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Sub-electron-volt chemical shifts and strong interference effects measured
in the resonance x-ray scattering spectra of aniline
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By exploring the monosubstituted benzene compound aniline, we demonstrate that resonance inelastic x-ray

spectroscopy of chemically shifted species is site selective. Core-excited levels with distinct, super-electron-
volt shifts can be resonantly excited and their x-ray emission spectra analyzed separately. Core-excited levels
referring to sites with small, sub-electron-volt, chemical shifts give resonant x-ray spectra that interfere

strongly. It is demonstrated that this interference, which is manifested in the one-step model, can be used to
monitor chemical shifts in the sub-electron-volt energy region. We show that in the limit when these chemical
shifts go to zero some salient symmetry-selective features of the benzene resonant x-ray emission spectrum are
restored in the aniline spectra.

PACS number(s): 33.20.Rm, 33.70.—w

I. INTRODUCTION

The influence of the chemical or physical state of the
element on x-ray emission spectra was discovered in the
1920s [1],thereby refuting the idea that an x-ray spectrum is
the property of the element only. The chemical shifts of core-
to-core radiative transitions in the hard x-ray wavelength re-
gion have since then become well characterized and the un-

derlying mechanism basically understood [2]. In the soft
x-ray wavelength region the x-ray transitions connect penul-
timate core levels with valence levels and are therefore
strongly influenced by the chemical environment in terms of
electronic and geometrical structures given as molecular
properties. With modern spectrometers it has been possible
to monitor such inAuences both on a molecular orbital and a
vibronic level of energy resolution. However, nonresonant
x-ray spectra excited by broadband photons involve excita-
tions of all core-shifted states, and the decay spectra from
these shifted states become completely mixed in the final
spectrum.

The capability of recent synchrotron radiation techniques
to utilize small band passes at high energies in the soft x-ray
region has opened the prospect to exclusively excite shifted
core-excitation levels, and thus to investigate the role of core
level shifts also in molecular valence x-ray spectra. In the
present work we use aniline to demonstrate this feature.
Moreover, as we also demonstrate here, the resonantly ex-
cited x-ray emission spectra referring to core levels shifted
within the sub-electron-volt range will be strongly dependent
on interference effects. These in turn are dependent on the
precise values of the chemical shifts, and even very small
such shifts, far smaller than the resolution limit in the corre-
sponding core absorption spectra, give rise to significant
changes in the spectra. We show that as the chemical shifts
progressively become smaller, some salient symmetry-
dependent features of the degenerate system are restored,
here implying that much of the benzene resonant x-ray emis-
sion spectrum is restored in the aniline spectra. Due to these

particular interference effects the one- and two-step model
descriptions of the resonance x-ray emission phenomenon
differ strongly, and only the former is warranted for investi-
gations of spectra referring to core-excited resonant states
with small chemical shifts.

II. EXPERIMENT

The experiments were performed at beamline 7.0 of the
Advanced Light Source (ALS), Lawrence Berkeley Labora-
tory (LBL) [3]. This beamline comprises a S-meter, 5-cm-
period undulator and a 10.000-resolving-power spherical
grating monochromator (SGM) covering the spectral range
from 100 to 1300 eV. Condensed aniline was obtained by
dosing the sample gas onto a liquid nitrogen cooled Cu metal
surface. The temperature of the Cu metal was about —160 'C
during the whole experimental period. The aniline film was
very thick as inferred from its visible color. The sample liq-
uid was purified by a freeze-pump sequence prior to expo-
sure. The soft x-ray fluorescence was recorded in the polar-
ization plane, and normal to the incident photon beam using
a high-resolution grazing-incidence grating spectrometer
with a two-dimensional detector [4]. The sample was ori-
ented so that the incident photon beam impinged at an angle
of 60 relative to the surface normal, in order to suppress
effects due to self-absorption. The bandpass of the incident
photon beam was set to 0.22 eV in the emission measure-
ments, and the fluorescence spectrometer resolution was 0.45
eV. The energy scale of the x-ray emission spectra was cali-
brated by using the elastic peak and Cu metal L&&»& emission
lines recorded in the third order of diffraction. The spectra
are shown in Fig. 1.

III. METHOD

The analysis of the resonant inelastic x-ray scattering re-
quires in general a one-step theoretical formalism, which
leads to a Kramers-Heisenberg-type dispersion formula for
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FIG. 1. RIXS spectra of aniline obtained with various photon
excitation energies marked in the inset with the corresponding
x-ray-absorption spectrum.

the cross section. General theory for resonant x-ray emission
spectra, also called resonant inelastic and elastic x-ray scat-
tering spectra (RIXS and REXS), of randomly oriented mol-
ecules has been presented in our recent studies [5—7]. The
consequence of this theory for molecules with fixed orienta-
tion has also been given [7].

The difference between the one-step and the two-step models
is thus dependent on the interference strength I;„„
0~ II;„II~ 1. If the interference strength is equal to zero, both
models will give the same result. This holds only for two
cases, first when there is only one channel available, i.e.,
when Dk or Dk is zero, and second, when 6k 6k = —I

1 2 1 2

which indicates that one could manipulate the interference
pattern by detuning the excitation energy. When I;„, is equal
to —1, the spectral line of emission would be totally absent.

Using a very narrow incoming beam it is possible to tune
the excitation energy exactly resonant with one core-excited
state. We thus assume that Dk = 0, i.e., the excitation energy

1

is resonant with the k, 77* state. Therefore, the interference
strength is

2RdI
CU d

A. Interference

For a general account of the underlying theory we refer to
the papers quoted above. Here we focus on the interference
effect because it is crucial for the understanding of the
chemically shifted RIXS spectra, and make an illustration of
this effect by a simple four-state model that has a direct
connection with the RIXS spectra of the aniline molecule
studied here. We consider two core orbitals (ki, k2), one oc-
cupied m orbital (n) and one unoccupied 7r* orbital (v) in

C2, symmetry. The dipole transition moments between core
orbitals and the unoccupied orbital and the occupied orbital
are denoted as d'„„and d'„„, (i = 1,2), respectively. In the

l l

one-step model (OS) the emission intensity is

(rsi BIO) rri + rr2+ rrinS

and

where Rd =Dk IDk, the ratio between the transition
2 1

strength of the near-resonant channel and that of the resonant
channel. R„=Brsi2I/I and Bcu2I=E(k2 'v) —E(k, 'v), the
energy difference between two core-excited states. For fixed
transition strengths of the two channels, the maximum inter-
ference strength occurs at R„=0 when the two core-excited
states are degenerate. When the energy difference between
the two core-excited states is unchanged, the maximum in-
terference strength corresponds to the condition that
R =(1+R )'

By considering vibrational excitations it is quite easy to
fulfill the condition that R„=O even for two well separated
core-excited states. In this case, the energy differences be-
tween core-excited states are no longer represented by the
electronic transition energies; instead, one should consider
the energy differences between vibrational levels of the core-
excited states. Similar considerations should also be applied
for the transition strengths of two channels.
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These results show that when the 8'z3 shift gets smaller, the
agreement with the experimental spectrum gets better, and
that the intensity distribution is crucially dependent on the
interference effect. By fully considering this effect, not only
is the absence of the intensity in the energy region of 280—
284 eV explained, but the correct intensity distribution for
the whole spectrum is also obtained. The spectra have also
been simulated with the two-step model using the same pa-
rameters, see Fig. 7. A quite poor agreement with the experi-
mental spectrum is then obtained for all values of 623. This
is mainly due to the fact that the interference effects are
neglected by the two-step model. The large differences be-
tween the two models are illustrated in Fig. 8. It is quite
evident that the two-step model simply cannot be used for
spectra where more than one dominant channel is involved in
the resonant x-ray emission process, as is the case for species
with small chemical shifts.

V. SUMMARY

The purpose of the present work was to investigate the
site dependency of resonant x-ray emission spectra, and to
explore to what degree chemical shifts of core levels are
rejected in such spectra. The aniline molecule was used for
this purpose. Although we have investigated just this one
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FIG. 7. The same conditions as for Fig. 6, but with calculations
based on the two-step model.

interference should be responsible for the absence of the in-

tensity in the 280—284 eV energy region for the first, com-
pound, m* resonance of aniline.

Since the second m* resonance of aniline is dominated by
only one channel, C&(a&)sr*(b, ), the interference effect
should be negligible. Spectra calculated by the one- and two-
step models are accordingly almost the same, see Fig. 5.
These spectra also accord well with the experimental spec-
trum shown in Fig. 4. However, for the spectrum referring to
the first compound m* resonance of aniline, three different
channels, labeled in Fig. 3, should be taken into account.
Due to the small energy separations among those three
intermediate core-excited states, especially between

C3(a &) ~*(b&) and C2(a &) m*(b &), the interference effect is
expected to be large as discussed in Sec. III A.

We simulate here the interference effect in some detail
using the one-step model: The MCSCF value of 0.3 eV for
the energy difference between the C3(a &) vr" (b &) and

C4(a, ) sr*(b, ) levels is used: The energy difference between
the C3(a, ) m*(b, ) and C2(a, ) sr*(b &) levels is labeled

823 the spectra for different values of Bqs (from 0.05 eV to
0.5 eV) are illustrated in Fig. 6. The relation between the

energy difference and interference effect is clearly displayed
by this figure. For comparison, two simulated spectra consid-
ering a single channel, the Cz(at) m*(b t) channel, and two
channels, the C24(a&)m. *(b&) channels, are also shown.

I I I I I I I t I I I I I I I

268 276

Energy ( eV)

FIG. 8. Differences of the calculated spectra for aniline from
one- and two-step models. The parameters are the same as used for
Figs. 6 and 7.
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case, we feel that we tentatively can give some statements on
the role of chemical shifts for RIXS spectra in general. If we
consider cases with small, intermediate, and large shifts, we
find the RIXS technique to be informative in the first and the
third of these cases. For large shifts, say above 1 eV, the core
level can be selectively excited, and the corresponding RIXS
spectra can be analyzed in terms of electronic structure
theory, local intensity rules, etc. , for the particular core site.
For very small shifts, below 0.5 eV, the interference effects
will make RIXS spectra crucially dependent on the precise
value of the shifts, and can make it possible to assign shifts
although they remain nonresolved in the corresponding ab-
sorption spectrum. In the intermediate region, outside the
region of strong interference, but still nonresolved in absorp-
tion, the RIXS spectra will overlap in a way that makes it
difficult to distinguish the shifts. They will furthermore be
Raman shifted with respect to each other in such cases. Pre-
cise limits of these regions will of course be set by the degree
of vibrational excitations, the core hole state lifetime, and the
form of the excitation energy function.

Further information from chemically shifted RIXS spectra

of the kind presented here will be provided by polarization or
angular-dependent measurements, since the polarization an-

isotropy is very sensitive to interference effects [7]. In addi-

tion to the previously established band conserving and sym-

metry selective character, the site selectivity opens new
possibilities for geometric and electronic structure investiga-
tions by means of resonance x-ray spectroscopy.
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