
probabilities show a smoother dependence on the energy of
the incident electron whereas the probabilities calculated by
these authors show oscillations, which cannot be attributed to
physical grounds.

B. Inelastic scattering

For total energies sufficiently high above the breakup
threshold F=0 (corresponding to F;„=zk =

2 for the incom-
ing electron), the probability for exciting the target from the
ground state to an excited state n ~ 1 may be expected to be
proportional to 1/n as is typical in a Rydberg series. This is
indeed the case as is illustrated in Fig. 6, where the open
diamonds show the inelastic scattering probabilities P„ for
n = 2, . . . ,7 at k =4 plotted against n in a doubly logarith-

A. Elastic scattering

In order to compare the scattering and reaction probabili-
ties of the present calculation with the results of previous
calculations based on the three-dimensional picture [20,22],
we transform the cross sections given by these authors to
dimensionless probabilities. For inelastic scattering and ion-
ization, this merely means dividing the cross sections by the
area ~/k, but for the elastic channel, the dimensionless
probability (7) is related to the cross sections (10) by
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TABLE I. Probabilities for elastic and inelastic scattering and for ionization (27). ko is the square of the

average asymptotic momentum of the projectile electron in a wave packet with a momentum spread Ak =
—,6 a.u. [cf. (21)].

ko
2

Singlet (S=0) Triplet (S= 1)
/C& (e,2e)

1.0
1.1
1.2
1.3
1.5
1.75
2.0
2.25
2.5
2.75
3.0
3.25
3.5
3.75
4.0
4.5
5.0
5.5
6.0
7.0
8.0
9.0
10.0
12.5
15,0
17.5

0.797
0.762
0.733
0.709
0.673
0.643
0.630
0.622
0.625
0.628
0.635
0.646
0.653
0.664
0.675
0.695
0.714
0.732
0.748
0.773
0.800
0.820
0.835
0.869
0.888
0.908

0.149
0.161
0.163
0.161
0.153
0.140
0.127
0.116
0.105
0.097
0.089
0.082
0.076
0.071
0.066
0.058
0.053
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mic plot. The straight line through the open diamonds dem-
onstrates proportionality to 1/n . Closer to threshold, how-
ever, the Rydberg-type behavior of the inelastic scattering
probabilities breaks down, because a high excitation of the

0.90

bound electron is accompanied by a deexcitation of the pro-
jectile electron to energies close to the continuum limit, and
effects of two-electron correlation are important. This is il-
lustrated by the solid dots representing the inelastic scatter-
ing probabilities at threshold. They are closer to being pro-
portional to 1/n ' for high n. For energies sufficiently above
the breakup threshold, the inelastic scattering probabilities
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---- P„=(7/n) P,

FIG. 5. Probability P, (S=O) for elastic scattering of an elec-
tron by hydrogen in the s-wave model as a function of k =2E;„,
where k is the asymptotic momentum and F. ,„ is the impact energy
of the projectile electron. The asterisks and triangles are derived
from the cross sections given by Bhatia, Schneider, and Temkin
[22] and by Caliaway and Oza [20) via Eq. (28).
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FIG. 6. Doubly logarithmic plot of the inelastic scattering prob-
abilities P„(S=O) for impact energies above (k =4) and at

(k = I) the breakup threshold.
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FIG. 7. Doubly logarithmic plot of the inelastic scattering prob-
abilities p„(5=0), normalized by n, as a function of k =2F.,„.

are inversely proportional to the impact energy of the projec-
tile electron, as illustrated in Fig. 7. Note that the Born ap-
proximation and Bethe's theory predict the high-energy be-
havior of inelastic cross sections in realistic situations to be
proportional to (InE;„)/E;„[28];this is closer to the behavior
of the dimensionless probabilities in the one-dimensional
s-wave model than to the behavior of the cross sections of its
three-dimensional interpretation, which are proportional to
1/F;„due to the additional factor describing the decreasing
weight of the component with vanishing total angular mo-
mentum towards higher energies.

A comparison of the present results for excitation to the
n=2 and 3 states with the corresponding probabilities de-
rived from [20] is shown in Fig. 8. Agreement is good except
for Pz just above threshold, where the results of [20] lie a
little above our values.

0.25

0.20 Z Callaway & Oza—present

0.15

0.10

0.05
~P P3

0 00
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

k (a.u. )

FIG. 8. Comparison of the inelastic scattering probabilities

Pz, P3 (S=0) obtained in the present calculation with the results
derived from the corresponding cross sections of Callaway and Oza

[20] via Eqs. (10) and (7).

C. Ionization

One difficulty in using Eq. (26) to extract the time-
dependent probability p&, z, )(t) and eventually the time-
independent ionization probability is performing the infinite
sum over p„(t). Because of the finite evolution time of the
two-electron wave function and the finite size of the box in

FIG. 9. Probability 9'(, z, &
for electron-impact ionization of hy-

drogen for singlet symmetry in the s-wave model (solid line). The
triangles and solid dots were obtained from the corresponding cross
sections given by Callaway and Oza [20] and by Bray and Stelbo-
vics [30] according to (13).

[p(s=o)+ 3 p(s 1)]
(e,2e) (e,2e) (29)

of the present one-dimensional s-wave model in comparison
with the experimental data of Shah, Elliott, and Gilbody [17]

coordinate space, projection onto bound target states is pos-
sible only for a finite number nano. We chose no=7 and

estimated the residual sum X„" sp, (t) by extrapolating the
behavior of the p„(t) using a power law. The power involved
was not rigidly chosen to be —3, but adapted to the observed
behavior of the probabilities p„(t), n ~7 in accordance with
the discussion of Fig. 6. We found that following the evolu-
tion of the time-dependent probability p&, z,)(r) until it con-
verged in time yielded more stable and reliable results than

simply deducing the ionization probability from the scatter-
ing probabilities via the conservation law (8) or the optical
theorem (11), as done by Callaway and Oza [20]. This
method has also been applied by Isele in order to derive
ionization cross sections at a few impact energies in the col-
linear and in the s-wave model [29].

The ionization probabilities derived for the singlet case
are shown in Fig. 9 for values of k ranging from threshold

(k =1) to k =4.5 a.u. and compared with the results of
Callaway and Oza [20] and Bray and Stelbovics [30].In both
[20] and [30] the ionization cross sections were derived in-

directly from the elastic and inelastic cross sections via the
optical theorem (11).The present calculation reproduces the
behavior of these results quite well for k &2.5, and it is free
from the unphysical oscillations, which Bray and Stelbovics
attribute to spurious resonances connected with the pseu-
dostates they use to approximate the one-electron continuum.
For k &3 our results are systematically slightly below those
of Ref. [30] by about 0.015. This may indicate that the sum
over all inelastic excitations is slightly underestimated in

[30].The ionization probability goes through a broad maxi-
mum between k =3 and 4. The two-electron correlations as
illustrated in Fig. 4 are more pronounced here than at higher
energies.

Figure 10 shows the singlet, triplet, and spin-averaged
probabilities,
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FIG. 10. Singlet, triplet, and spin-averaged probabilities for
electron-impact ionization in the s-wave model, multiplied by the
energy-independent area o.0=10.17r a.u. [cf. (29)]. The empty
circles show the experimental integrated ionization cross sections of
Shah, Elliott, and Gilbody [17].

for the electron-impact ionization of real hydrogen atoms.
These data are still generally accepted as accurate, although
Shyn [31] has recently presented ionization cross sections
differing somewhat from the results of Ref. [17].The dimen-
sionless probabilities of the s-wave model are multiplied by
one energy-independent area o.o=10.1m a.u. , so that the
height of the maximum is fitted to the experimental value.
Except for the region just above threshold, which we discuss
in the next subsection, the spin-averaged probabilities repro-
duce the experimental energy dependence remarkably well.
This is perhaps surprising, considering that numerous at-
tempts to reproduce the ionization cross section for energies
near and above the maximum at k =4 have been unsuccess-
ful over the years. The present calculation gives a better
account of the shape of the experimental ionization cross
section near and above the maximum than all approxima-
tions previously studied, and it is only surpassed by the re-
cent convergent close coupling calculation of Bray and Stel-
bovics [4], which in principle involves no approximation and
represents a true breakthrough in the description of ioniza-
tion processes. The success of the present model calculation
indicates that the net effects of angular correlations in the
integrated ionization cross sections for real hydrogen are
small at energies near and above the maximum. Note that the
ionization cross sections (13) derived with the potential (4)
in the three-dimensional picture do not give a good account
of the observed energy dependence, because the additional
factor ~lk describing the decreasing weight of the compo-
nent with vanishing total angular momentum leads to a too
rapid falloff towards higher energies.

D. Threshold behavior

The threshold behavior of ionization cross sections has
been a subject of great interest since Wannier's famous paper
[32]. It is generally accepted that the cross section for

electron-impact ionization of hydrogen behaves as F"
and this can be understood on the basis of the classical mo-
tion of the electrons escaping in opposite directions from the
nucleus [32,15]. The s-wave model is not well suited to de-
scribe this situation, where angular correlations are very im-
portant. It is nevertheless of considerable interest to study the
threshold behavior in the s-wave model, because in the clas-
sical version of this model ionization is dynamically forbid-
den for a finite range of energies above threshold [12]. For
two spherical electrons moving classically away from the
nucleus with small positive individual energies, the inner
electron must be faster than the outer electron which is over-
taken and falls back into bound motion. The dynamical
threshold for the electron-impact ionization of hydrogen in
the classical description lies above the energetic threshold by
one-third of the initial binding energy of the target electron.
When the target electron is initially in the ground state, the
energetic threshold is E;„=—,

' (k =1) and the dynamic
threshold for classical ionization is E;„=—, (k = —,') [12].

In the present time-dependent method, the wave function
'P(r, , r2, t) has a spread in energy and momentum, which is
determined by the width of the initial wave packet (20). The
momentum distribution as given by the absolute square of
the initial wave packet in momentum space is a Gaussian
with the profile function

w(k —ko) =b/2I7r exp[ —2b (k ko) ]. —(30)

The calculation does not yield the bare ionization probability
P(, 2,)(k) but a convoluted probability

~(,2 )(ko) =
I P(,2 )(k)w(k kO)dk. (31)

The lower limit of the integral over the asymptotic momen-
tum k of the projectile electron is the threshold value k= 1,
because P(, 2,)(k) vanishes for smaller k.

For the present calculations based on a width b = 8 a.u. in
coordinate space, the width of the profile function (30) in
momentum space is 0.0625 which is sufficiently small to be
neglected over most of the energy range, but not of course at
threshold. The bare ionization probability vanishes at thresh-
old and may be approximated by a monomial,

C(k —1), k~ 1

(32)

with a constant factor C. The threshold behavior of the ion-
ization probability as function of the total energy
E= (k —I )/2= 0 —1 is given by the same power law. Insert-
ing the power law (32) into (31) shows that we obtain a
convoluted ionization probability M(, 2,)(ko) which is pro-
portional to (ko —1), if we choose the width parameter b
inversely proportional to ko —1. For b(ko) = ho l(ko —1) we
have

9 (, 2,)(k()) = C J(n;b())(k() —1), (33)

where J(n;bo) is a constant given by

J(n;bo) = $2bolrr 7 exp[ —2bo(r 1) ]dr (34).—
30
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s-wave potential
~(e,2e)

Short-ranged potential

TABLE II. Convoluted ionization probabilities (31).The width b
of the initial wave packet describing the projectile electron in coor-
dinate space varies as b= 0.5/(ko —1) with its average asymptotic
momentum ko. The rightmost column shows the results obtained
when the electron-electron interaction potential 1/r~ of the s-wave
model is replaced by the short-ranged interaction potential
exp( —0.2r))/r) .

0.20

0.15

~ 0.10
CL

0.05

~ Bray 8 S
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1

16
1
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1
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1
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0.0217
0.0238
0.0262
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0.0324
0.0364

0.0346
0.0371
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~ s-wave potential
o short-ranged potential

1.05 (k,-1)
—— 0.56 (k„-1)

~ 0.04

CL

D
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O
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The convoluted ionization probabilities (31) calculated with
the width parameter b0=0.5 in the range b= 8.0 (ko —1 =
—,', ) to b=5.5 (ko —1= —,', ) are listed in Table II and shown as
solid dots in the doubly logarithmic plot in Fig. 11. Only
singlet states are important here, because the ratio of the
triplet to singlet ionization probabilities vanishes towards
threshold (see Table I).

The behavior of the solid dots in Fig. 11 is best fitted by
W&, 2, &

= 1.05E', corresponding to a threshold behavior
P &, 2, &

=0.79E' of the bare ionization probabilities accord-
ing to Eqs. (33) and (32), which is somewhat suppressed
compared to the Wannier results P&, 2,&(XE" . This is un-
derstandable, because the motion along the diagonal r& = r2
is infinitely unstable, and near threshold ionization is dy-

.. '4

0.00
1.0 1.2 1.4 1.6

k (a.u.)
1.8 2.0 2.2

FIG. 12. Deconvoluted (S= 0) ionization probability

P&, 2, &

= 0.79F' (dashed), which merges into the convoluted prob-
abilities ~A&, 2, ) of Table I near k =1.4. The dotted line shows the
continuation of the convoluted probabilities towards lower energies.
The dots are the probabilities derived from the cross sections of
Bray and Stelbovics [30] according to (13). The thin solid line
shows the classical ionization probabilities obtained in [12].

V. CONCLUSION

namically forbidden in the classical version of the s-wave
model. Figure 12 illustrates the threshold behavior of the
deconvoluted ionization probability P&, z, &

(dashed line)
which merges into the convoluted probability M&, 2, &

near
k =1.4. Due to the narrow width of the incoming wave
packet in energy, deconvolution is not necessary at higher
energies. We have checked the reliability of this method of
extracting an exponent for the threshold behavior of the ion-
ization probability by repeating the calculation for a fictitious
model of two particles interacting with the nucleus via a
1lr potential, but with each other via the short-ranged poten-
tial exp( —0.2r~)/r~ replacing the interaction term I/r~ in

(4). The asymptotic solution of the time-independent Schro-
dinger equation for two escaping electrons is known to be a
product of two Coulomb functions in this case, and the prob-
ability for ionization is proportional to the total energy E
near threshold [33].The corresponding convoluted ionization
probabilities are listed in the right-hand column of Table II
and shown as empty diamonds in Fig. 11. Their behavior is
well fitted by an exponent o;= 1, as expected.

0.02
0.06

I I

0.07 0.08
k,-1 (a.u.)

0.09 0.10

FIG. 11. Doubly logarithmic plot of the convoluted (S= 0) ion-
ization probabilities ~~ko) defined by (31), (30) with wave packet
widths b (in coordinate space) inversely proportional to the average
asymptotic momentum (relative to threshold) ko —1 of the projec-
tile electron, b = 0.5/(ko —1). The solid dots are the results for the
s-wave model. The empty diamonds are the corresponding results
obtained when the long-ranged electron-electron interaction poten-
tial 1/r~ of the s-wave model is replaced by the short-ranged po-
tential exp( —0.2r~)/r~ . The short dashed line shows proportion-
ality to (ko —1)', while the long dashed line shows the linear
dependence on (ko —1) which is expected for the short-ranged in-
teraction potential.

We have integrated the time-dependent Schrodinger equa-
tion for continuum states in the s-wave model of two-
electron atoms. The method allows us to study the evolution
of two-particle correlations in the wave function and yields
probabilities for elastic and inelastic scattering as well as for
electron-impact ionization. It produces stable and reliable re-
sults and compares favorably with the methods based on the
time-independent Schrodinger equation. An important ad-
vantage of the time-dependent technique for studying ioniza-
tion is that it does not require knowledge of the asymptotic
wave functions for two electrons in the continuum, which are
known only in various limits and approximations.

For total energies E close to the breakup threshold
E=O, the probability for electron-impact ionization of hy-
drogen is roughly proportional to E' in the s-wave model.
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This is somewhat suppressed in comparison with the Wan-
nier law F." for real hydrogen. Note that in the classical
version of the s-wave model, electron-impact ionization of
hydrogen from its ground state is dynamically forbidden for
F.(1/6 a.u.

The spin-averaged probabilities for electron-impact ion-
ization of hydrogen in the s-wave model reproduce the shape
of the experimentally observed ionization cross sections re-
markably well for energies near and above the maximum.
This agreement is in fact better than has so far been achieved
in approximate descriptions of the ionization process, and it
is only surpassed by the in principle exact ab initio calcula-
tion of Bray and Stelbovics [4].

The s-wave model is perhaps the simplest model of two
electrons interacting with a nucleus and with each other via
long-ranged Coulomb forces; it is well suited for studying
qualitative aspects of the physics of real two-electron atoms,

and as a testing ground for calculational techniques. Having
established in Ref. [14] that this model gives a very good
quantitative description of the 1sns bound states of real he-
lium, we now observe a realistic behavior of the probabilities
for ionizing hydrogen. For energies not too close to the ion-
ization threshold, where angular correlations are definitely
important, the s-wave model does appear to contain some
realistic physics.
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