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Eigenvalues and expectation values for the 1s 2s S, 1s 2p P, and 1s 3d D states of lithium
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High-precisipn varlatipnal eigenvalues fpr the 1& 2s S, 1+ 2p P, and 1z 3d D states pf hthium are

calculated using multiple basis sets in Hylleraas coordinates. Convergence to a few parts in 10' —10" is
achieved. The nonrelativistic energies for infinite nuclear mass are —7.478060323 10(31) a.u. for the

ls 2s S state, —7.410156 521 8(13) a.u. for the ls 2p P state, and —7.335 523 541 10(43) a.u. for the

1s 3d D state. The corresponding specific isotope shifts due to mass polarization are also calculated with

similar accuracy. The 1s 2s S—1s 2p P and 1s 2p P —1s 3d D transition energies for Li and Li, as
well as the isotope shifts, are calculated and compared with experiment. The results yield an improved
ionization potential for lithium of 43487.167(4) cm '. Expectation values of powers of r; and r; and the

delta functions 8(r;) and 6(r;,) are evaluated.

PACS number(s): 31.15.Ar, 31.50.+w

I. INTRODUCTION

Lithium, a three-electron atomic system, is the simplest
atom with both an open and a closed shell. Lithium also
serves as a prototype for other alkali-metal atoms. Among
the various computational methods, the variational method in
Hylleraas coordinates is particularly powerful in handling
complex correlation effects between electrons. Though pro-
found advances have been made in the variational calcula-
tion of energies for helium and heliumlike ions [1—3], only a
few high-precision calculations for lithium are available.
King and Shoup [4] calculated the 5 ground-state energy of
lithium using a 352-term Hylleraas-type wave function. King
also extended his calculation to the lithium isoelectronic se-
quences for the ground state and some excited 5 states [5].
Due to their use of fixed nonlinear parameters, and perhaps
because of problems of near linear dependence in their basis
set, the ground-state energy obtained is accurate to only a
few parts in 10 . A significant improvement was made re-
cently by McKenzie and Drake [6), who used a multiple
basis set method in the construction of their variational wave
function in Hylleraas coordinates. With up to 1134 terms in
the basis set, the nonrelativistic eigenvalue of the ground
state was improved to an accuracy of one part in 10 . This
work also resolved a long-standing discrepancy with experi-
ment. A combination of configuration interaction (CI) with a
Hylleraas-type method was used by Pipin and Bishop [7] in
their calculations of the energies for the 2 S, 2 P, and
3 D states of lithium. With about 1500 terms in their basis
sets, they also similarly improved the nonrelativistic ground-
state energy and obtained the lowest-energy bounds for the
2 P and 3 D states. Liichow and Kleindienst [8] recently
calculated the lithium ground-state energy to a precision of
about one part in 10, as well as some excited 5-state ener-
gies, using the variational method in Hylleraas coordinates.
Instead of optimizing the nonlinear parameters, they opti-
mized the dimension of basis sets with the purpose of reduc-
ing the size of the basis set to a minimum without significant
loss of accuracy. A less accurate method is the full core plus
correlation CI calculation of Chung et al. [9].

One of the main obstacles in lithium calculations in Hyl-

leraas coordinates is the difficulty of calculating integrals
with several interelectronic distances in the integrand. These
integrals converge very slowly in general, that ultimately
leads to calculations which are extremely time consuming.
Thus a complete optimization of the nonlinear parameters for
a large basis set, which is indispensable in obtaining the
lowest eigenvalues and is important in avoiding problems of
near linear dependence in the basis set, is not an easy task.
We have recently discovered an asymptotic expansion
method to deal with these slowly convergent integrals [10].
This method has proven to be very successful in accelerating
the rate of convergence and thus it removes a major obstacle
to further progress. Large-scale variational calculations in

Hylleraas coordinates can now be done not only for 5 states,
but also for non-S states of lithium and lithiumlike ions. The
details will be presented elsewhere [10].

The purpose of this paper is to present the results of varia-
tional calculations using multiple basis sets in Hylleraas co-
ordinates. The structure of the basis sets is first discussed in
Sec. II. The variational eigenvalues are presented in Sec. III,
together with the finite mass corrections and estimates of the
relativistic and QED shifts. These are then compared with
experiment for both the transition frequencies and isotope
shifts, and an improved value for the ionization potential of
lithium is obtained. Finally, high-precision expectation val-
ues for a number of other operators are presented.

II. CONSTRUCTION OF WAVE FUNCTIONS

The basis set is constructed from the terms

P(r r r)=r' r'r'r "r"r3'
1~ 2~ 3 i 2 3 12 23 31

where
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ther significant lowering of the energy. However, this is by
no means a proof that none exist, only that they were
searched for and none found, In the case of the 3 D state,
the inclusion of a (0,2,0) block does not change the pattern
of convergence .

In generating the finite basis sets, all terms from ( 1) are
nominally included such that

denotes a vector-coupled product of spherical harmonics for
the three electrons to form a state of total angular momentum
L and

n( 1 )P(2)n(3) —P( 1 )n(2)n(3) (3)

is the spin function with the spin angular momentum 1/2,
where the indices 1, 2, 3 1abel the three electrons . Our work
shows that the exclusion of the second linearly independent
spin function does not affect the final convergence of energy
eigenvalues. In ( 1), the p&& & & & 1

functions include the(lll2)i)2, 13

lowest powers of r &, I z, and r 3 in order to ensure correct
behavior of the wave function as r;~0. The variational wave
function is a linear combination of the functions @ antisym-
metri zed by the three-particle anti symmetrizer

M~=(1) —(12)—(13)—(23)+(123)+(132) . (4)

For a given angular momentum L, the angular coupling for
the three electrons is

( I, , l2, l3) = (0,0,0)z for 5 states

( I, , l2, l3) = (0,0, I)„(0,1,0)21 for P states

(l 1,l2, l3) = (0,0,2)z (0,I, I)21 for D states, etc.

The inclusion of block (0,1,0)21 in the P state basis sets,
which describes the core p o1arization, is crucial in obtaining
adequate convergence. For smal 1 basis sets, the gain is barely
detectable. However, it becomes essential when the basis sets
become large. With only block (0,0, 1)„ included, the energy
eigenvalue apparently converge s to an incorrect value

7.410 136 34 a.u. , even if the size of the basis set becomes
as large as 1500 terms . A similar situation has also been
found in two-electron variational calculations [I] when the
mass polarization operator is inc luded explicitly in the
Hami ltonian. This illustrates that experiments with small ba-

siss

sets may lead to conclusions that are incorrect as basis
sets become large . It also illustrates the need to search for al 1

potentially important classes of terms . In the case of the P
states, the (0,0, 1)„and (0,1,0)s terms differ only in their
exponential scale factors . Although either set by itself be-
comes asymptotically complete in the limit of infinite basis
sets, a finite sequence of calculations may give a false im-
pression of convergence to an energy that is too high. Inc 1u-
sion of just a few (0,1,0)21 terms for the P states has an
immediate and dramatic effect for large basis sets . A system-
atic search for other possible such terms did not yield a fur-

J i +J2+J3+J12+J23+J31

and the convergence of the eigenvalue s studied as A is pro-
gre ssive 1y increased. However, terms that may potentially
cause near linear dependence s should be excluded. For ex-
ample, if l, = l2 and n= p, then terms with j,)j2 should be
omited, as well as terms with j i

=j2 when j23)j3 i . The
presence of the near linear dependences in the basis set can
be detected by diagonalizing the positive definite overlap
matrix to see if there is an abnormally smal 1 or negative
eigenvalue .

As in previous work [1,3,6], the total basis set is divided
into sectors with different scale factors n, P, and 7'. These
are then separately optimized for each sector. This strategy
dramatically improves the accuracy for a given total number
of terms in the basis set. However, instead of simply dupl i-
cating the terms in each block and assigning independent
scale factors as in the helium calculations [1,3], the first
block (O,O, L)A is divided into five sectors according to cor-
relations among the three electrons as follows:

sector 1: all j i2, j23
=0, j3 i 0

sector 2:all j i2, j23=0, j3i 40

sector 3:all j&2, j234 0, j3i 0

sector 4:ji2=0, jz34 0, j3i40

sectors:j i240, j234 0, j3i 40

This yields significantly better results than the McKenzie-
Drake [6] scheme, in which the basis set was partitioned
according to the inequalities jz(j„(j, and jz„(jz,~j
for the six permutations of the labels (X,p„v) = ( 1,2,3) . The
present scheme has an obvious significance in terms of
which correlations are contained in each sector. A complete
optimization of the nonlinear parameters leads to a natural
division of the basis set into these five sectors with quite
different distance scales . Therefore, a complete optimization
is important not only for improving the vari ational

eigenvalu-

e

ss,
but also for preserving the numerical stability of the

wave function, especially when 0, is large.
The complete basis sets thus contain five sectors for 5

states, and six sectors for P and D states when the (0,1,0)11
or (0,1,1)21 blocks are included. Finally, the size of each
sector is separately controlled by assigning to each an
value according to

{II,,A2, 03,04,05) = tA, A, A, A„,Aj, L = 0

(II 1 +2 II3 II4 II5 A6) tII + (A 7)min (0,7);„,(A,7);„,II —2), L= 1

(A1 A2 A3 A4 0$ A6) = (A, A, A, A, A, (A —2,3)~;„), L= 2,
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TABLE I. Nonrelativistic energies for the 1s 2s S, 1s 2p P,
and 1s 3d D states of lithium, in atomic units.

If R(A) were a constant R, then the series would converge
as a geometric series to the value

No. of terms R(A)

18
50

120
256
502
918

1589

19
55

138
306
622

1174
1715

19
57

148
340
586

1002
1673

1s 2s S
—7.477 311 711 30
—7.477 984 835 87
—7.478 052 568 65
—7.478 059 384 23
—7.478 060 203 73
—7.478 060 31046
—7.478 060 321 56
—7.478 060 323 10(31)

1&22& 2P
—7.409 722 805 8
—7.410 100 606 3
—7.410 150 289 3
—7.410 155 458 5
—7.410 156 380 9
—7.410 156 500 2
—7.410 156 518 4
—7.410 156 521 8(13)

1s 3d D
—7.335 271 380 14
—7.335 484 754 84
—7.335 520 359 81
—7.335 523 158 86
—7.335 523 488 10
—7.335 523 534 71
—7.335 523 540 35
—7.335 523 541 10(43)

9.938
9.938
8.317
7.678
9.611

7.604
9.611
5.604
7.733
6.540

5.993
12.720
8.502
7.064
8.253

where (a,b);„denotes min(a, b). The resulting truncations
of the basis set in the indicated sectors have been carefully
studied to verify that they do not significantly affect the ei-
genvalue convergence pattern.

III. RESULTS

A. Nonrelativistic eigenvalues

The nonlinear parameters are optimized by calculating
analytically the derivatives

= 2 II' H —2F 'IJ (6)

where n represents any nonlinear parameter, H is the Hamil-
tonian of lithium, and the normalization ('I'~'P) =1 is as-
sumed. Newton's method is used to locate the zeros of the
first derivatives. Provided the initial n, , P, , and y; are cho-
sen close to a minimum, the procedure converges in a few
iterations.

Table I lists the results for the nonrelativistic energies,
together with a detailed account of the convergence process
as the size of the basis set is enlarged. The ratio R(fl) is
defined by

(8)

The values of R listed in Table I are not constant, but they
vary smoothly enough with A to be useful in extrapolating
the energies to the limit O, ~~. The extrapolations were
done by assuming the functional form [1]

R(II) = 1+

and determining the parameters a and b by a least-squares fit
to the tabulated values. The extrapolation converges for
b(1. For example, for the 2 5 state, a = 12.23 and
b=0.238 to give the extrapolated (0=~) result in Table I.
In general, a tabulation of R(A) provides a sensitive test of
the quality of the calculation because imperfections in the
optimization of the nonlinear parameters or numerical insta-
bilities due to the existence of near linear dependence in the
basis set cause these ratios to become erratic.

All the numerical calculations were performed on an IBM
RISC/6000 350 workstation using double precision (approxi-
mately 16 decimal digits). For the 2 S state, the CPU time
for a complete calculation, including the calculation of all
the derivatives, is about 5 h for the 1589-term basis set.
However, as a check, the final calculations of wave functions
and energies were done in quadruple precision (approxi-
mately 32 decimal digits).

The overall accuracy we have achieved for the nonrela-
tivistic eigenvalues of lithium is a few parts in 10" for the
2 S and 3 D states and a few parts in 10' for the 2 P
state. A comparison with selected previous calculations in
Table II shows the significant improvement that has been
achieved. For example, our 306-term calculation for the
2 P state is better than 1454-term CI-Hylleraas result of
Pipin and Bishop [7]. The ground state energy obtained is
about two orders of magnitude more precise than the best
previous value of McKenzie and Drake [6].As for the con-
figuration interaction result of Jitrik and Bunge [20], their
lower value is apparently an artifact of their extrapolation
[6]. On the other hand, the method used by Chung et al. [9]
for obtaining the 2 P state energy cannot guarantee to yield
an upper bound to the eigenvalue. Our results for 2 P and
3 D states have improved the best previous calculations of
Pipin and Bishop [7] by about three orders of magnitude.

B. Finite mass corrections

In order to account for finite nuclear mass effects, we
rescale the Hamiltonian according to r~(m/p, )r and in-
clude the mass polarization term explicitly in the Hamil-
tonian such that

(10)

E(A —1)—E(A —2)
E(Q) —E(A —1) (7)

in units of 2RM, where RM=(1 —p/M)R, and
p, =mM/(m+M) is the electron reduced mass and M is the
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TABLE II. Comparison with other calculations for the nonrelativistic energies of lithium, in atomic units. HR denotes the Hylleraas result.

Author

Larsson [11]
Ahlenius and Larsson [12]
Sims and Hagstrom [13]
Ahlenius and Larsson [14]
Muszynska et al. [15]
Ho [16]
Pipin and Woznicki [17]
King and Shoup [4]
Kleindienst and Beutner [18]
King [5]
King and Bergsbaken [19]
Jitrik and Bunge [20]
Chung et al. [9]
McKenzie and Drake [6]
Pipin and Bishop [7]
Liichow and Kleindienst [8]
Tong et al. [21]
Present work

Method

100-term HR
78-term HR

150-, 120-term CI-HR
97-term HR

139-, 120-term CI-HR
92-term HR

170-term CI-HR
352-term HR
310-term HR
602-term HR
296-term HR

Extrapolated CI
Full core plus correlation

1134-term HR
1618-term CI-HR

976-term HR
Extrapolated MCHF

1s 2$ S

—7.478 025

—7.478 023

—7.478 044
—7.478 031
—7.478 044
—7.478 058
—7.478 058 24
—7.478 059
—7.478 059 53
—7.478 062 4(7)
—7.478 059 7(9)
—7.478 060 326(10)
—7.478 060 1

—7.478 060 25
—7.478 060 9
—7.478 060 323 10(31)

s2p P

—7,409 99
-7.410053
—7.410 078
—7.410 097

—7.4101 06

—7.410 157 8(9)

—7.410 155 4

—7.410 153 1

—7.410 156 521 8(13)

1s23d2D

—7,335 5239

—7.335 5231

—7.335 523 541 10(43)

nuclear mass. This procedure in effect sums to infinity the
perturbation series in p, /M. The resulting total energies can
be expressed in the form

EM(Li 2 S) = —7.478 060 323 10(31)

+0.301 842 809(15) (p/M)
—1.500(72) (p, /M)

C. Comparison with experiment

Table III lists the 2 S—2 P and 2 P —3 D transition
energies for Li and Li and the isotope shifts. Also included
are estimates of the relativistic and QED shifts. High-
precision values for the relativistic correction of O(n ) are

TABLE III. Comparison of the 2 S—2 P and 2 P —3 D tran-

sition energies for Li and Li and the isotope shifts, in units of
cm '.

EM(Li 2 ~P) = —7.410 156 521 8(13) Contribution 2S—2P 22P 3 2D

+0.246 737 81(71) (p,/M)

—1.54(30) (p/M)

EM(Li 3 D) = —7.335 523 541 10(43)

+0.288 928 837(66) (p/M)
—1.361(99) (p, /M)

(12)

(13)

For Li, p, /M = 7.820 203 X 10, and for Li,
p, /M = 9.121 677 X 10 . The coefficient of p, /M above is
the expectation value of —X,&,V; V~ calculated for infinite
nuclear mass and the next coefficient is obtained by subtract-
ing the term of p, /M from the directly calculated total energy
shift due to mass polarization. The corresponding result for
the Li+ 1 'S core is

EM(Li+ 1 '5) = —7.279 913 412 669 3

+ 0.288 975 786 393 60 (p/M )

—1.277 369 3 (p, /M) (14)

The nonrelativistic ionization energies are given by the dif-
ferences between Eqs. (11)—(13) and Eq. (14).

E
p,/I
( p, /M)

2a
3 b

Total

Experiment
Difference

E
p, /M

(p/M)
CL

CY

Total

Experiment
Difference

Li- Li
Experiment

7Li

14 903.161 76(29)
—2.111 245(12)

0.000 02(41)
3.040(70)

—0.30
14 903.791(70)
14 903.871 689(10) '

—0.081(70)
Li

14 903.161 76(29)
—2.462 608(14)

0.000 03(56)
3.040(70)

—0.30
14 903.439(70)
14 903.520 341(13) '

—0.081(70)
Isotope shift

0.351 35(41)
0.351 348(16)

'Reference [9] and present work.
QED shift from Ref. [24].

'Reference [26].
Reference [23].

16 380.045 93(30)
—0.556 813(12)

0.000 18(42)
—0.311(20)

0.045
16 379.223(20)
16 379,204 4

0.019(20)

16 380.045 93(30)
—0.649 480(14)

0.000 25(58)
—0.311(20)

0.045
16 379.131(20)

0.092 60(42)
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TABLE IV. Expectation values of various powers of r;, r;, , and the delta functions 8'(r;) and 8'(r;/) for
lithium. The subscript tx stands for the infinite nuclear mass case and the subscript M stands for the finite
nuclear mass case for Li. Units are ao and (~/m) "ao for these two cases, where n is the corresponding
power and is —3 for 8(r;) and 8(r;J), ao is the Bohr radius, arrd p, /m=0. 999 921 797 97. Numbers in

parentheses denote uncertainties in the final figures quoted.

Quantity 1s22s 25

30.240 965 15(25)
30.240 882 97(25)
5.718 110 883 61(13)
5.718 099 230 81(13)
4.989 523 148 59(75)
4.989 545 825 97(75)

18.354 614 517(72)
18.354 790 429(72)
2.198 212 002 47(71)
2.198 224 235 15(71)
8.668 396 813 4(36)
8.668 412 553 6(36)

36.847 838 063(39)
36.848 033 170(39)
13.842 543(53)
13.736 442(53)
0.544 329 0(37)
0.544 335 4(37)

2p P

29.900 988 78(42)
29.900 892 57(42)
5.638 905 934 4(15)
5.638 905 200 7(15)
5.871 364 34(18)
5.871 203 46(18)

27.948 236 4(16)
27.946 521 2(16)

2.096 404 780 42(65)
2.096 441 151 23(65)

10.412 089 29(33)
10.411 746 02(33)
56.049 467 7(44)
56.045 890 6(44)
13.676 064(17)
13.676 014(17)
0.532 286 4(57)
0.532 291 6(57)

3g D

29.869 480 81(66)
29.869 395 28(66)
5.487 098 963 82(21)
5.487 088 739 23(21)

11.629 225 31(16)
11.629 227 56(16)

126.532 360 8(15)
126.532 340 4(15)

1.790 249 821 20(18)
1.790 264 319 04(18)

21.865 558 89(32)
21.865 542 47(32)

253.141 928 3(31)
253.141 728 8(31)

13.703 681(50)
13.703 643(50)
0.533 728 3(50)
0.533 734 3(50)

not available. For the 2 S and 2 P states, the relativistic
corrections to the ionization energies were taken from the
restricted configuration-interaction calculations of Chung
et al. [9], relative to a common Li+(ls '5) parent ion.
However, the accuracy of their calculations is not clear since
their result for the Li (ls '5) ion was in error by —1.35
cm ( —6.16 ~a.u.) relative to the high-precision varia-
tional result of Pekeris [22]. This error cancels from the
1s 2s S—1s 2p P transition frequency only if it remains
the same when a 2s or 2p electron is added to form neutral
lithium. Ef the cancellation is no better than 95%, then the
relativistic correction to the 2 S—2 P transition frequency
is 2.761+0.279= 3.040~ 0.07 cm '. Since Chung et al [9].
do not quote an uncertainty, our value of ~ 0.07 cm ' should
only be taken as a reasonable estimate. For the nonpenetrat-
ing 3 DJ state, the relativistic ionization energy can be sim-

ply estimated from the one-electron Dirac energy

in lithium makes Eq. (15) a better approximation than for
helium. The 3 DJ fine-structure splitting is much more ac-
curately predicted to be 0.036 07 cm ' in comparison with
the observed splitting of 0.036 01 cm ' [23].

The QED corrections of order n in Table III contain two
parts. One is from a recent calculation by Feldman and Ful-
ton [24] for the radiative corrections using a Hartree-Fock
approximation. The numerical values are 0.24 cm ' for the
2 S state and —0.048 cm ' for the 2 P state. However,
these corrections are the radiative contributions not included
in the Johnson-BIundell-Sapirstein calculations [25]. The re-
maining part of O(n ) included implicitly in [25] must also
be taken into account. Explicitly, the full two-electron QED
shift from the Araki-Sucher terms is

b, E~z(nl) = n ( —",,'+ —", inn)68(12)„&

n'Z4t I 3 i
AE„)=—

2n
~ j+ I/2 4n)

with Z=1. Thus

5E„,( 3d s,z) = —0.018 036 cm

b E„,(3d3/z) = —0.054 108 cm

(15)

——, ns[Q(ls nl) —Q(ls )], (16)

as calculated by McKenzie and Drake [6], where

& &(12)„(=(&(r;/))t,~„~ (~(~tz)) t

Q=(1/4m. ) lim(r, (a)+4m(y+lna) 8(r; )),
yielding the center of gravity average b, E„t(3d)= —0.0325
cm . For comparison, the spin-averaged relativistic shift
for the 1s3d 'D2 and DJ states of helium is accurately
known to be —0.027 785 9 cm ' [I].We take the difference
from AE„t(3d) of 0.0047 cm ' to be an upper limit on the
uncertainty in AE„&(3d) since the closed-shell ls '5 core

a~O

y is Euler's constant, a is the radius of a sphere about

r;, =0 excluded from the integration, and a summation over
i~j from 1 to 3 is assumed. The terms evaluated by Feld-
man and Fulton [24] are



3716 ZONG-CHAO YAN AND G. W. F. DRAKE 52

TABLE V. Contributions to the ionization energy of
Li(ls 2s S). Corrections are relative to Li+(1 s 'S).

Contribution

E„(1s 'S)
—E„(ls 2s S)

~~Breit

~~finite mass

~~QED
Total

Ionization energy '
Difference

'Reference [9].
Reference [24].

'Revised value from Table IV.

Value (a.u.)

—7.279 913 412 669 3

7.478 060 323 10(31)
0.000 012 58(30)

—0.000 016 500 28(44)
—0.000 001 1

0.198 141 89(30)
0.198 142 114(20)

—0.000 000 22(30)

t 129 3m 14
AE~ ~(nl) = u' — + Inn b, 8'(12)„ i

——", u [Q(l snl) —Q(ls )] . (17)

The difference of

, I'7 3m~
/GAEL 2(nl) = n —+ b, 8(12)„t

L3 2
(18)

~ 129 3m 14
a3 — + Inn [Ab'(12)„&—b. 8(12)„& ], (19)

where DFF denotes their Hartree-Fock value, gives a further
shift of 0.008 45 cm ' for the 2s state and 0.004 13 cm
for the 2p state. Adding the two 2s-2p differences of
—0.007 23 cm ' and —0.004 32 cm ' to their tabulated dif-
ference of —0.29 cm ' gives a final QED correction for the

TABLE VI. Estimate of the ionization energy for the ground state
of lithium. Corrections are relative to Li+(1 s 'S).

Contribution

E„(ls 'S) —E„(ls 3d D)
—AEa„;,(1s 3d D)

E,„,(ls 3d D) —E„z,(ls 2s S)
Total

Value (a.u. )

0.055 610 128 43(43) '
0.000 000 148(20)

—0.000 004 344 64(61) '
0.142 536 182 '
0.198 142 114(20)

'Present work, including both normal and specific mass shifts.
From the spin-averaged Dirac energy.

'From the experimental transition energies, using R
109 737.315 709(18) cm ' [23].

must be added to their QED shift to find the total contribu-
tion of O(n ). Numerical values for (8(r,,))„2„,are listed
in Table IV, and from our variational calculations
for Li (ls ) state, (8(r,2)) „2=0.533 722 5ao. Thus

BEL 2(2s) =0.006 37 cm and BEL 2(2p) = —0.000 863
cm '. However, formula (3.15) of Ref. t24], which gives the
1/Z expansion for (8'(r,,)) i 22„, cannot be used reliably for
lower Z and their values based on Hartree-Fock wave func-
tions are also of low accuracy. If we replace their values of
5 8(12)„&by the accurate ones from Table IV, the difference
of

2 S—2 P transition frequency of —0.30 cm '. For the

3 D state, the one-electron QED correction is only
2.32X10 cm ' and can be neglected.

High-precision measurements for the 2 S—2 P transition

frequency were performed recently by Sansonetti et al. [26].
The measurement for the 2 P —3 D transition frequency is
from Ref. [23]. For Li, the differences between theory and

experiment in Table III are —0.081(70) cm ' and

0.019(20) cm ' for these two transitions. These discrepan-
cies reflect the limited accuracy assigned to the u relativis-
tic shifts from Ref. [9].

The Li- Li isotope shift in Table III does not suffer from
similar uncertainties since the pure n relativistic correction
cancels exactly and relativistic reduced mass and recoil cor-
rections are only of order a [(p,/M), —. (p/M), .]
= 1.5 & 10 cm '. The specific isotope shift therefore
comes predominantly from the first-order term of O(p/M)
in Eqs. (11)—(13), though the small second-order term of
O((p/M) ) is also important in bringing theory and experi-
ment into agreement. This is indicated by the excellent
agreement between theory and experiment for the

2 S—2 P isotope shift.

D. The lithium ionization potential

An improved ionization energy for the 2 S ground state
of lithium can now be obtained since the absolute ionization

energy of the 3 D state can be calculated to an accuracy of
~0.004 cm ' or better and combined with the experimental
2 S—2 P and 2 P —3 D transition frequencies. The prin-

cipal uncertainty is from the relativistic correction to the
3 D ionization energy. The result from Table IV corre-
sponds to an ionization potential of 43487.167(4) cm
This agrees with, but is more accurate than, the values
43487.15(2) cm ' [27] and 43487.19(2) cm ' [28] ob-
tained by direct extrapolation to the series limit. A more ac-
curate value for b E„i(3d) would allow a corresponding im-
provement in the ionization potential.

The various theoretical contributions to the ionization po-
tential are summarized in Table V. Since the nonrelativistic
energies and finite mass correction are now well established,
the difference of 0.22 p, a.u. probably comes from AFB„;t. A
more accurate calculation of this term is clearly necessary.

E. Other expectation values

Expectation values of r", and r", for various values of n,
as well as expectation values of 6'(r;) and 8'(r;, ), are useful
in testing the accuracy of other approximation methods such
as CI or quantum Monte Carlo calculations [29,30]. The
cases of (r, ') and (r,, ') may be quite accurate because
these terms appear in the Hamiltonian and are determined in

part by the virial theorem, but this is not the case for other
values of n. Table VI lists high-precision expectation values
for n in the range —2 ~ n ~ 2 for r",. and in the range
—l an~2 for r", , as well as expectation values for 8(r;)
and 8(r, ). The corresponding results when the mass polar-
ization is included in the Hamiltonian are also listed in Table
VI. The matrix elements are defined by
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with similar definitions for (8(r;)) and (8(r„)). For the
2 S state, the infinite nuclear mass results in Table VI agree
with the previous calculations of King [5], but the expecta-
tion values have converged to several more significant fig-
ures, as indicated by the extrapolation uncertainties in paren-
theses. For the 2 P and 3 D states, expectation values of
comparable accuracy are not available for comparison.

IV. SUMMARY AND CONCLUSIONS

the use of multiple basis sets greatly accelerates the rate of
convergence. The complete optimization of the nonlinear pa-
rameters in the basis sets is important in maintaining the
linear independence of the basis sets and thus preserving the
numerical stability of the wave function. The nonrelativistic
energies we have obtained are the lowest upper bounds to
date. The extension of these results to the lithium isoelec-
tronic sequence is currently under way.

Excellent agreement between theory and experiment for
the Li- Li isotope shift has been achieved and an improved
value for the ionization potential obtained. The main source
of error in the transition frequencies arises from matrix ele-
ments of the Breit interaction. Improvements here would al-
low more stringent tests of the QED terms and improved
accuracy for the ionization potential. Work in this direction is
in progress.

With the use of an asymptotic expansion method for the
evaluation of integrals, high-precision large-scale variational
calculations using Hylleraas coordinates are now possible for
the lithium atom and other three-electron systems with mod-
est computing resources. Our calculations demonstrate that
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