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Relativistic many-body effects in the fine and hyperfine structure of La u (Sd+ 6s) 1=2
states: The need for second-order electrostatic corrections
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Using our relativistic-configuration-interaction methodology, we report multireference calculations of energy
differences and magnetic-dipole and electric-quadrupole hyperfine structure constants of all five levels in the
(5d+6s)2 J=2 manifold of singly ionized ' La. The errors in the splittings of the bottom four levels are no
more than 0.02 eV, while the separation of the two highest levels has an error of 0.11 eV due to an incomplete
description of the correlation in the levels belonging to higher manifolds. The hyperfine-structure constants
show strong sensitivity to many-body effects, resulting in striking improvements over the multiconfiguration
Dirac-Fock values. Seven of the ten hyperfine constants are accurate within 2—12%. For the rest of the

constants we have identified the primary cause of the errors as an incorrect description of many-body effects
in the high-lying levels and have discussed possible remedies.

PACS number(s): 31.30.6s, 31.25.Jf, 31.30.Jv

I. INTRODUCTION

This work is a continuation of our efforts towards devel-

oping a cohesive and rigorous relativistic-configuration-
interaction methodology that will address the bound-state
properties of the entire Periodic Table in a systematic fash-
ion. In our previous work on three- fl] and four- [2,3] elec-
tron systems such as Zr II and Nb II, we have shown that it is
not only possible to position the low-lying [nd+ (n+ 1)s]
levels of the transition metals with reasonable accuracy (a
few hundred cm ), but it is also possible to use the varia-
tional wave function to carry out an accurate perturbative
calculation of the hyperfine structure (hfs) of these levels.
Since the magnetic-dipole (A) and electric-quadrupole (B)
constants have been measured for the entire (5d+6s)
manifold for La 11 [4], and based on our work on the hyper-
fine structure of Sc ii and Y ii [5], we expect large many-
body effects to exist; it presents an extremely interesting sys-
tem for a first-principles theoretical study. To our knowledge
such a study does not exist, although calculations of the La u
hfs using the classical parametric scheme have been carried
out by Bauche et al. [6].

Relativistically, one is confined to work within a given J
of the atomic states. Accordingly, we pick the J=2 "multip-
let" since it contains the single largest number of levels,
namely, five of them. These correspond to each of the

5d3&z, 5d3i25d5i2 ds&2 5d3&26s, and 5ds/26s configura-2 2

tions, which serve as the reference (or the zeroth-order) func-
tions of our calculation. Computationally speaking, the prob-
lem is considerably simpler compared with, say, either Nb n
J=2 (4d+5s) states (21 references) or Zr Ji J=3/2 states
(10 references). The system poses quite a challenge to the
theory, however; a multiconfiguration Dirac-Fock (MCDF)
calculation on the five (5d+6s) vectors yields a poor hfs,
with two of the A's even having incorrect signs. Due to the
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strongly interacting nature of the nd and nd '(n+ l)s
states, it is absolutely essential that the relative energies of
the 5d and 5d6s levels are accurately determined before
the hfs is calculated.

To this aim, we first carry out a thorough multireference
relativistic configuration interaction calculation of the La II
J= 2 (5d+ 6s) manifold. The core-polarization effects im-
portant for hfs are included once a satisfactory theoretical
level spectrum is obtained. The hfs constants are determined
from the diagonal (in J) contributions to the hyperfine split-
ting. A concise description of the theoretical formalism in-
cluding a brief contemporary review of the hfs calculations
can be found in Ref. [2].

II. CALCULATIONS

The atomic wave function is a superposition of the zeroth-
order vectors and a chosen class of angular momentum (J
and J,) eigenstates. These are formed from the MCDF vec-
tors by one- and two-electron excitations. To first order, these
are the only nonvanishing contributors to the energy. Such
excitations could be into the holes in the Dirac-Fock (DF)
space or into the external unoccupied orbitals. The latter are
represented as virtual spinors (Ulj or vl/ or simply Ul). We
categorize the J eigenkets, known more popularly as the
configuration-state functions according to the following
scheme.

(i) The MCDF vectors, or all the vectors in the
(5d+ 6s) manifold, consist of the zeroth-order vectors
and excitations of the types n &l &j]~n2l2j2 and
(n, ltj, ) ~(n2lzj2), where the nlj sets refer only to the
5d or the 6s orbital.

(ii) The valence-shell correlation configurations arise
from single excitations nl&j&~Ul2j2 or the pair excitations
such as n&l&j&, n2l2j2~Ul3j3, v'l4j4. Again, the nlj sets
represent only the valence spinors.

(iii) The core-valence correlation configurations are
the double excitations involving a valence and a core
electron and also fall into the general category of
n&l&j&, n2l2j2~Ul3j3, U'l4j4. However, only one of the
two n lj sets belong to either 5d or the 6s orbital.
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(iv) The core-core correlation configurations can be either
of the type &&1&j&,nzlzjz~n313j3, n414j4, n&l&j&, nzlzjz
—+n313j3,u14j4, or ni1ij&,nzlzjz~ v13j3,u'14j4. Sub-
scripts 1 and 2 belong to the core electrons and 3 and 4 to the
valence spinors.

(v) Finally, the core polarizations, or the single excitations
from the core, look either like nilij&~nzlzjz or like
nl ij i ~ulzjz. A large number of such excitations, especially
the ones from the deeper core, are not significant energeti-
cally but can be critical contributors to the hyperfine struc-
ture.

The DF spinors are the numerical solutions of the MCDF
equations obtained on a logarithmic mesh [7] and the virtual
spinors are taken to be the relativistic screened hydrogenic
functions (RSHFs) [8].The RSHFs are parametrized through
their characteristic nuclear charge Z~, which is optimized
during the variational process. This way, only a handful of
virtual spinors of a particular symmetry can effectively de-
scribe the entire Rydberg series of the same symmetry. Use
of RSHFs also circumvents the well known [9] problem of
"variational collapse, " the uncontrolled dissolution of the
energy into the negative continuum during the variation of an
analytic spinor.

The atomic Hamiltonian is the Dirac-Coulomb Hamil-
tonian. Although the Breit term in the next most important
correction to the Hamiltonian, its effect on the relative posi-
tions of the nd and nd 's levels is usually quite small
compared with the correlation corrections. In the present
case, we actually find that the differential contributions from
the Breit term does not exceed 80 cm ' (=0.01 eV) at the
MCDF level. This is also considerably smaller than the ac-
curacy that we have achieved so far for the second-row
transition-metal ion energy levels [1-3].

In a multireference framework, the DF spinors derived
from a particular root must be used for all levels and the
choice of the root depends on one's concern and intuition at
the initial phase of formulating the problem. A preliminary
MCDF calculation shows that the magnetic-dipole hyperfine
constants (the A' s) are quite poor for the 5d P and the
5d6s D levels, both having the wrong sign. In order to best
describe these two states, we obtain the (Is, . . . , Sd) radials
from a MCDF calculation [10] on the 5d 3P root and ex-
tract the 6s radial from a separate calculation on the
5d6s D root. The 6s radial thus obtained is reorthogonal-
ized to the 1s, . . . ,5s radials. The angular parts of the
spinors are the same as those of the corresponding hydro-
genic functions. Corrections to the radial characteristics for
the other roots are incorporated through the symmetry pre-
serving single excitations 5d,.~ud, and 6s~ us at the va-
lence configuration-interaction (CI) stage. If the variational
steps are carefully carried out, the choice of the roots from
which the DF spinors are derived does not affect the end
results [11]however.

The inclusion of many-body effects begins by first iden-
tifying the valence correlations and choosing the virtual
space so that at least 95% of the valence correlation energy
is accounted for. To minimize the errors due to possible ra-
dial inadequacies, we also include the nearest even-parity
configurations, namely, those belonging to the 4f6p configu-
rational manifo1d, the lowest of which is at 35 452.66
cm ' [12]. It must be noted that the topmost (5d+6s)

level is 5d 'D at 10094.86 cm ' [12]. We optimize two

sets of virtual spinors spanning vs through ug and con-
sidering all significant single and pair excitation s

[5d,6s~vs, vd, vg;(5d+6s) -+(4f+6p)vl, vlvI' subject
to

~
I —I'

~
~2]. Expanding the basis set to include a single v h

essentially demonstrates that this provides a near-complete
description of the valence correlation.

The strongest correlation contributions, both absolute and
differential, come from the shallow core, i.e., from ex-
citations involving the 5p spinors to be precise. Of these,
the most dominant ones are 5p &vp,—vf;5p ~(5d+6s),
(5d+6s)vd; and 5p5d~vpvd, vdvf, vfvg. Between 5d
and 5d6s manifolds, contributions from each of these differ
by several tenths of an eV, bringing about the most dramatic
corrections to the relative positions of the energy levels.
One should note that the differential importance of the des-
ignated 5p excitations is due to exclusion effects associ-
ated with the Pauli principle. Also present are the other
important but comparatively less dominant ones: 5p+uh;
5pz —+(5d+ 6s) v g, (5d+ 6s) v s; and 5p5d~v sv p, v sv f,
upvg, vguh, uduh, whose effects are about an order of
magnitude smaller. At this stage, we add one additional vir-
tual spinor for each symmetry within the range 1~3.

Naturally, the next step in this problem would be to ex-
plore the many-body effects arising from the 5s shell. Pair
correlations such as 5s5p +5dv p, 5d—vf; 5s5d —+vsv d; and
Ss—+ 5d, v d, vs were found only to have a modest effect, all
others from 5s5d being negligible. The single excitations
5s~6s, vs also play crucial roles in determining the hyper-
fine structure of the energy levels, a fact that is well known.
Other possible double excitations, e.g., those arising from
5s, were seen to have little effect on the energy and were
omitted. A detailed listing of the various contributors is given
in Table I. As is obvious from the table, we have discussed
here only those effects that reAect a difference of 0.01 eV or
higher between the 5d and 5d6s configurational manifolds.
Our final CI matrix consisted of over 6000 vectors.

So far, we have not illuminated the computational chal-
lenge associated with such a calculation. Many of the core-
valence and core-core correlations generate several thousand
eigenvectors per configurational manifold. Each of these
eigenvectors may again contain thousands of determinants.
The contribution of the angular-momentum eigenstates and
the matrix elements of the Hamiltonian could thus become
the bottlenecks in the calculation [2]. As discussed in our
prior work [1,13], we have implemented the Bartlett-
Condon-Beck (BCB) and the REDUCE computer algorithm to
deal with these two situations respectively in a very efficient
manner. The angular-momentum eigenstate are constructed
by splitting each configuration into two parts and reassem-
bling them using the BCB method. The large number of
eigenvectors thus created are transformed into a minimal set
by the REDUCE method and keeping only those members that
survive in the nonrelativistic limit. The efficiency gain and
accuracy of these procedures have been discussed in Ref. [1].

Since the level energies are quite well positioned with
respect to each other at this point, it seems logical to shift the
focus of the problem to the hfs constants. Seven of the ten
hfs constants are found to be in excellent agreement with
experiment, namely, the A 's for the 5d F, P, 'D,
5d6s 'D, and D levels and the 8's for the 5d F and
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TABLE I. First-order contributions (in eV) of single and pair correlations to the various (Sd+6s) J=2 states in La n. All signs are

reversed. MCDF contributions are only from the vectors outside the reference manifold. The numbers in brackets denote multiplicative

powers of 10.

Excitation

MCDF
(Sd+6s) ~4f6p

6p2
4f2

6s~vs
~vd
~vg

Sd—+vd

(Sd+6s) ~6pup
~6puf
~4fv p
~4fvf
~4fvh
~VP
~vd
~uf
~ug
~vsvd
~upuf
~vdug

Sp~vp
~vf
~uh

Ss~us
~vd
~(Sd+6s)

Sp ~(Sd+6s)
~(Sd+6s)vd
—+Sdug
—+Sdvs
~up
~vd
~vf
~vpvf

SpSd —+vsup
~vpvd
~udvf
~ufug
—+vguh
~vsvf
~vpvg
—+uduh

SsSd~vsvd
—+vpvf
~vs
~up
~vd
~vf

SsSp~Sdup
~Sduf

4p~vp
~uf

Sd6s D

—0.647[0]
0.581[—01]
0.921[—01]
0.273[—04]
0.264[—02]
0.193[—01]
0.669[—01]

0.127[0]
0.567[—01]

0.112[0]
0.310[—01]
0.171[—01]
0.238[—02]
0.183[—01]
0.598[—02]

0.243[—01]
0.867[—02]
0.181[—01]
0.589[—01]
0.716[—02]

0.262[0]
0.483[0]

0.152[—01]
0.184[—01]
0.405[—01]
0.159[—01]

0.704[0]
0.871[0]
0.103[0]

0.139[—01]
0.871[—01]

0.311[0]
0.266[0]

0.165[—01]
0.461[—01]

0.185[0]
0.203[0]
0.104[0]

0.187[—01]
0.123[—01]
0.498[—02]
0.435[—02]
0.140[—01]
0.376[—02]
0.829[—03]
0.180[—02]
0.894[—02]
0.105[—01]
0.692[—01]

0.245[0]
0.767[—03]
0.285[—02]

Sd P

0.278[—02]
—0.522[—04]
0.112[—011
0.424[—01]
0.975[—04]

—0.146[—04]
—0.850[—04]
—0.551[—04]
0.106[—01]

—0.116[—03]
—0.361[—04]
0.812[—01]

—0.264[—05]
0.443[—02]
0.383[—01]
0.702[—01]
0.228[—01]
—0.111[—04]
—0.736[—04]
—0.122[—04]
0.813[—01]

0.761[0]
0.220[—01]
0.585[—02]
0.504[—01]
0.462[—01)

0.588[0]
0.779[0]

0.949[—01]
0.167[—01]
0.942[—01]

0.316[0]
0.262[0]

0.165[—01]
0.147[—01]

0.224[0]
0.325[0]
0.181[0]

0.313[—01]
0.256[—01]
0.899[—02]
0.826[—02]
0.292[—01]
0.763[—02]

0.000[0]
0.247[—02]
0.826[—02]
0.123[—01]
0.856[—01]

0.221[0]
0.834[—03]
0.691[—02]

Sd6s D

0.583[—01]
0.259[—01]
0.430[—03)

—0.158[—04]
0.529[—01]
0.391[—02]
0.516[—02]
0.556[—01]
0.197[—02]
0.387[—01]
0.107[—01]

—0.619[—03]
—0.729[—04]
0.486[—03]
0.124[—04]

—0.854[—03]
—0.309[—03]
0.155[—01]
0.158[—01]
0.425[—02]

0.365[0]
0.468[0]

0.147[—Ol]
0.144[—01]
0.247[—01]
0.237[—01]
0.693 [0]
0.871[0]
0.103[0]

0.134[—01]
0.886[—01]

0.314[0]
0.269[0]

0.165[—01]
0.503[—01]

0.201[0]
0.204[0]
0.103[0]

0.185[—01]
0.127[—01]
0.471[—02]
0.437[—02]
0.139[—01]
0.357[—02]
0.773[—03]
0.222[—02]
0.909[—02]
0.108[—Ol]
0.693[—01)

0.245[0]
0.692[—03]
0.284[—02]

Sd' 'D

0.508[0]
—0.432[—02]
—0.745[—02]
0.282[—01]
0.379[—01]
0.320[—02]
0.113[—01]

—0.465[—02]
—0.409[—02]
—0.998[—02]
—0.239[—02]
0.433[—01]
0.194[—02]
0.873[—04]
0.350[—01]
0.347[—01]
0.110[—01]

—0.333[—03]
—0.536[—02)
0.343[—02]
0.965[—01]

0.723[0]
0.235[—01]
0.178[—02]
0.236[—01]
0.324[—01]

0.566[0]
0.776[0]

0.930[—01]
0.160[—01]
0.950[—01]

0.317[0]
0.267[0]

0.162[—01]
0.158[—01]

0.224[0]
0.329[0]
0.183[0]

0.316[—01]
0.282[—01]
0.961[—02]
0.867[—02]
0.289[—01]
0.789[—02]

0.000[0]
0.269[—02]
0.777[—02]
0.111[—01]
0.867[—01]

0.219[0]
0.473[—03]
0.406[—02]

Sd F

0.545[—01]
0.233[—02]

—0.471[—03]
0.153[—01]
0.484[—02]
0.965[—02]
0.148[—01]

—0.390[—03]
—0.859[—04]
0.506[—02]
0.214[—02]
0.286[—01]
0.103[—02]
0.229[—03]
0.255[—01]
0.253[—01]
0.621[—02]
0.454[—04]
0.450[—02]
0.165[—02]
0.855[—01]

0.777[01
0.295[—01]
0.545[—02]
0.304[—01]
0.177[—01]

0.548[0]
0.772[0]

0.924[—Ol]
0.159[—01]
0.951[—01]

0.315[0]
0.268[0]

0.168[—01]
0.145[—01)

0.233[0]
0.336[0]
0.184[0]

0.317[—01]
0.293[—01]
0.100[—01]
0.872[—02]
0.299[—01]
0.685[—02]

0.000[0]
0.221[—02]
0.855[—02]
0.119[—01]
0.878[—01]

0.217[0]
0.489[ 031
0.333[—02]
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TABLE I. (Continued)

Excitation

4s-+Us
~Ud
~(5d+6s)

3p Up

3$~US

~(5d+6s)

Total

5d6s 'D

0.841[—04]
0.105[—03]
0.387[—05]
0.177[—04]
0.770[—05]
0.838[—06]
0.202[—06]

0.422[+01]

5d P

0.202[—04]
0.312[—03]
0.215[—05]
0.101[—04]
0.108[—05]
0.294[ 041
0.316[—06]

0.461[+01]

5d6s D

0.120[—03]
0.754[—04]
0.194[—05]
0.189[—04]
0.818[—05]
0.800[—05]
0.193[—06]

0.452[+01]

5d 'D

0.597[—05]
0.233[—03]
0.425[—06]
0.558[—05]
0.798[—06]
0.260[—04]
0.148[—06]

0.493[+01]

5d F

0.186[—04]
0.256[—03]
0.219[—05]
0.615[—05]
0.904[—06]
0.212[—04]
0.140[—06]

0.448[+01]

'D levels. The inclusion of core polarizations 4p~vp, vf
and 4s —+ vs also brings the 5d P electric-quadrupole con-
stant to similar agreement, although they mostly provide
only marginal improvements to the rest. The insertion of
3s~vs and 3p —+vp along with further expansion of the
virtual basis does not yield any significant changes or im-
provements. Therefore, we now turn to carry out a careful
analysis of the problem.

III. RESULTS AND ANALYSES

The relative energies of the (5d+6s) levels are quite
well determined; in order of increasing energies, the split-
tings between the adjacent levels differ (in wave numbers)
by 51.48, 14.81, 163.4, and 1106.63, respectively (Table II)
from the corresponding experimental values [12].The error
in the topmost level is inherent in a restricted variational
treatment such as a "first-order" CI, as discussed below.
Four of the five magnetic-dipole constants are determined
within 7 —12% and three of the electric-quadrupole con-
stants are determined within 2.5—10.5 %. Theoretically de-
rived LS identities of the roots agree well (Table II) with that
of Martin, Zalubas, and Hagan [12].

We have identified very likely all major first-order many-

body effects in this system (Table I), i.e., those contributing
-0.10 eV or more to the energy differences between the
5d and 5d6s manifolds and most of those in the 0.01—0.10
eV range. The unaccounted for correlation energies must
come from the cumulative effects of differential contributors
of the order of —0.01 eV or even smaller. Many of these
would cancel each other. Also, further refinements to the
energy levels must also take into account the (i) Breit con-
tributions and (ii) second-order corrections emerging from a
more accurate description of the high-lying states. Our fail-
ure to take into consideration the many-body effects in those
states is responsible for the comparatively large error in the
topmost level (5d 'D) of the manifold of our interest, viz. ,

(5d+6s) .
From the standpoint of first-order perturbation theory, the

position of a particular level is mainly determined by its
interaction with the levels right above and below it. Prefer-
ential inclusion of many-body effects in the lowest manifold
effectively causes it to move further down, thus forcing a
much reduced interaction between the highest level in the
manifold and the "external" levels higher up in the spec-
trum. This precisely is the cause of the seemingly large error
in the 5d6s 'D state. Since the total correlation contribution
to each of the (5d+6s) vectors add up to -4.0 eV, their

TABLE II. Ab initio energies and hyperfine structure of La n J=2 (5d+6s) states. The values within parentheses are the MCDF values.
See the text for an explanation of the discrepancies between the experimental and the CI values in a few of the hyperfine constants. Only the
highest I.S components have been shown in the extreme right columns. The values of the nuclear parameters are I= 2, p, =2.778, and
Q=0.22 b [14].

Level (Expt. ') Energy (cm ') A (MHz) [B (MHz)]l[ Q (b)] Level (Theor. ")

Sd6s 1D

3p

D

'Reference [12].
This work.

'Reference [4].

Configuration
+' L Theor. " Expt. '

6 427.39 6 227.42

2 628.17 2 591.60

1 445.94 1 394.46

0 000.00 0 000.00

11 071.46 10 094.86

The or.

53.86
(91.07)
—141.43
(89.45)
—6.40

(183.73)
842.85

(529.25)
368.75

(253.53)

Expt, '

48.12

—1S8.11

—8.69

948.83

397.32

The or.

161.02
(129.74)
—209.55

(—191.81)
156.42

(127.16)
136.96
(55.07)
84.56

(77.41)

Expt. '

180.00

—204.54

257.72

226.36

90.00

5d6s
Sd
5d
5d

Sd6s
5d
5d

Sd6s
5d
5d

52.2'D
36.6 'D
63.8 P
25.2 F
756 D
16.1 'D
71.4 'D
162 D
60.7 F
279 P

Dominant Leading
configuration LS component (%)
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separations from the high-lying levels suffer from a similar
additive error. We will return to prescribing appropriate cor-
rective measures soon.

The magnetic-dipole constants show strong sensitivity to
many-body effects and result in remarkable improvements
over the MCDF values (Table II). The two largest constants,
namely, those for the 5d F and 5d 'D levels are deter-
mined to within less than 7.2% and 11.2%, respectively,
while those for the 5d P and Sd6s '0 levels are correct to
10.5% and 11.9%, respectively. The Sd6s D constant is
tiny (experimental value —8.69 MHz [4j and despite being
within —2 MHz, the CI value has an error of 26.3%.

Further improvement of the dipole constants is compli-
cated by the fact that the hyperfine constants of the
Sd6s D level are extremely sensitive to its splitting with
the neighboring Sd 'D state. This is evidenced by observ-
ing the changes in hfs and CI coefficients between two sub-
sequent stages of the calculation. Using the normalized co-
efficients for the Sd6s vectors from the two last stages, we
obtain DF hyperfine constants differing by as much as -50
MHz while the MCDF coefficients vary only by -2—3 %.
The error of about 10.6% (-100 MHz) in the Sd 'D level
is likely to be associated with the incorrect position of the
5d6s'D level, both of which are heavily mixed.

The electric-quadrupole constants are comparatively less
sensitive to the many-body effects. Nonetheless, all of them
show very impressive improvements over the corresponding
MCDF values, resulting in accuracies of 6.0% (5d F),
2.4% (5d P), and 10.5% (Sd6s 'D) Evidently, the .rela-
tively large departure (greater than 39%) in the 8's for the
first and second excited states arise from effects beyond the
first-order many-body corrections to the wave function. A
close scrutiny of the contributions to the electric-quadrupole
constants reveals that the largest effects come from the inter-
action of some of the levels appearing high up in the spec-
trum. In the present case, the eigenvectors are those corre-
sponding to the 6s U d configurations, one of which,
according to Martin, Zalubas, and Hagan [12j, is located at
64 529.9 cm ', the other one being unidentified. These lev-
els however, are by and large poorly described due to the
absence of core-core and core-valence correlation effects as-
sociated with them, which are included in the (Sd+6s)
manifold, as mentioned earlier in this section. Consequently,
many-body corrections to their positions would result in an
increased contribution to the hyperfine interaction energy,
presumably correcting the quadrupole constants. Inclusion of
such effects also corrects the position of the highest levels of
the (5d+6s) manifold. As far as we know, such a conjec-
ture is being made and put forth in the literature for the first
time.

A fairly large number of levels appear between the
(5d+ 6s) manifold and the continuum, only a few of which
contribute to the hfs. For open d and f systems simultaneous
many-body treatment of all these levels belonging to various
manifolds is an impossibility at this stage. Until this can be
accomplished, a semiempirical treatment based on experi-
mental energies and theoretically known magnitudes of
many-body effects could conceivably be devised. Clearly,
such a treatment would be completely ab initio to first order;
only the second-order effects, wherever necessary, would
have to be incorporated in a semiempirical fashion.

We have begun introducing such corrections ad hoc, by-
adding to the diagonal matrix elements corresponding to the
higher levels, an energy equal to the total accounted for core-
core and core-valence correlation in the (5d+ 6s) manifold,
which is about —4.0 eV. We do see the expected trends: a
significant (-45%) improvement in the position of the top-
most 5d 'D level and a 10—15 % improvement in the quad-
rupole constant 8's of the Sd6s levels. The differential ef-
fects between these levels remain to be determined, for
which the experimental level splittings may be taken as
guidelines. The combination of a large number of levels and
our use of virtual spinors instead of well defined 6d and 7s
radial functions make further semiempirical calculation un-
fruitful. Before proceeding further along these lines we will
have to introduce 6d and 7s spinors obtained from an
MCDF calculation. Since this whole process is a nonlinear
one, we are looking into developing a suitable fitting mecha-
nism that will help determine these shift parameters more
accurately and avoid any trial and error. Eventually, the pa-
rametrized second-order treatment will be replaced in phases,
with a larger and more robust relativistic-configuration-
interaction algorithm.

The most expensive stage of the calculation is construct-
ing the angular structure. Once the structure for all the matrix
elements are set up, they are temporarily stored on the hard
drive to allow for the memory to be used for setting up the
radial integrals and the matrix elements themselves. The
structure files are normally very large (0.6—1.0 Gbyte) and
the lack of available disk space had required us to generate
them "on the Ay" for every single calculation, thus increas-
ing computational costs enormously. To alleviate this diffi-
culty, we have recently acquired a 4.0-Gbyte disk drive that
allows us to save the structure generated for use in a subse-
quent calculation that has an identical eigenvector set with
similar radials. In the present case, this has resulted in a time
savings by a factor of about 4.5.

IV. CONCLUSIONS

We have performed a perturbative first-order calculation
of the magnetic-dipole and electric-quadrupole constants of
the five (Sd+6s) levels of Lait J=2 using a multirefer-
ence relativistic-configuration-interaction wave function. The
energy differences and hyperfine constants exhibit excellent
overall agreement, errors in mutual separations of the bottom
four levels being less than 0.025 eV. The improvements of
the hfs constants over the MCDF values are striking, with
four dipole and three quadrupole constants determined
within the range 2.5—12.0%. The fifth dipole constant is
accurate to 2 MHz but has a higher percentage error due to
its tiny value. The cause of deviation of the remaining quad-
rupole constants seem to extend beyond the first-order theory
and we provide preliminary evidence in support of our hy-
pothesis that it would be necessary to also provide a proper
description of many-body effects in the higher-lying parity-
conserving states for their improved theoretical predictions.
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