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Asymptotic-expansion method for the evaluation of correlated three-electron integrals
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An asymptotic-expansion method is presented for the evaluation of correlated three-electron integrals arising
in Hylleraas-type variational calculations for lithium and other many-electron atoms. The method proves to be
very efficient in accelerating the rate of convergence of an infinite series representation of the integrals. An
analytic expression for the terms in the series is derived.

PACS number(s): 31.15.Ar, 31.25.Eb, 02.70—.C, 31.15.Pf

I. INTRODUCTION

Hylleraas-type basis sets, which include explicitly powers
of the interelectronic distance r12= ~rt —r2~, [1] are well-
established as providing the most accurate wave functions
and energies in variational calculations for helium [2—4] and
other three-body systems [5].These calculations are particu-
larly efficient owing to a simple closed-form expression for
all the required correlated two-electron integrals [6].

The same methods can, in principle, be extended to
lithium and beyond, but there is no longer a simple, closed-
form expression for the most general integral of the form

t (J 1 J2 J3 J 12 J23 J31,~,P, r)

f
dr dr dr r 'r r 'r ' r "r "e ~«1 —P"2 —&r3 (1)

J
1 2 3 1 2 3 12 23 31

involving correlations among all three particle pairs r12,
r23, and r31. The numerical summation of an infinite series
is required if all three of the powers j12, j23, and j31 are odd
numbers. For a given size of basis set, the calculation there-
fore becomes less efficient by several orders of magnitude
relative to the two-electron (three-body) case, with the cal-
culation of integrals being the rate-determining step. Also,
the preservation of numerical accuracy becomes much more
difficult.

Early work on the integral (1) with J~~ —2 and

j „~—1 can be found in Refs. [7—13].The main technique
used by these authors (except Fromm and Hill) is to expandr, in terms of individual coordinates r and r, as well as
Legendre polynomials. One way to avoid infinite summa-
tions is to place some restrictions on the choice of basis set
so that at least one of the three powers in each integral is
even [7,8, 11,14]. However, such restrictions may seriously
affect the rate of convergence of the basis set. King and
Shoup [15] attempted to include all possible powers of r
and r„, such that

ji+j2+j3+j12+j23+ j31 + ~

Since the number of integrals involved increases rapidly as
0, is enlarged, they were unable to proceed to large basis
sets. Also, because of the time-consuming nature of the cal-
culations, none of the nonlinear parameters in their basis sets
was varied. The eigenvalues they obtained were only accu-
rate to about 1 ppm. The best previous variational calculation
in Hylleraas coordinates was done for the lithium ground

state by McKenzie and Drake [16].They performed a series
of calculations for 0~7, producing basis sets with up to
1134 terms. Nevertheless, the work was very time consum-
ing, and was limited to the ground state. A generalization of
integral (1) has been studied by Fromm and Hill [13].Al-
though a close form was obtained by them, problems of com-
putational efficiency remain, and no application of their for-
mula to lithium calculations has been reported.

The main purpose of this paper is to present an
asymptotic-expansion method which reduces the time re-
quired to calculate even the most troublesome integrals by a
factor of several hundreds, while preserving accuracy and
numerical stability. It is essentially identical to a method
used by Drake and Swainson [17] to perform sums over in-
finite sequences of states in their calculation of Bethe loga-
rithms. The method has recently been successfully applied to
the low-lying states of lithium [18], giving accuracies of a
few parts in 10' to 10"for the nonrelativistic eigenvalues of
the 2 S, 2 P, and 3 D states. Thus, a major obstacle to the
further progress has now been removed and large-scale high
precision calculations for lithium atoms become feasible.

II. ASYMPTOTIC EXPANSION

A. Derivation

We begin with the expansion for the interelectron coordi-
nate r12,

Ll L2

r12= X Pq(cos912) m c/qkr
q+2k j—

q
—2k

q=O k=O
(3)

derived by Perkins [10], where, for even values of j, L, =
2'j, L2= 2'j —q; for odd values of j, L, =~, L2= —,

'
(j +1).

Also in (3), r =min(r1 2) r) =max(r1 "2) and the co-
efficients are given by

2q+ 1 j+2 - " 2k+ 2t j—S

j+2 2k+ 1; .
o 2k+ 2q —2t+ 1

(4)

with

I=X T(q),
q=O

(5)

where Sq, =min[q —1, —,'(j+1)]. After exPanding each of
the r I"' in (1) and applying the addition theorem for spheri-

p v

cal harmonics, the integral I can be simplified into its final
form [10],
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L12 L23 31 1

12 23 31

X[W(jI+2q+2k&z+2ksI, j z+ j&z
—2kIz+2kzs, j3+jz3 2q——2k»+ jsI —2k3$ n P y)

+ W(j&+2q+2k&z+2k3I, j3+j3I—2k3I+2k», jz+ jIz—2q —2k&z+ j» 2k»', n, y, p)

+ W(jz+2q+2kIz+2kz3, jI+j&z
—2kIz+2ksI, js+j» —2q —2k»+ jsI —2ks&, P, u y)

+W(j, +2q+2k»+2k», j,+j»—2k»+2k», j,+j»—2q —2k»+j» —2k», P, y, n)

+ W(j&+2q+2k»+2k3I, jI+j3I—2k&I+2kIz, jz+ jIz—2q —2k&z+ jz3 —2k», y, u, p)

+ W(j&+2q+2k»+2k3I, jz+j» —2kz3+2kIz, jt+ jIz—2q —2ktz+ j3I 2k3$,' y, P, n)], (6)

where L,= —, (j „+1),and j;=j,+2, i =1,2,3. In (6), we have also assumed that all the j „are odd integers; otherwise, I
becomes a finite sum. W is a subsidiary integral defined by

foo ( oo

W(l, m, n;u, P, y) = dxx'e '
dyy e

0 X

Traditionally, the W integral has been evaluated by applying several recursion relations, as outlined by Ohrn and Nordling [9].
However, as derived in the Appendix, the general analytic expression is

l ! (l +m+n +p +2)! ( u
W(l, m, n; u, , y) =

(u+P+ y)™~"+3„=0 (l+ I+p)!(i+m+2+@) I, n+P+ y

( u+p
XpF1 1,l+m+n+p+3;l+m+p+3; 'n+ +y]'

with &F1 being the hypergeometric function. The above for-
mula is valid for l)0, i+m+1~0, and l+m+n+2~0.
Since each term in (8) is positive, the series is numerically
stable against roundoff errors. The hypergeometric functions
may be accurately calculated using the backward recursion
relation

1W-—

by remembering that the dominating part of &F1 is 1.Finally,
by combining (10) and (11) we obtain

zFI(l,s+t;s;r) =1+ g zF&(l, s+t + I; s+ Ig) . (9) (12)

The above recursion relation has also been tested and found
to be numerically stable. The main advantage of (8) is its
simplicity of form so that it can be easily implemented with
the help of recursion relation (9). From (8), the rate of con-
vergence of W is completely determined by the ratio

where

J1P+ 1 JP3 J3]+ 1
+ + +4.

The basic idea of the asymptotic-expansion method is to
split the integral I from Eq. (5) into the two parts

The asymptotic-expansion method follows from the asymp-
totic behavior of T(q), as q~~. From (4), the asymptotic
behavior of Cjqk is

where

I=1O N+ IN+ (14)

1

jqk (j+ 1}l2 ~

q
(10)

(15)

and from (8), it can be seen that the W in (6) have the
asymptotic dependence

4+t,-= X ~(q) .
q=N+ 1

(16)
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TABLE I. Convergence study of the integral I(0,0,0, —1,—1,—1;1,1,1). Sd(N) is the partial sum of the
first N terms for the series expansion of the integral I, S,(N) is Sd(N) with the asymptotic expansion
included, ASd=Sd(N) —S„(N 1)—, and AS, =S,(N) —S,(N 1—).

7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
Exact
Fromm and Hill '
'Reference [13].

Sd(N)

684.034 879
684.058 079
684.072 982
684.082 984
684.089 944
684.094 935
684.098 606
684.101 367
684.103 481
684.105 129
684.106 432
684.107 475
684.108 320
684.109 012
684.109 585

KSd(N)

0.023 200
0.014 902
0.010 002
0.006 959
0.004 990
0.003 671
0.002 760
0,002 114
0.001 647
0.001 302
0.001 043
0.000 845
0.000 692
0.000 572

S,(N)

684.113411 762 670 353
684.113411 763 922 386
684.113411 823 052 047
684.113411 837 751 073
684.113411 841 286 052
684.113411 842 217 374
684.113411 842 489 995
684.113411 842 578 216
684.113411 842 609 139
684.113411 842 621 076
684.113411 842 625 965
684, 113411 842 627 556
684.113411 842 629 489
684.113411 842 629 034
684.113411 842 629 034
684.113411 842 629 911 836 172
684, 113411 842 629 911 836

AS,(N)

0.000 000 001 252 0
0.000 000 059 129 7
0.000 000 014 699 0
0,000 000 003 535 0
0.000 000 000 931 3
0.000 000 000 272 6
0.000 000 000 088 2
0.000 000 000 030 9
0.000 000 000 011 9
0.000 000 000 004 9
0.000 000 000 001 6
0.000 000 000 001 9

—0.000 000 000 000 5

0.000 000 000 000 0

Then Ioz can be calculated exactly, and, for N sufficiently
large, the T(q) terms contained in the remainder I~+, „can
be estimated from their asymptotic expansions

as a system of A+1 linear equations in A+1 unknowns
which can be solved for the A;, i =0, . . . , A. The final esti-
mate of the integral is then

A;
T(q) = X;+~

=op

for each q, with the leading power )~. determined by Eq. (13).
Equations (14)—(16) then give

(20)

The calculation proceeds by progressively increasing N until
I no longer changes to machine accuracy. As A becomes
larger, the N required for convergence becomes smaller; but
eventually there is a tradeoff with the time required to solve
for the A; coefficients. The optimum values are approxi-
mately A=7 and N=20 for sixteen-digit precision.

where giv(i) = X,
"

~+, I/j is the Riemann zeta function with
the first N terms subtracted. The Iz+ &

term is thereby con-
verted from a series converging as 1/i to one converging as
ll(N+1)'+ . The advantage is that only the first few A;
coefficients need be known for N sufficiently large since
gN(i + k) —1l(N+ 1)'+

The main obstacle to the application of this procedure is
that the A; coefficients are either not known or difficult to
calculate. However, they can be determined "on the spot" to
sufficient accuracy from the calculation itself by the follow-
ing strategy. Assume that for some suitably chosen integer
A, the directly calculated T(q) are given exactly by the trun-
cated expansion

A

T(q) = X;+i,=op

This assumption in fact quickly becomes true to machine
precision for q ~q;„. If T(q) is now calculated for

q =N A, N A+ 1, . . . ,N—, then E—q. (19) can be regarded

B. Test calculations

Table I shows a convergence study for the integral
I(0,0,0, —1,—1,—1;1,1,1) which corresponds to )i. =4 in

(13), the most difficult integral in the variational eigenvalue
calculations. Here we choose A=7, i.e., seven terms in the
asymptotic expansion. Using double precision arithmetic
(approximately 16 figures), the second column of Table I
contains the values of Sd(N) calculated from the direct sum-
mation of the series. Successive differences of these values
are listed in the third column. The fourth column contains the
values obtained by the asymptotic-expansion method. The
corresponding successive differences are listed in the last
column. The exact value listed in the table is evaluated in
quadruple precision, and agrees with the benchmark calcula-
tion of Fromm and Hill [13j.It can be seen that at N= 21, the
results in the fourth column have converged to nearly the
machine precision @=2.2X10 ', while the direct sum in
the second column converges only to the fourth digit. This
example demonstrates the dramatic improvement in the rate
of convergence provided by the asymptotic-expansion tech-
nique. In fact, a direct summation can never exceed a relative
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700 TABLE II. Convergence study of the integral
I(0,0,0, —1,—1,—1;1,1,1) using the Levin u transformation.

500

400

300

200

100

2 4 6 8 10 12 l4 16 18 20

FIG. 1. Dependence of N,„on A for the integral

I(0,0,0, —1,—1,—1;1,1,1), where A is the number of terms con-
tained in the asymptotic expansion and N;„ is the minimum num-

ber of terms required to achieve a full convergence.

5

6
7
8

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

u(k)

684.113 573 763 105
684.113429 363 967
684.113410 768 429
684.113411 504 931
684.113411 839 111
684.113411 847 795
684.113411 843 377
684.113 411 842 995
684.113411 842 431
684.113411 853 603
684.113 411 818 997
684.113 411 766 733
684.113411 882 088
684.113412 030 780
684.113414 065 650
684.113406 521 980
684.113 418 297 312
684.113 489 777 282
684.113 511 820 949
684.114 315 563 275
684.119 174 405 598

u(k) —u(k —1)

—0.000 144 399 14
—0.000 018 595 54

0.000 000 736 50
0.000 000 334 18
0.000 000 008 68

—0.000 000 004 42
—O.OOO OOO OOO 38
—0.000 000 000 56

0.000 000 011 17
—0.000 000 034 61
—0.000 000 052 26

0.000 000 115 35
0.000 000 148 69
0.000 002 034 87

—0.000 007 543 67
0.000 011 775 33
0.000 071 479 97
0.000 022 043 67
0.000 803 742 33
0.004 858 842 32

2 (- I)' (V+I)' '~, T(e) '
q=o q/

u(k) =

X (- I)' (a+I)' 'T(e) '
q=o

(21)

There is a similar expression for the Richardson extrapola-
tion. Serious numerical cancellation may occur when k be-
comes large due to the existence of the oscillating factor
( —1)~. Typically, the accuracy of the u transformation in-
creases with k up to an optimal value ko and then deterio-

accuracy of 1.5X10 ' in double precision. This occurs at
N= 6860, where the T(N)II drop below the machine e, and
so adding more terms does not change I. At this level, the
gain in speed by the asymptotic expansion method is about a
factor of 400. Figure 1 shows the dependence of N;„, the
minimum value of N required to reach the final convergence,
on A for the same integral. For A = 1, 641 terms in (18) are
required to obtain the final convergence. However, as A in-
creases, N;„drops dramatically and approaches a stable
value of about 17. Since this behavior is quite typical for
integrals of this kind, one can simply fix the parameter A for
the computation of a large body of integrals. In fact, in our
lithium calculations [18], the global value of A =7 was just
sufficient to calculate all the slowly convergent integrals, and
it does no harm to more rapidly convergent integrals where a
smaller value of A would be sufficient.

Other commonly used convergence acceleration tech-
niques are the Levin u transformation and the Richardson
extrapolation [19,20j. In the Levin u transformation, the par-
tial sum of a slowly convergent series S„=Z" oT(q) is
transformed to the more rapidly convergent sequence of par-
tial sums

rates quickly. This is clearly demonstrated in Table II, which
lists the results of the evaluation of the integral
I(0,0,0, —1,—1,—1;1,1,1) in double precision. Relative to
the direct summation, the u transformation does improve the
rate of convergence for small values of k. However, the re-
sults rapidly deteriorate after reaching the optimal value at
ko= 13, where the relative accuracy is only about
1.5X 10 ' . Since k o depends strongly on the particular se-
ries being summed and cannot be predicted beforehand, the
method is difficult to apply to large-scale calculations involv-
ing many different cases. As for the Richardson extrapola-
tion, it is also subject to loss of significant figures. Our
method, however, not only can achieve full convergence for
a slowly convergent series, but also is insensitive to the
choice of the number of terms in the asymptotic expansion.

III. SUMMARY

The asymptotic-expansion method presented here has
been shown to decrease dramatically the time required for
the calculation of three-electron integrals in Hylleraas coor-
dinates. As a consequence, a major bottleneck in the devel-
opment of variational calculations for lithiumlike systems
has been removed. The technique itself is conceptually
simple, numerically stable, and easy to implement. It can be
applied to many other problems involving the summation of
series converging asymptotically as 1/i . In addition, we
have obtained an analytic expression for the 8' integral.

The asymptotic method may also be applied to the more
singular integrals which arise in the calculation of relativistic
corrections from the Breit interaction. Work along this direc-
tion is currently in progress.
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[y
Tt(y) = dxx'e

Jo

Using formula 6.5.12 of Ref. [21], Tt(y) becomes

(A3)

f oo

dzz"e ~'Tz(z), (Al)

where

APPENDIX

In this appendix, we discuss the derivation of formula (8).
After changing the order of integration, the W integral can be
rewritten as

3+1

T, (y) = e Y,F,(1;l+2;uy), (A4)

T ( )
— t+I+2 dye™~t

I+1 go

where &F& is the conAuent hypergeometric function. Substi-
tuting Tt(y) into (A2) and letting (=y/z, one has

with

fz
T2(z) = dyy e P'Ti(y)

Jo
(A2)

Xe +P '~, Ft(1;1+2;nz() . (A5)

Furthermore, expanding tF &
in (A5) according to its defini-

tion and performing the integration over ( by the same for-
mula mentioned above, Tz(2) becomes

a" ! 1

T.(.) =«X I+m+2+P dg gl+m+1+P —(a+P)zt"
'~ = p (l+ 1+p)! Jo

u"
z'+ + +~e +~ z~F ~(1;1+m+ p+ 3;(a+P)z) .

„=p (l+ 1+p)!(l+m+p+2)

Thus, W can be put into the form of

(A6)

a"
w=i! g'&=a (l+ 1 +p)!(l+ nt+ p +2) J p

P oo

dz z™+"+2+Pe +~+ z)F)(1;l+m+p+3;(a+P)z) .

Finally, the application of formula 7.621(4) of Ref. [22] yields Eq. (8).

(A7)
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