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A detailed presentation of the modified configuration-interaction (CI) method [S. P. Goldman, Phys. Rev.

Lett. 73, 2541 (1994)] is given. The standard two-electron test case is used to introduce the concepts, as well

as to show a sharp increase in the convergence of the calculations. Space-ordered radial coordinates and

generalized angular functions involving the addition of large numbers of spherical harmonics are used. As a

result, accuracies that exceed those of the usual CI method by several orders of magnitude are obtained with

small basis sets. For example, in the case of helium, energies are obtained with relative errors of 2.6&& 10
1,4&&10, and 2.0&10 ' for the 1 'S, 2 'S, and 2 S states with 420, 276, and 264 two-electron basis

functions, respectively. A detailed discussion of the calculation of matrix elements and angular coefficients and

of the extension to the many-electron case is presented.

PACS number(s): 31.25.—v, 31.10.+z, 31.15.Pf

I. INTRODUCTION

Z Z 1

~2

For the purpose of CI calculations the electron-electron po-
tential is expanded as

1 4m &(
Ygq(ri) Yxq(rz)

r)2 ), =p 2X+ 1 ~)
(2)

It is this expansion that characterizes the CI method, as it
allows one to approximate the wave function in terms of
symmetrized or antisymmetrized products of one-electron
(hydrogenic) basis functions. In the case of two electrons, the
two-electron basis functions for a state with total angular
momentum L will be of the form

tp, '=fi, ;(ri)fz, '(r2) At, t (ri rz) —(ri . r2), (3)

where

A, , (ri, rz) = g (l„milz;mzlLM)
ml, m2

X Yt (ri) Yt (rz) (4)

and the second term in Eq. (3) is obtained from the first term
by interchanging r, and r2.

The main difference between different approaches to per-
form CI calculations is the choice of one-electron radial

The standard configuration-interaction (CI) method pro-
vides a straightforward technique to perform calculations on
systems involving several interacting electrons in terms of
products of one-electron functions. At the heart of the CI
method is the expansion of the inter-electron potential in
terms of single-electron spherical coordinates. Consider for
example, the case of the helium Hamiltonian

functions. Calculations have been done using, for example,
Slater-type functions [1,2], piecewise polynomials [3], and B
splines [4]. A typical CI basis set using radial Slater-type
functions is given by

tp,
'""=e . "' P "' r"'r ' A, , (r, ,rz)~(r, =rz), (5)li 2i

where cr; and P; are arbitrary nonlinear parameters.
The quality of the results in a CI calculation will depend

then on the number of radial functions in the basis set as well
as the number of different angular configurations included.
In the limit in which the number of both is infinite, the result
will be exact. The task at hand is to be able to obtain as
accurate a calculation as possible with as few basis functions
as possible. In the case of Slater basis sets (5), for example,
one searches for convergence of the variational energy eigen-
value (or any other property being calculated) as the number
of powers of r& and r2 is increased and as the number of
values of the one-electron angular-momentum quantum num-

bers l &; and l2; is increased. It is this angular mixing that will
take care of the different angular terms in the expansion of
r&2 and will account for correlation effects. The role of the
exponential parameters is to optimize the calculation for a
specific set of radial powers and spherical harmonics. The CI
convergence of the variational energy eigenvalues is, how-
ever, very poor as both the number of radial powers and the
number of spherical harmonics are increased [1—5].

The radial convergence is slow independently of the type
of radial functions used. In Table I we present results for
radial convergence using Slater basis functions and natural
orbitals (piecewise polynomials). The results for Slater func-
tions are obtained as the number of powers of the radial
coordinates in the basis set is increased. In the case of natural
orbitals (NO's), the size of the basis set is kept fixed at 666
basis functions, with the number of NO's derived from this
basis set being increased [3]. The results isolate the radial
behavior for the helium ground-state case by restricting the
trial functions to the case l

&

= I2= 0. The convergence is very
slow, and because of the advent of numerical dependency
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TABLE I. Radial convergence of the ground-state s configuration for a nuclear charge Z=2 using Slater,
natural orbital, and MCI radial functions. E is the variational eigenvalue in a.u. , N is the number of two-
electron radial basis functions used in each case, and N, is the number of natural orbitals used, each built
with N basis functions.

Slater Natural orbital MCI

N

2

6
12

20

30
42

56

-2.848
-2.8780
-2.8789
-2.87899
-2.879016
-2.8790237
-2.8790264

1

2

3

4
5

6

7

8

12

18

24

666
666
666
666
666
666
666
666
666
666
666

-2.861531102
-2.877925513
-2.878844046
-2.878980274
-2.879012045
-2.879021844
-2.879025502
-2.87902707
-2.879028537
-2.879028735
-2.879028756

20

30
45

54

73
86

100
125

extrapolated

-2.8788

-2.879014

-2.87902861

-2.879028752
-2.87902876718
-2.879028767314
-2.8790287673190
-2.879028767319173
-2.8790287673192123
-2.879028767319214160
-2.879028767319214320
-2.879028767319214388
-2.87902876731921441

problems in the matrix diagonalizations, the basis set size
cannot be increased and better values cannot be obtained. In
the Slater case, if N„denotes the number of two-electron
radial functions, the energy convergence is 6F/F. =N„. In
the case of natural orbitals, there is an improvement with
bEIE=N„, although a (constant) very large number of ba-

Imax

1

2
3
4
5

6
8

10
11
13
16

Slater

-2.900516
-2.902767
-2.903321
-2.903518
-2.903606
-2.903650
-2.903689

Natural orbital

-2.900516
-2.902767
-2.903321
-2.903518
-2.903600
-2.903644
-2.903682
-2.903697
-2.903701

MCI

-2.903320776
-2.903687982
-2.903718403
-2.903722701
-2.903723671
-2.903724070
-2.903724287
-2.903724340
-2.903724345
-2.903724362
-2.903724369

TABLE II. Angular convergence of the ground-state energy E of
helium using Slater, natural orbital, and MCI radial functions. E is
the variational eigenvalue in a.u. and I refers to the largest an-

gular momentum used by the Slater and MCI methods and the
largest generalized angular function used by the MCI method.

sis functions is necessary (a comparison with the conver-
gence of the best NO value for different basis set sizes would
be more appropriate).

The angular convergence is also very slow with

BF/F =N&, where NI is the number of spherical harmonics
used. This convergence is independent of the radial functions
used. One of the main reasons for the need of a good radial
representation is the ability to obtain, for each angular con-
tribution, good accuracy with a small number of radial func-
tions in order to allow one to include in the calculation a
large selection of spherical harmonics. In Table II the angular
convergence is given for both the Slater and natural-orbitals
representations as a function of the number of spherical har-

monics.
We have then in the CI method a procedure to calculate

atomic (and molecular) states that can be implemented very
easily. The reason is that the functions involved are simple
products of orthonormal one-electron functions. Therefore
the matrix elements of functions or operators that depend on
a single radial coordinate result in one-dimensional integra-
tions, while matrix elements of functions involving r~ and

r~ are just two dimensional. Not only is the implementation
simple, but it also yields a clear picture of the nature of the
solutions in terms of superpositions of different types of one-
electron functions. The price we pay is a poor convergence
that does not allow one to achieve very accurate results. In
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the following sections we will describe ways of improving
the radial and angular convergences of the CI method. H = —-V —-'V1 2 1 2

r( ~ r)
z z
r( r)

II. RADIAL VARIABLES

A. Angular and radial matrix elements

In the CI method, the radial matrix elements are easily
calculated given that the wave function is a simple product
of one-electron functions, written in terms of the radial co-
ordinates r1 and r2. The poor radial convergence is due to
the fact that these "smooth" radial functions of r1 and r2
cannot easily represent the cusp present in the two-electron
(or many-electron) wave functions. This cusp is a conse-
quence of the Coulomb interaction between the two elec-
trons. It appears because the repulsion potential r, 2 has dis-
continuous derivatives at r, = r2 or in the expansion (2) at
r(= r) . Notice that a similar cusp is present, for each elec-
tron, at the origin if a point nucleus is used. This hydrogenic
cusp at the origin is masked by the use of radial coordinates,
but would be apparent if Cartesian coordinates were used.
This idiosyncrasy of the wave function at r(= r) can be
incorporated in a basis set if we allow the basis functions to
depend explicitly on r( and r) . The use of r( and r) in the
context of CI calculations has been discussed previously by
Schwartz in 1962 [1]and later on in several works on the CI
method [2,6,7].

In this work, we start by extending the Slater functions to
the basis set [8]:

tttl 1 Ptr2 oft tl rt rrs( t( P (r r )

4~ r(
+ X 2~ 1 ~+1 ~1*, (r() 1'1, (r) )2K+1 r)

4;=(,(r.,r.) &t, 1, .(r.,r.), (12)

with

—ar —xr —cur Ir s; t,l & l & l & & r l r l
l (13)

The functions tp; are the subset of the general set 0; [Eq. (9)]
with a;=b, = n;= P;=0. For the case of radial antisymmet-
ric states we follow an idea by Schwarz [1]:we keep the
exponential portion of the radial basis functions as is and
introduce the antisymmetry in the polynomial portion of the
variational representation. The most general such expansion
is given by

(;"""=(v1 —v2) (; (14)

All the radial integrals necessary for the calculation of
matrix elements can be written in terms of the general inte-
gral

foe foo

where we used the fact that for a symmetric function

f(r, , r2)=f(r2, r, ) is f(r, , r2)=f(r, r ). For symmetric
radial functions we need then only the radially symmetric
basis set

(r1—r2)

that includes the variables

(6) Q;,(c,d,p, q)= rj; rt, r', r2 r" r v, dv, r2dr2
Jo 0o )

(15)

that has the closed-form expression
r(= min(r, , r2) and r = max(r1, r2), (7)

Q;,(c,d, p, q)=Q, (c,d, p, q)+Q, (c,d, p, q), (16)
which have discontinuous derivatives at r1= r2 and will be
able to represent the radial cusp much more efficiently. These
variables are symmetric functions of r1 and r2.

r((rt, r2) = r((r,2r )1,r)(r tr )2= r)(r2, rt). (8)

ji +I,l, ( lrr2) —(rl r2) (9)

with the new radial functions

Notice that (6) is not the most general Slater-type basis set
involving r and r . For example, considering that

r /r (1, the basis functions used in (6) can be extended to

Q,, (c,d,p, q) =R,, (c,d, p, q)

( CO; CO&)+g, R, (c,d,p+n, q
—n),

n=1 n~

(17)

Q,, (c,d,p, q) =R,, (c,d,p, q)

( —
CO; COJ )+g, R,, (c,d,p+n, q

—n),
n=1 n!

(18)

where

u rt —P r2 —a r —rr —to r Ir r tr trs rt; (10)

The family of basis functions we need, however, is much
smaller: there is no need in (9) for an explicit dependence on
r, and r2 at all (except for a simple dependence in the case
of triplet states). The reason is that the Hamiltonian (1) can
be rewritten without using r1 or r2 at all as with

(T 1)! 1 ( — p,
R,, (c,d, p, q) = z, F1,T;B+1;, (1—9)

W B i
' ' 'p+lt'

(T 1)! 1 p—
R, (c,d, p, q) = r F1,T;A+ 1;—, (20)' v+1
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T=a+ b+ s+ t+2,

A=a+$+1,

~ {)=, =~L, L ~M M ~l'I'i2i2j & J i J i j (27)

B=b+s+ 1,
For the S states used as examples in this paper L;=L =0
and (25) reduces to

a=a;+a +c+2,

b=b;+b, +d+2,

$=$i+$ +p (21)

;,(L;=L) =0)

(1„) l„l '
( L li lj] liil2i l&ii» o o o )J J

t=t;+t +q,
W= a;+ aj+ p, +p~+ o.;+cr)+ r;+ r~,

p;+ p)+o.;+o.
~p=

&i+ Aj+ 7i+ 7j

In terms of these results, we can write the general overlap
integrals as

p g LM pl.M g3 g3

CL i+ O'.J + 0,+ Gj
p, +p +r, +7 = Q,J(0,0,0,0) Bi, (29)

R and R, which denote integrations for r2~r& and

r, ~rz, respectively, are given in terms of the hypergeomet-
ric function F

(u).(U). ~
F(u, U;w;z) =,F, (u, U;w;z) = g — (22)

n=o w q n ~

The Hamiltonian matrix elements can be written as

pgLM 0 PIM
li 2i 1j 2j

=(b, +b;, ) ~(, ~, ~i.i + 2 g,', :",", (3o)

I (u+n)
(u)n=

The necessary angular integrals can all be written in terms
of the general integral

h;, and h;j denote the portion of the Hamiltonian matrix
dealing with the interaction of the electrons with the nucleus,
while the terms in Q j deal with the electron-electron inter-

action. h;, involves the usual integrals of products of one-

electron functions, while h;j takes care of terms involving
derivatives of the form

4m gL.M:-,')=2q 1X ~
~)*,' '(ri r2)1'~, ,(ri)

X Y„* (rz)A&', '(r&, r2) dfl& dA2,
Ij ZJ'

which yields

(24)

Br
= C(~2 —~i).

Bl 2

87
= 1 —g(r2 r&), —

:,', =(—1)""&LI. ~M M lli; 12, .li, l2J)'"

( l t; k l tj) ( l2; k l2~) l2; lt, L;
X

I, O 0 0((0 0 0( l, , l,,
(25)

and

ds(x) = 8(x), (32)

with
where s is the Heaviside function

[a,b, . . . ]= (2a+ 1)(2b+ 1)

The case P =0 addresses the straight overlap of the ortho-

normal functions A& 'I '(r, , r2), correct1y yielding
li 2i

%'e obtain

I if x~0
4( ):

0 'f 0
(33)
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h, ,= —
—,
' [(n, + r, ) + (P, + o;) ]Q;, (0,0,0,0) —

—,
' [(n, + a;) + (P,+ r, ) ]Q;, (0,0,0,0)

+(n + r )(a +t + 1)Q, ( —1,0,0,0)+(PJ+ o. )(b +s + 1)Q, (0,—1,0,0)

+(n +a )(a +s +1)Q, ( —1,000)+(p +r )(b +t +1)Q; (0,—1,00)

—
—,'(aj+t~+ 1)(a +t )Q, ( —2,0,0,0) —,'(bj—+s +1)(b +s )Q, (0,—2,0,0)

—2(a~+sj+1)(a +s~)Q, ( —2,0,0,0) —2(bj+t +1)(bj+tj)Q, (0,—2,0,0)

+ co, ( n, + r, ) Q,, ( —2, 1,0,0) —co,(P, + o;)Q,, ( —1,000) —o), ( nj+ o;)Q; (0,—1,00)

+ co (P + r )Q, (1,—2,0,0) —coj(aj+t )Q, ( —3,1,00)+toj(bj+s~+1)Q, ( —1,—1,00)

+ co (a +s )Q; ( —1,—1,0,0) —cuj(b + t + 1)Q, (1,—3,0,0)

2 2 2 2

Q, ( —4,2,0,0) — Q; ( —2,0,0,0) — Q,"(0,—2,0,0) — Q; (2,—4,0,0)

+ —,'l„(l,)+ I)Q,,( —2,0,0,0)+ —,'l~, (l2, + 1)Q,,(0,—2,0,0) —Z Q;, ( —1,0,0,0) —Z Q;, (0,—1,0,0),
(34)

(T+2)! t r —a s —t 2co ~—
(CO + COJ) J J + J J J

lJ ~T+2 gf T+2 (35)

with T and W defined in (21), and

g, = Q;,(00,k, —k —1) . (36)

All the calculations in this paper were done with the radial basis set (13) with co= 0 as a value of cogO did not improve
convergence enough to justify an extra non-linear parameter. This makes all the overlap integrals much simpler by replacing
everywhere a=b = n=P= co=0 and by using R,, instead of Q;1:

h;J= —
—,'(o + r )[R, (0,000)+R, (0000)]+oj(s +1)[R, (0,—1,00)+R, ( —1,0,00)]

+ r (t + 1)[R, ( —1,0,0,0)+R, (0,—1,0,0)]—~(s + 1)s [R, (0,—2,0,0)+R, ( —2,0,0,0)]
—2(t +1)t [R, ( —2,000)+R, (0,—2,00)]+ —,'li (lt + 1)R; ( —2,000)+ —,'l2 (lq +1)R, (0,—2,00)
—Z [R;,( —1,0,0,0) +R;J(0,—1,0,0)], (37)

(T+2)! t r cr s —t ~—
J J + J J

gJT 2
( gf T+2) ' (38)

g,,=R;,(O,O, X, —X —1) . (39)

(40)

with

1 y ~ ~ ~ cp %exp
I111

i ~ i ) ' ' ' 0 i

IHB
i ~ i i (41)

B. Radial convergence

The radial convergence was studied by setting l
&

= l2 = 0
and I.=O using the ground state as the test case. The radial
basis set used in these calculations is then

Three sets of exponential parameters were used. o.
] and ~&

were fixed at the exact hydrogenic values; this improves the

stability and convergence of the basis set by accounting for
most of the hydrogenic contribution. Only the necessary
number of powers for an exact hydrogenic result were in-

cluded in this first exponential set, e.g. , t, " is 1 for the

ground state, 2 for the first excited state, and so on, The two
other sets of exponential parameters were determined by a
variational minimization of the energy. Each of these two
sets of nonlinear parameters were multiplied by different sets
of radial powers. Following is a summary of the basis set
u sed for the fi st set W p 3
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o., =Zln &, r, = (Z —I )In &,

tmIn 0 tmax )

-2
3

-4—

-6-

for the second set: o.2 and 7.2 are determined by optimization,

s2=0, 1, . . . , n2 —1, with n2 an integer

-8-
c

gy -10—
0

-12—

t2=0, 1, . . . , n2 —1, with n2 an integer (42)
-14—

-16—

s2+ t2- st2 ", with st2 " an integer;

for the third set: o.
3 and ~3 are determined by optimization,

$3 0, 1, . . . ,n 3
—1, With n 3 an integer

t3= —s3+ I, —ss+2, . . . , max( —s3+n3 0),

with n3 an integer

s 3 + t3 ~ s t2 ", with s t2
" an integer

Notice that r) is allowed to have negative powers. It is the
inclusion of these negative powers that substantially im-
proves the radial convergence. As an example, the optimized
parameters used for the best calculation involving 125 two-
electron radial functions are o.2=0.828 78, ~2=0.904 99,
n2=9, n2=9, st2"= 10, o3=0913 89, w3= 119299,
n3=11, and n3=5.

The results obtained are presented in Table I, where they
are compared with those obtained using Slater functions and
natural orbitals constructed with piecewise polynomials.
These results present the variational ground state obtained
when only s states are included in the basis set. N denotes the
number of two-electron radial basis functions and E the
ground-state variational eigenvalue in a.u. The Slater and the
modified-configuration-interaction (MCI) columns describe
convergence as the number of two-electron basis functions is
increased, while in the case of natural orbitals convergence is
analyzed as the number N, of natural orbitals is increased
keeping the total number N of basis functions fixed [3j. In
each case the best calculated value is presented. (In the case
of natural orbitals one can construct 36 natural orbitals with
the 666 two-electron basis functions, but the conver-
gence seems to tail off at N, = 24 [3].) Setting
B'„&E=EIE, „,—1, one obtains for the best results

B„&Es&„„=8.4X 10 with 56 two-electron basis functions,
B iENp 3.9 && 10 with 666 two-electron basis functions,
and B„&EMc&=3.5X 10 ' with 125 two-electron basis func-
tions. MCI provides a convergence that is 11 and 9 orders of
magnitude better than Slater functions and NO's, respec-
tively. A good MCI value was used as E„„,in the first two
cases, while for the MCI values themselves the value used is
an extrapolation of E, obtained iteratively from a linear re-
gression of the cumulative errors of the calculated MCI val-
ues. It is interesting to observe the rate of convergence for
each of the methods. For this purpose, a power law was fitted
in each case to B'„&E using linear regression. The values ob-
tained were Bre]Es}ater N Bre]ENp No, and

-18
10

Number of Radial Functions

B„&EMc,-N . . Notice that in the NO case, the conver-
gence refers to the addition of natural orbitals keeping the
basis set size fixed at 666 two-electron vectors. Also the
convergence rates quoted here are for the error in the energy
unlike the commonly quoted convergence of the energy in-
crements as new vectors are added to the calculation, which
yields rather the convergence of BE/B'N and therefore has a
faster convergence rate by roughly one extra power of N.
The different rates of convergence can be clearly seen in Fig.
1.

III. ANGULAR FUNCTIONS

In the CI method, correlation effects are accounted for by
the introduction of basis functions containing coupled spheri-

-3

0Q

Cl0
-7—

-8—

0.3 0.5 0.7

i+geo(1m')

0.9

FIG. 2. Angular convergence of the ground-state energy of he-
lium using Slater, natural orbital, and MCI radial functions.
BEIE,„„t is the relative error of the variational eigenvalue. l

refers to the largest angular momentum used by the Slater and MCI
methods and the largest generalized angular function used by the
MCI method.

FIG. 1. Radial convergence of the ground-state s configuration
for a nuclear charge Z=2 using Slater, natural orbital, and MCI
radial functions. 8EIE is the relative error of the variational eigen-
value. The abscissa gives the number of two-electron radial basis
functions used in the Slater and MCI cases and the number of
natural orbitals used in the NO case, each built with 666 basis
functions.
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~l,.l,.(rl r2) 2 (I 1 'm112 ™21L'M)
ml, m2

X Yl (r, ) Yl (r2),

we introduce linear combinations of these [8]:

Np

Ol- l- (r", , r2) = g Cl l (u) Ai l (ri, r2), (43)

cal harmonics with the same total angular momentum but
with different one-electron angular-momentum quantum
numbers. Each basis function will then contain an angular
part of the form (4) with correlation entering in the calcula-
tions by including different values of l& and lz. These dif-
ferent angular functions will be mixed by the infinite angular
sum in (2) upon the diagonalization of the Hamiltonian ma-

trix. As a result, one obtains a wave function containing lin-

ear combinations of coupled spherical harmonics with differ-
ent values of Ii and l2 (the Hamiltonian diagonalization
minimizes these linear coefficients). The convergence of the
variational energies as the number of different one-electron
spherical harmonics is increased is, however, very slow, as
can be seen form the results for Slater and NO functions in

the first two sets of values in Table II and the two top curves
in Fig. 2. In the Slater case, the calculations were performed
using the radial functions of Sec. II, given that the basis sets
become prohibitively large if functions of r

&
and rz are used,

diminishing the number of possible angular configurations to
include. The Slater and NO curves are almost identical, with
the NO one being able to calculate values with a few more
angular momenta, but the Slater curve with a slightly better
accuracy for the larger values of l for which the NO calcu-
lation had to resort to smaller radial basis sets. The best NO
value, which is the best value obtained with standard radial
representations (i.e., in terms of ri and r2), is obtained with

a basis set of 640 two-electron vectors with which 118 natu-

ral orbitals were constructed and yields for the helium
ground state a relative error of 8.0X 10 [3].In this section
we shall present an approach to the angular representation
that will yield a best result for the energy with a relative error
of 2.6X 10 . To increase the NO accuracy to 3.0X 10 one
would need of the order of 200 angular momenta and a basis
set of about 10 vectors [3].

As mentioned in the preceding paragraph, the standard CI
method mixes linearly different angular configurations
through the diagonalization of the Hamiltonian matrix. In
this paper we propose to improve the angular convergence of
the CI calculations by introducing an a priori superposition
of angular functions that will depend on a set of nonlinear
variational parameters. In other words, rather than letting the
diagonalization do the work of mixing angular configura-
tions, we will start the calculation with a set of angular func-
tions in which spherical harmonics were already mixed in

large quantities. As we do not know the exact form of this

mixing, we write these functions in terms of a few (nonlin-
ear) parameters that will be varied and optimized by energy
minimization. In other words, rather than using the coupled
spherical harmonics

where u denotes a set of nonlinear (angular) parameters

u &, uz, . . . , n„. The values of It i and lz refer to the angular
momenta that provide the most important contribution to 0
in the limit of small correlation effects, with u= 0 in the case
of no correlation:

lim 8;; (r, , r2) = A, , (r, , r2) .
U~O 1 2

(44)

~;=f;(r..r.) 0;; (ri r2) (45)

and

antisym (46)

with f; defined in Eqns. (40) and (41),

with

1 ) ~ ~ ~ )%exp
I111 + 1

x
~~i

The remaining question is how to select the coefficients

Cl l (u), specifically their dependence on the parameters
1 2

u;. An "experimental" approach has been followed in this
work, trying a few different possible functional forms for the
angular expansion coefficients and comparing the efficiency
with which the energy could be minimized. In all cases the
C- - (u) were expressed in terms of the coefficients in the

ill~
Taylor expansion of a function of u to guarantee that the
norm of the angular functions will remain finite in the limit
No~ oo

In this paper we present correlated calculations for S
states of helium. In this case the total angular momentum is
L =0 and therefore I i = Lz for any l, . The following coeffi-
cients and parameters were used for the radial (40) and an-

gular (43) functions: for the first set: N,„~=3;

The power of this approach is based on the fact that a
small number n„of angular parameters controls the linear
combination of a very large number No of spherical harmon-
ics with different angular momenta. In this way one can mix
a very large number of angular configurations: e.g. , 200—300
values of l i and lz were used in this work versus the 10 or so
that is the most that can be used in the standard CI method.
The set of nonlinear parameters u is optimized in the same
way in which the radial exponential parameters are opti-
mized: by a minimization of the variational energy eigenval-
ues. The basis sets (12) and (14), although efficient in the
radial representation, still use the usual inefficient CI angular
approach. Each basis function y; of the basis sets used here
involves the linear combinations of large numbers of the ba-
sis functions y; (12), all with the same radial part but differ-
ent angular components. The functions used in this work for
the helium-like S states are
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a., =Z/n~, ~, =(Z —I)/n&, for the third set: o.
3 and r3 are determined by optimization,

min 0 smax n 1 tmin 0 tmax
S$ =,s] =n(, $

=,
$

=n) j $3 0, 1, . . . ,n3 —1, with n3 an integer

l)=0 Npi=1; $3+ 1, —s3+2, . . . , max( —ss+n3, —l3),

for the second set: o.2 and 7.2 are determined by optimization,

s2=0, 1, . . . , n2 —1, with n2 an integer

t2 = 0, I, . . . , max(nz —1 —
/&, 0), with n'2 an integer

(47)

l2=0, 1,, . . . , n2 —1, with n2 an integer

Np2&1,

s2+t2-st2, t2+l2+1 st2

with st2 " an integer;

with n3 an integer

l3=0, 1, . . . , n3 —1, with n3=n2I

Np3 =Np2,

s3+ t3-st2, t3+ l3+ 1 ~ lt3

with lt3" an integer.

The coefficients of the angular expansions were chosen as
follows:

C—='
ll

0 if l, ~l or l;)l+Np —1

b(l, l;)/b(l, l) otherwise, with l;= i —1, i = 1,2, . . . ,No
(48)

where b(l, l;) is given by the ith term in the Taylor expansion of (I+x)~ around x=O, i.e.,

1 if i=1
b(l, I;) =

b(l, /;) =y(y —1) (y —l;+ 1)x'~/l;! if i ~ 1
(49)

and x and y are defined in terms of four nonlinear coeffi-
cients u; with

x= u) /(l+ 1)+u2l, y= u3+ u4l (50)

We present now the values used for these parameters for
two calculations of the ground-state energy (the best in this

paper and another using a smaller basis set), as well as for
the best calculations in this paper for the 2 '5 and 2 5 states.
The best calculation for the ground-state variational energy
in this paper yields E= —2.903 724 369 49 a.u. (a relative
accuracy of 2.6X 10, almost four orders of magnitude bet-
ter than the best previous CI value) with a total of 420 two-
electron basis vectors and the following parameter values:
nz=7, n2=7, n3=8, n3=5, st2=10, lt3=4,
o.2=2.088 182 40, ~2=0.994 649 76, o3=0.732 059 45,
7 3 1.095 069 97 n = 16, Np = 227, u

&

= 0.038 007 06,
u2= 0.055 107 87, u3 = 0.554 292 47, and
u4= —1.829 253 92. The MCI basis set that yields a varia-
tional ground-state energy slightly better than the best previ-
ous traditional CI value gives E= —2.903 687981 776 80
a.u. (a relative accuracy of 1.3X 10 ) with a total of only 98
two-electron basis vectors (involving only three generalized
angular functions) and the following parameter values:
n2=6, n2=5, n3=8, n3=1, st2=8, lt3=1, o2=1.603 15,

v 2
= 0.875 64, o 3

= 1.022 94, w3 =0.727 91, n = 3, Np = 85,
u) =0.009 48, u2=0.364 59, u3=0.710 37, and
u4= —0.645 12. The best calculation for the 2 'S variational

energy in this paper yields E= —2.145 974015 97 a.u. (a
relative accuracy of 1.4X10 ) with a total of 276 two-
electron basis vectors and the following parameter values:
n2=6, n2=6, n3=7, n3=3, st2=10, lt3=4,
o.

2
= 1.131 753 59, w2 = 0.547 525 64, o 3

= 0.684 841 15,

73 0.744 577 67, n = 12, Np= 1 10, u~ =0.274 333 23,
up=0. 099 219 69, u3= 1.793 456 40, u4= —1.598 088 47.
The best calculation for the 2 5 variational energy in this
paper yields E= —2.175 229 377 806 9 a.u. (a relative accu-
racy of 2&&10 ' ) with a total of 264 two-electron basis
vectors and the following parameter values: n'2=6, n2=6,
n3=7, n3= 3, st2= 10, lt3=4, o2=0795 031 46,
~2=0.526 120 74, o 3=0.754 946 29, 7'3=0.644 11930
n ' = 10, Np = 110, u )

= —0.000 215 12, u 2
=0.084 142 86,

u 3 1 .393 304 29, and u4 = —1 .225 916 58.
The convergence of the ground-state variational energy

values obtained in this paper is described in Table II and in

Fig. 2. An interpolation of the form 8'„&E-(L,„+c) "
yields different values of p for different values of c with
very similar statistical correlation tests; however, for each
choice of c the power p using the MCI method approxi-
mately doubles that obtained using either Slater or natural
orbital basis sets. The best correlation is obtained for c=0
for which the CI method converges as 8„,E-(L,„) and
the MCI method (present work) as 8„&E-(L,„) '. For
c = 1 we obtain for the CI method B„,E-(L,„) and for
the MCI method 8„&E-(L,„) ', both with high statistical
correlation.
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The accuracy of the MCI results was obtained by compar-
ing with the accurate results for the S states of helium ob-
tained using correlated basis sets [9j, which yield the follow-

ing upper bounds (numbers in italics did not converge): for
the ground state F.= —2.903 724 377 034 119479 a.u. with

1262 two-electron basis functions, for the 2 'S state
E= —2.145 974046054412 8 a.u. with 995 two-electron
basis functions, and for the 2 S state
F= —2.175 229 378 236 791 300 8 a.u. with 954 two-
electron basis functions. Notice that configuration interaction
cannot compete yet with the accuracy of the correlated cal-
culations for the low-lying states of two-electron systems
with small nuclear charge, for which correlated basis sets

yield roughly seven digits more accuracy. On the other hand,
the configuration interaction has, unlike correlated basis sets,
the advantage of providing a strightforward implementation
for many-electron systems and molecules.

Finally, a comment on the numerical calculation of the
angular integrals. The 3-j symbols necessary for the calcula-
tion of these integrals (28) involve now very large values of
angular momentum quantum numbers (e.g. , No=227) for
the best ground-state calculation. These 3-j symbols require
then factorials of very large arguments (-6No). In order to
avoid loss of numerical precision in the calculation of these
integrals, the 3-j symbols were expressed in terms of bino-
mial coefficients, which in turn were calculated using powers
of primes (the use of logarithms of factorials results in

a large loss of numerical precision). Setting a=(l, +lz
—l3)/2, b=(l& +l

—
3 lz)/2, c=(i&+13—l&)/2, and therefore

a+ b+ c = (l, + l&+ l3)/2, we can write

(x+y1

Ly)(,y)= (2(,+ )$
(54)

IV. EXTENSION TO MORE ELECTRONS

In this section we discuss methods of extending the MCI
method using basis sets of the form (45) to systems with

more than two electrons. The extension of the angular func-
tions (43) is trivial. In the case of more electrons, the cou-
pling of as many spherical harmonics as electrons is needed
as in the conventional CI method. The only difference is that
the functions (43) mix different angular configurations with

the same total angular momentum a priori.
The extension of the radial functions, however, modifies

one of the main simplifications in conventional CI calcula-
tions. In the conventional CI method, the radial basis func-
tions are built in terms of (orthogonal) one electron func-
tions, i.e., functions of the form f(r;), where 0~ r; ~~ is the
radial coordinate of the ith electron. In this way, overlaps
involving correlation terms will result in only two-
dimensional integrations of the form (15). Coupled radial

integrals of higher dimensionality are not present in calcula-
tions involving a Hamiltonian that contains only two-
electron interactions, such as the (lowest-order) nonrelativis-
tic Hamiltonian for N, electrons in the presence of a nucleus
with charge Z

( 1 ) lp l3 )

IO 0 Oi

(a+b+c)! (2a)! (2b)! (2c)!
a! b! c! (2a+2b+2c+1)!

(a +bc+1

1 ( a

(2a+ 2b+ 2c+ 1) ' ( 2(a + b+c) ~
'

2a

(b+ci
i

( 2(b+ )
\ t/2

2b

(52)

Ne Ne

H= ——g v,'—gi=1 ' i=1
—„+XX „ (55)

X;—r (;),

where j(i) is a one to one (reordering) mapping such that

In the extension of this work to systems with several elec-
trons, higher-dimensional integrals will be encountered.
These integrals are not as complex as those appearing when
correlated basis sets are used [9]and their values can actually
be calculated analytically in terms of simple expressions in a
straightforward way. In order to extend the method intro-
duced in this paper to a system with N, electrons, we intro-
duce the ordered set of radial variables

The 3-j symbols can then be written as

X1~XP ' ~X~ .
e

Given the symmetry of the Hamiltonian under an ex-
change of any two electrons, it can be rewritten as

( —1) b+-
(53)

e

H= ——gi=1

N

v„'- gi=1
—+XX
Xl l 1 g) l Xl XJ

(56)

where the functions B(x,y) involve small numbers and are
given by

This suggests, as before, the extension of the radial symmet-
ric basis set (40) to an N, electron fully symmetric basis set
composed of functions of the form
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&kix; ~ k, i
l

(57)
where g is symmetric in all the variables. This integral can
be rewritten in terms of the variables x; as

The integrals involved in the calculations will be of the form
x~ ( x~

dXN 1'' '
! dX1

bo

f
IN =N, ! dXN ~

Jo 'Jo

IN
e J p

goo t" oo

d7"
1 dP"2 ' '

Jo
g(r! rZ r~ ) (58)

J O
e

Xg(X! rXZ ~. . . ~X)V ). (59)

With the radial basis set (57), this integral will consist of
linear combinations of integrals of the form

~(»)( ) ~~»~» 1' '~2~1(u—)S S 1' SPS1

( u~1~2' ' ' ~n

(s, +sz+ . . +s„)!J()

Px„ x3 'I' X2

X dx„!e "-' "-' (o„!x„!)'»-1 dxz e 2 2 (ozx )" dx! e ' ' (o!x!)",
JO 0 JO

(60)

with u~~.
General expressions for (60) can be derived in terms of

the one-dimensional integral

"u

sp+ 1

g(2)
(SZ+ i) S!'
(S!+Sz)'1' (crz+cr)) ' (67)

I(., (u) = —, (o.x)'e ' dxs!Jo

Upon successive integrations by parts, we obtain

(o.u) '

IC, (u)=1 —e
i=O

(o.u) '

K, (u) = (o.u)'+'e
;=o (i+ s+ 1)!

(62)

(63)

(2) 2.S1.
(s!+sz)!

(6S)

In the case in which r~ has negative powers, i.e., s2~0, we
can use (63) to obtain

with

f oo

K, (1X)= — (crx)'e ' dx= 1.
s'00 (64)

I(. ' '(u)= g K ' '(u)
SPS1 ' — 1

l SP+ l
1 =$1+

In particular,

(69)

The infinite sum form (63) is to be used for small values of
the quantity cru for which (62) will involve large cancella-
tions. There is, however, another important use of (63),
which we will address shortly, namely, the case in which
radial variables with negative powers are used in the case of
several electrons.

For example, in the two-dimensional case we obtain

cr)crz~cT2 (T1
( ) (crzxz)'2e "' dxz

2' 1 (s!+sz)!J o

fxp
X (o!xt)"e ' ' dx!

JO
(70)

cr)crz
K 2 '(u) = (crzxz)'2e ' 2 dxz

2 1 ($1+SZ)!J(1

I' x2
X (cr,x, )'1e "1 dx, (65)

$1

g(z) g g(z)—go
i=O

fu= o z (o zxz) "e "2 IC '(xz) dxz(s(+sz)'~ o 1=s1+ 1

(z)

where

$1

(66) Equation (70) is equivalent to the usual expressions in terms
of hypergeometric functions used in Sec. III.

The expressions obtained for the one- and two-
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dimensional integrations can be now used to calculate
coupled integrals of higher dimensionality, which can be ob-
tained iteratively in terms of K, (u). For the most general
case of the n-dimensional integral defined in (60), one ob-
tains the general result

Z(")(u) =
l2=$1+ 1 l3=$2+t1+ 1 'n=sn+ 'n —1+ 1

(n) +o1+o2+ . . + o.„
gl2, 13' 'l s +)

where the constants g~") are defined by

(7l)

S1.(S2+ (2) ' ' (Sn+ (n) .

s2+1 s3+ 1 Sn+ 1
E l((Tl+ ~2) (~1+~2+ ' ' ~ —1)2 3 n n—

X
((r + (r )~2 '2 (O + (r + (r )~3 '3 . . . ((r(+ (r2+ . ~ + (r ) n n

(72)

gp'p" p,'",
, (0,0, . . . O,o;,o;+, , . . . , o.„)=lim plim p lim pg, '', ' ''', "(a, o2, . . . , a.„)

(73)

with the shorthand notation
(n) 1~ 2T '~ n/'

gi i i g (~1 ~2 ~n)3' '''' n 12~~3T
(74)

(n) ' 1~'2T ' ~ n
gp p;;; =gp p. . . ( 0, . . . , 0 (TJ, (rj+1, . . . , o„) (75)

in the case of a standard set of parameters. For example, in the case of three- and four-electron integrals, one obtains

(3) +0(+02+03(
) (76)

~0403020(( ) g g g (4) ~o (+ IT2+ 03+ cT4( )
& —$1+ 1 J =$2+ I + 1 k=s2+ J+ 1 4

(77)

in particular,

~"""(-)=X X$3s2$1 s1+ 1 J=$2+g+ 1
(78)

$1

=g "' "&" '(u) —X g"" "(~(,~2)

cr o +0.~cT3, 0] + 0
2(

2
$2+ ~

(82)

4 3 21(~) g g g (4) (79)
i s1+1 j=s2+i+1 k=s2+ j+1

The infinite summations can be replaced by finite sums in
the cases in which the powers involved are such that do not
lead to factorials of negative integers. This can be accom-
plished, for example, using the equivalent results (66) and
(69) or the identity in (70). For example, in the case of three
electrons, the necessary three-dimensional integrals result in
several different closed-form expressions

0 10203Z(')(u) = ((Tsxs)'3e 3 3 dxs(s, + S2+ S3)!J P

f x3 Px2
X (o2x2)'2e 2 2 dx2 (o)x()"e ' ' dx1

Jp JO

)I s3
s, , '2+ 3 1 2'(~1 ~2)

l = $1+ 1 02

XK ' ' '(u)
$3 ps2+l

(3)lt ol 02 03( )
i =s1+ 1 j=s2+i+ 1

S1

= X g'."~"'"()-X
&=$2+1 I=O J=S2+s+1

xlt '+ ' '(u)s3+J

S1

= g()()
—g g()', "'"(O,o, o.2) K '(u)

i=O

(83)

(84)

(85)

S2 s1 s2+ 1

crs (s, +s2)!
(o.sx3)"e "' I(. ' ((xs) dx3s1+ s2+ S3 2 1

(8l)

g(3)I( 2 ~3(u) + g g g(3)
i=O i=O j=O

XK ' ' '(u)$3+J (86)
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which in the limit u~~ for the three-electron case yield V. CONCLUSIONS

(87)

S) co

g'" —X X
1 =$2+ i l=0 J =$2+ I+ i

Sl

=go(,.'-X g.",""(0,~i, 2)i=0

$2 Sl S2+ 1

-X g(', ,'+X X gI,",
i=o ' i=0 j=o

(89)

+~2~1( ) (2)It~2( ) g (2)It~1+~2( )i=o
(9o)

g,")rC ",,"(u)
l=Sl+ 1

=g( &Sr '(u)rC '(u) —g( )Z' '(u)

(91)

$2

+X g '(~z ~t)&, '+; '(u)
i=o Si+I

=g(o )IC '(u)IC '(u)

(92)

X g', "'(~»~i)&, '„"(u)
I =S2+ i '1 (93)

By using these types of transformations, with others yet to be
derived, one can improve the convergence patterns of the
calculations for specific sets of parameters for which conver-
gence would otherwise be slow.

The form chosen in (60) is not the only way to write the
integral (59) in terms of ordered variables or ordered regions
of the multidimensional space of the variables r; . The order-
ing chosen in (60) is, however, necessary, given that the
"larger" variables can have negative powers. Recall that the
MCI method derives in large measure its power from the
presence of these negative powers. With this ordering, all
values remain finite during the intermediate stages of the
calculations of the integrals given that as the integrations
progress toward the leftmost integral, the negative powers of
the larger radial variables are offset by the positive powers
carried on from the "smaller" radial variables.

Different expressions for these integrals can be obtained
by systematically applying recursion relations or transforma-
tion properties of the two-dimensional integrals, such as

Sl

We have introduced a modification to the configuration-
interaction method that departs from the standard approach
in two ways: the use of ordered one-electron radial variables
and of generalized angular functions that are linear combina-
tions of large numbers of the coupled spherical harmonics
used in the CI method.

The use of ordered radial variables improves the radial
convergence of the basis sets by over ten orders of magni-
tude with a small number of functions. On the other hand,
the extreme simplicity of the radial integrals in the standard
CI method is lost. The present integrations are slightly more
complex but simpler than those necessary for calculations
involving correlated basis sets. In the case of Slater-type ba-
sis functions, all the integrals can be performed analytically
both in the case of a point nucleus or in the case of a finite-
nuclear-size potential.

The generalized angular functions introduced can be used
with any set of radial functions. This technique mixes in
advance a large number of coupled spherical harmonics with
the correct total angular momentum. The degree or nature of
the mixing is controlled by a set of (angular) nonlinear pa-
rameters. In this way one is able to introduce in the CI cal-
culations a very large number of angular configurations, at
least an order of magnitude greater than the largest number
of angular configurations that one is able to mix in the stan-
dard CI method. In this way, the angular convergence is
vastly improved as is the number of significant digits in the
energy eigenvalues that one is able to obtain. For example,
the best available standard CI calculation for the ground state
of helium yields an accuracy of 2X10 a.u. That same
accuracy was obtained by the present work using only three
generalized angular functions in a basis set of only 98 two-
electron basis functions, a calculation that is easily per-
formed on a microcomputer. On the other hand, to match the
accuracy of 7.5X 10 a.u. obtained in this paper, the con-
ventional CI method would need over a 10 two-electron
functions [4]. Still, work to better understand and improve
this angular representation must be pursued.
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