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Relativistic calculations of the hyperfjine interactions in the excited 7 P3/2 and 7 P&/2 states
of the Ra+ ion
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The relativistic linked-cluster many-body perturbation theory (RLCMBPT) has been used to investigate the

hyperfine properties in the excited 7 P3/2 and 7 P&/2 states of 'Ra+ ions. Our calculations of the hyperfine
constants yield —22.4~0.3 MHz for the 7 P3/2 state and —265.3~4.0 MHz for the 7 P»2 state, in excellent
agreement with the experimentally obtained values of —22.4~0.9 and —266.3~ 1.5 MHz respectively. The
results obtained in this work are compared with those by other theoretical methods and an attempt is made to
understand the relationship between the different methods, particularly that between the RLCMBPT procedure
adopted in this work and the many-body multiconfigurational Dirac-Fock procedures.

PACS number(s): 31.30.Gs, 31.30.Jv, 31.25.—v, 32.10.—f

I. INTRODUCTION

The relativistic linked-cluster many-body perturbation
theory (RLCMBPT) [1]has been successfully applied to ob-
tain theoretical results for the hyperfine properties of the
ground states of many atomic and ionic systems involving
single s valence electrons, that are found to be in good agree-
ment with the results of experimental measurements. This
has been demonstrated consistently [2] in a series of RLC-
MBPT calculations involving the hyperfine interactions for
all the systems in the alkali-metal atom series [3], the iso-
electronic positive alkaline-earth-metal ion series [2,4], the
noble-metal atom series [5] and the positive group-IIB ions

[6] isoelectronic with noble-metal atoms. These investiga-
tions have provided [1—6] a quantitative understanding of
the origin of the hyperfine interaction as a whole in a fully
relativistic framework for these various systems. Addition-
ally, through the use of the ability of RLCMBPT to provide
contributions from individual mechanisms involved in the
hyperfine interactions, detailed physical insights have been
obtained regarding the factors contributing to the trends in
the contributions from these mechanisms, namely, the va-
lence contribution, the exchange core polarization (ECP),
and the many-body correlation effect for the four series of
systems with similar electronic structures investigated. The
present work regarding the hyperfine structures for the ex-
cited 7 P3/2 and 7 P»2 states of the Ra+ ion is the natural
extension of our previous RLCMBPT investigations for
7 S»2 ground-state systems, the motivations being that first
of all, the Ra+ ion is a relatively heavy system in which
relativistic effects would play an important role for hyperfine
interactions and the experimental values are readily available
for the excited P states [7] for comparison with theory. Sec-
ondly, as illustrated in the nonrelativistic evaluations of the
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hyperfine interactions in atomic systems [8], since in the lan-

guage of nonrelativistic theory, the excited P states will have
orbital and dipolar contributions in addition to the contact
interaction (which is the sole contributor in the case of
ground S states), a successful application of the RLCMBPT
theory under this more complex situation would provide ad-
ditional confidence regarding its accuracy for nonspherical
systems. Lastly, there have been some other theoretical cal-
culations on the hyperfine constants of excited 7 P3/2 and
7 P&/2 states for the Ra+ ion, involving procedures such as
many-body multiconfigurational Dirac-Fock (MB-MCDF)
theory [9], the differential equation (DE) technique [10],and
a procedure [11]that combines the many-body perturbation
method with the differential equation approach. We believe a
comparison of the results of our present calculation using
RLCMBPT with those obtained through other theoretical
methods would provide a better understanding of the factors
contributing to hyperfine interactions as well as valuable in-
sights into the physical reasoning in these different ap-
proaches.

In Sec. II a brief summary will be presented of some
theoretical aspects of the RLCMBPT procedure adopted in
our calculations. Section III presents our results, their com-
parison with experiment, and discussions. A comparison with
the results of other theoretical calculations will be given in
Sec. IV. Section V will present some concluding remarks and
suggestions for future investigations.

II. PROCEDURE

The major aspects of the relativistic linked-cluster many-
body perturbation theory pertinent to the hyperfine interac-
tions in atomic systems have been discussed in detail in the
literature [1,12]. Only a brief summary of the theory will be
given here both for the sake of completeness and to be of
help in discussions to be presented in later sections.

To obtain the electronic properties of an atomic system,
one needs a complete knowledge of the electronic wave
function 4"0 of the system. Relativistically, this can be
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achieved by solving the Dirac equation [13—16]

H%'p = E%'p

in which H is the relativistic Hamiltonian that describes the
system, and E and 9'p are, respectively, the total energy and
the many-electron wave function of the system involved. The
Hamiltonian H for an atomic system with nuclear charge (
and N electrons is given by

H=g (cn; p;+P, mc ) —g +p-
l=1 i=1 r i)J rJ

where e and m represent electronic charge and mass, n; and

P; are the Dirac matrices for the ith electron, with r; being
its position vector with respect to nucleus and p; its momen-
tum vector, and r;J the distance between the ith and jth elec-
trons. The influence of Breit interactions [16,17] between the
electrons is expected to have very little effect on the hyper-
fine interactions in systems involving a single valence elec-
tron.

The exact solution of the wave function 'Po in Eq. (1)
cannot be obtained because of the electron-electron interac-
tions in the system as represented by the last term of the
Hamiltonian H. With the RLCMBPT procedure, one uses a
perturbation approach to solve this problem by dividing H
into a zeroth-order approximation part Hp, the eigenfunction
of which can be solved precisely, and a perturbation Hamil-
tonian H', namely,

this paper are the 7p1j2 and 7p3/2 states, respectively. The
V ' choice for V(r) provides [1,18,19] both bound and
continuum excited states, allowing for better convergence in
perturbation theory than the V choice where the summation
over n in Eq. (7) is taken over all the occupied states, the
excited states for the latter choice having only continuum
character for neutral atoms. For positive ions one can have a
few bound excited states. It has been shown in the literature
[20] that a number of the diagrams for the V ' potential
can be regrouped into a smaller number of diagrams if one
uses Dirac-Hartree-Fock (V potential) wave functions for
the occupied states and excited states in the V ' potential.
As in our earlier RLCMBPT investigations on the ground
state of Ra+ and related systems [2—6], we shall use this
prescription in the present work.

Since Ra is a rather heavy system, it is necessary [21] to
use a nucleus with a distributed charge rather than a point
nucleus approximation. As in earlier investigations, we have
employed a uniform distribution [22] over a sphere of radius
1.2A" fm where A is the mass number of the Ra nucleus,
221, used in our present investigations.

As defined in Eq. (3), the perturbation Hamiltonian H is
the difference between the true Hamiltonian H of the system
and the zeroth-order approximation (unperturbed) Hamil-
tonian Hp, namely,

e2
H'=H Ho=+ ———g V,

l)J rlj

H=Hp+H'.

The zeroth-order approximation Hp is chosen to be

(3)
The solution of the Dirac equation (1), the exact many-

electron wave function 9"p of the system, can now be ex-
pressed by the linked-cluster expansion [23) in terms of the
unperturbed wave function 4p, namely,

2

Hp=g (cn; p;+Pmc ) —g +g U(r;)=g hp
l=1 l l

(4)

in which V(r;) is a one-electron potential, for which the
eigenfunction 4p is given by

HpC p=Ep+p

and can be solved precisely, since Hp does not explicitly
contain any electron-electron interactions, the influence of
the last term in Eq. (2) having been incorporated approxi-
mately in V(r;) in Eq. (4). The many-electron function Wp is
the determinantal function based on the occupied one-
electron eigenstates y; of hp in Eq. (4) given by

H'

E —Ho ot

@IXr;
Hhyp ecX ~ 3r (10)

in which gal is the nuclear magnetic moment vector of the
system. The expectation value

Having obtained 'Pp, the hyperfine properties of the
atomic system can be calculated as the expectation value of
the hyperfine interaction Hamiltonian Hhyp over 9"p. For the
relativistic treatment of magnetic hyperfine properties, Hh „
is given by

+ V(r).
'e

ho=(cn p+Pmc )—.(6)
() f Hi )m t Hi'n

(+olHhypl+o)=X C'o E H Hh„p E H
' @o

(Ep Hp] yP'Ep —Hp~—
It has been the usual practice in the literature [1,18] to

choose for V(r) a V ' potential defined by the relation is related [1] to the hyperfine constant AJ in the form of
N —1 (

(alU 'lb)=g an
r12

bn — an
e2

r12
nb, (7)

1"J=—(+olHhypl+o& (12)

with n referring to the occupied states 1 to N. The occupied
state N left out of the sununation is usually the valence state,
which for the excited Ra+ P1/2 and P3/2 states studied in

with I referring to the spin of the nucleus and J the magni-
tude of the total electronic angular momentum corresponding
to 9"p.
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FIG. l. (0,0) diagram. Direct valence contribution to the hyper-
fine constant.

Each term in the expansion (11) corresponding to specific
m and n values is referred to as a (m, n) term and can be
expressed graphically in terms of diagrams. The rules for
drawing these diagrams and the corresponding mathematical
expressions for their evaluation, involving matrix elements
of the perturbation Hamiltonian 0' and the hyperfine opera-
tor HI',

yp
over one-electron occupied and excited states and

corresponding energy denominators, have been discussed in
detail in earlier literature [19].Also, the value m+ n for each
term in the summation in Eq. (11) represents the order of the
perturbation in H'. As can be seen from Eq. (11), the (m, n)
and (n, m) terms for a specific set of m and n values are
mathematically equivalent and therefore one needs only to
evaluate one of them and multiply by a factor of 2 to obtain
the sum of the two terms.

The major contributors to the magnetic hyperfine con-
stants in atomic systems are characterized in different cat-
egories [1,19] according to the physical mechanisms for their
contribution to the hyperfine interaction. The zeroth-order
perturbation (0,0) term, referred to as a direct or valence
contribution, is shown diagrammatically in Fig. 1. The first-
order contributions represented by (0,1) or (1,0) terms are
called the ECP and phase-space contributions, some typical
diagrams corresponding to these different effects being rep-
resented by Fig. 2. The second-order perturbation (1,1) and

(0,2) or (2,0) terms are referred to as exclusion principle
violating (EPV), various first-order consistency, and second-
order many-body correlation effects and are shown in Figs.
3, 4, and 5. For perturbation terms higher than second order
(m+ n~2), most of their contributions to the hyperfine in-
teraction are found to be negligible in many of the cases
t 2—6] we have studied. A few of them do make nonvanishing
contributions and diagrams corresponding to them are shown
in Fig. 6.

III. RESULTS

The results of our calculations of the hyperfine constants
of 'Ra+ for the excited 7 P3/2 and 7 P&/2 are presented

(b)

FIG. 3. Typical (0,2) diagrams. Diagrams representing (a) ex-
clusion principle violation (EPV), and (b) consistency contributions
to the hyperfine constant.

in Table I. Also included in this table are the experimental
values of the hyperfine constants for these two states. The
nuclear magnetic moment of the 'Ra isotope used in our
investigations is —0.179 nuclear magneton [24] and the
nuclear spin is -', .

In order to better understand the physical aspects of the
theoretical values obtained through this RLCMBPT investi-
gation, we will give detailed breakdowns in our results ac-
cording to the physical mechanisms prescribed by the RLC-
MBPT procedure.

A. Direct (or valence) contribution

This is the direct contribution to the hyperfine constants
from the valence electron 7p3/2 and 7p &/2 for the 7 P3/2 and
7 P&&2 excited states of Ra, respectively, as represented by
the (0,0) diagram in Fig. 1. The calculated results for this
effect are presented in the first row of Table I. Clearly they
are the leading contributors to the hyperfine interactions.

B. Exchange core polarization effect

The contributions from the ECP effect are given in the
second row of Table I and the corresponding diagram for this
effect is shown in Fig. 2(a). This effect arises from the fact
[19]that the valence electron can have exchange interaction
only with core electrons with the same spin as the valence
itself. This exchange interaction will lead to a difference be-
tween the potential experienced by core electrons with the
same and opposite spins with respect to the valence electron,
thus leading to a perturbation potential that can contribute to
the hyperfine interaction. The contributions to the ECP effect
from individual core shells for each of the excited states
7 P3/2 and 7 P»2 are given in Table II. The major con-

hyp

n ~~ &1k

H'
hyp

vier

k"

H'
hyp

inc

(a) (b)

FIG. 2. Typical (0,1) diagrams. Diagrams representing (a) ex-
change core polarization (ECP), and (b) phase-space contributions
to the hyperfine constant.

FIG. 4. Typical (0,2) diagrams. Diagrams representing second-
order (a) direct, and (b) exchange, correlation contributions to the
hyperfine constant.
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FIG. 5. Typical (1,1) diagrams. Diagrams representing second-
order (a) direct, and (b) exchange, correlation contributions to the

hyperfine constant.

tributors are the s&/2 core shells in both cases, and the p3/2
core shells for the 7 P3/2 and p]/2 core shell for the
7 P»2 case. The former could be easily understood because
the s wave function has the strongest interaction with the
nucleus thus leading to a large contribution to the ECP effect.
For the 7 P3/2 excited state, the p3/2 core electrons have the
strongest exchange interactions with the 7p3/2 valence elec-
tron and therefore make an important contribution to the ECP
result. The same reasoning can explain the substantial ECP
contribution from the p&/2 core electrons in the 7 P»2 case.

TABLE I. Results of hyperfine constant calculations in 'Ra+
for the 7 P3/p and 7 P«2 excited states (in MHz).

Mechanism

Valence

ECP
Phase space
EPV
Consistency

net ECP
Correlation

(0,2) correlation

(1,1) correlation

third-order correlation

Correlation total

Total

Experiment '
'Reference [7].

P3/2
2

—13,7
—6.0

0.3
0.6

—0.5
—5.6

—34
0.3
0.0

—3, 1
—22.4~ 0.3
—22.4~ 0.9

2

—181.4
—50.3

3.3
4.5

—7.9
—50.4

—35.8
—1.1

3.4
—33.5

—265.3~ 4.0
—266.3~ 1.5

trons in the core ground states as compared to the Hartree-
Fock potential. The EPV diagram [19]corrects for the effect
of this potential change.

C. Phase-space contribution

The phase-space contribution [19] is given in the third
line of Table I, the corresponding diagram being shown in
Fig. 2(b). The phase-space effect is associated with the fact
that the valence state with down spin is empty and available
for excitation from down-spin core states while the up-spin
valence state is occupied (by the valence electron) and there-
fore not available for excitation for the up-spin core elec-
trons, thus leading to a difference in contributions from core
electrons with opposite spin. This effect is substantially
smaller than the ECP effect because of the larger amount of
available phase space (all the bound and continuum excited
states) for excitations in the latter case.

D. Exclusion principle violating effect

Line 4 of Table I gives the calculated results for this con-
tribution and the corresponding diagram is shown in Fig.
3(a). As discussed in Sec. II, a V ' potential is chosen
instead of the Hartree-Fock U potential when generating the
excited states of the unperturbed system. This modification
will cause changes in the potential experienced by the elec-

E. Consistency effect

The consistency effect represented by the diagram in Fig.
3(b) illustrates the infiuence of the self-consistent interaction
between electrons. When a core state is perturbed through its
exchange with the valence state (leading to the ECP effect),
its interaction with electrons in other states can cause
changes in these latter states and consequently lead to addi-
tional contributions [19,25] to the hyperfine field. Our calcu-
lated results for this particular effect are listed in the fifth
row of Table I.

In the RLCMBPT theory, the last four effects, the ECP,
phase-space, EPV, and consistency effects represent the con-
tribution to the hyperfine properties from one-electron inter-
actions. They are usually grouped together and their totality
is referred to as the "net ECP" effect listed in the sixth row
of Table I.

F. Many-body correlation effects

The many-body correlation contributions [1,19,25] to the
hyperfine constants of Ra+ in excited 7 P3/2 and 7 P$/p
states are given in the seventh and eighth lines in Table I.
Among them, the second-order effects described by diagrams
in Figs. 4 and 5, representing direct and exchange diagrams,

1F
V

kll l

k"i, c'
VI

TABLE II. Breakdown of contribution to the ECP effect from
different core shells in the 7 P3/2 and 7 P»2 excited state of
Ra+ system (in MHz).

k k')E

(a) (b)

&c
k

s'Qr
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FIG. 6. Major third-order correlation diagrams. (0,3) diagrams
representing (a) direct, and (b) exchange, correlation contributions
to the hyperfine constant.

Total

Core shells

S 1/2

I 1/2

P3/2

3/2

d S/2

P3/2
2

—3.5
—0.2
—2.5

0.2
+0.0

P ii2
2

—13.3
—32.3
—3.0
—2.6

0.9
—50.3
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TABLE III. Hyperfine constants (in MHz) for the excited 7 P3,2 and 7 P„2 states of the 'Ra+ ion calculated by different theoretical
methods,

Procedure

RLCMBPT
MB-MCDF '
DEb
MBPT-DE '

Valence

—13.7
—13.9
—13.3
—13.3

Net ECP

—5.6
—7.9
—8.9
—8.4

I' si2
2

Correlation

—3.1
—0.7

—0.6

Total

—22.4
—22.5

—22.3

Valence

—181.4
—182.6
—176.6
—173.2

Net ECP

—50.4
—35.5
—34.1
—31.9

2

Correlation

—33.5
—39,2

—56.7

Total

—265.3
—257.3

—261.8

Experiment

'Reference [9].
Reference [10].

'Reference [11].
Reference [7].

—22.4 —266.3

make the dominant contribution. The correlation effect oc-
curs for the first time in second order when one considers the
electron-electron interaction in Eq. (11) corresponding to the
I+n=2 terms in the perturbation expansion. Of the two
types of second-order correlation effect, the contribution
from (0,2) diagrams in Fig. 4 dominate over those from the

(1,1) diagrams represented by Fig. 5, as has also been found
in systems [2—6] with a single s valence electron. The ninth
line of Table I lists our estimates of the third-order correla-
tion contribution. They are considered as estimates because
we have analyzed only a few third-order diagrams, some
typical ones being shown in Fig. 6. These diagrams are cho-
sen on the basis that they are related to the direct and ex-
change (0,2) diagrams (Figs. 4 and 5) which make dominant
contributions to the correlation effect in the second order.
The net correlation effect is listed in the tenth line.

The net calculated values of the hyperfine constants and
the confidence limits placed on these results are listed in the
11th line of Table I. The latter are obtained through the con-
sideration [2—6, 19] of higher-order diagrams that are not in-
cluded in our evaluation as well as the computational accu-
racy of the calculation.

Finally, the results of the experimental measurements [7]
of the hyperfine constant in the excited 7 P3&2 and 7 P&&2

states of 'Ra+ are given in the last row of Table I. They are
seen to be in excellent agreement with our theoretical values
calculated through the application of the RLCMBPT proce-
dure.

investigations as well as ours in Table III, along with the
breakdown of the net hyperfine constants according to the
direct, net ECP, and many-body correlation contributions.

The first row of Table III lists the result of the present
work for the hyperfine constants in the excited 7 P3&2 and
7 PU&2 states of the 'Ra+ ion, both the total values as well
as the separate contributions from three types of physical
effects. The second line of Table III represents the results
obtained by the MB-MCDF method. We shall first compare
the results by these two methods, because they are closely
related from a physical point of view although they involve
different mathematical and computational procedures.

The MB-MCDF approach [9] is based on the principles of
the RLCMBPT procedure as well as the MCDF method [26].
The major aspects of the RLCMBPT procedure have been
summarized in Sec. II and will not be repeated here. The
detailed description of the MCDF approach is available in
the literature [9,26] and we will only give some of its major
points here to facilitate our discussion.

For the MCDF approach, in order to solve the many-
electron Dirac equation, Eq. (1), the total wave function of
the atomic system 9"0 is expressed in terms of a series of
determinantal wave functions 4~ corresponding to different
configurations involving different sets of N occupied one-
electron states yJ, N being the total number of electrons in
the atom. Thus,

IV. DISCUSSION

As mentioned in Sec. I, there are a number of other theo-
retical calculations of the hyperfine constants in the excited
7 PS&2 and 7 P»2 states of the 'Ra+ ion in the literature

by different procedures than the RLCMBPT method adopted
here. These other investigations involve the many-body mul-
ticonfigurational Dirac-Fock method [9], the differential
equation method [10], and a process [11]that combines the
many-body perturbation approach with the DE method. In
this section, we will discuss the physical features of the ap-
proaches involved in the earlier calculations and attempt to
understand the nature of their results as compared to those
obtained by the present investigation involving the
RLCMBPT procedure. We have listed results from the other

where I is the number of configurations employed for the
variational treatment of the many-electron wave function
O'. The one-electron wave functions y~ are coupled to form
the individual determinants 4~, which in turn are combined
together to form 'I'0, all of the determinants 4, and 'Ij'0 with
total angular momenta J and M. The following functional is
then optimized with respect to C~ and y, namely,

(14)
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in which H is the Hamiltonian of the system represented by
Eq. (1.5) and cp, can be expressed in terms of the relativistic
form [16]

(15)

~IX r;+ecg (16)

The new total energy of the system can be expressed as

&~[a„[e&
&+I+)

(17)

and the trial function 9' for the eigenfunction of Hz by the
equation

W(r&, . . . , rz, J,M)

(18)

The total energy optimization can be carried out using the
same procedure just mentioned for Eq. (13) through Eq. (15),
however, now one uses the new Hamiltonian Hz and the
total wave function Ij' in Eq. (18) instead of H and
Wo[Eqs. (2) and Eq. (13)].This produces a fresh set of equa-
tions for the expansion coefficients C and new differential

equations for the components of the wave functions in which
the effect of the hyperfine interaction has been included. By
solving these equations, one can obtain the eigenfunction and
total energy Ez corresponding to the Hamiltonian Hz, which
represents the atomic system including the effect of hyper-
fine interaction. The energy difference between Eq. (17) and
Eq. (14) would be the hyperfine interaction in the total en-
ergy term and can be converted, using a formula similar to

where p, (r) and q, (r) are the radial parts of the large and
small components of the wave function q&;, and y (0, P)
are the two-dimensional spinors describing the angular fac-
tors (for both orbit and spin parts) of the wave function.

Using standard variational techniques, the above optimi-
zation leads to a set of equations for the expansion coeffi-
cients C~ as well as differential equations for the radial wave
functions p;(r) and q;(r) Thes. e equations can be solved
using well established numerical procedures and the com-
puter programs [27] developed to obtain the exact total wave
function 9"0 and subsequently the total energy F. of the sys-
tem.

%ith the MCDF method, when calculating properties of
the atomic system, in this case, the hyperfine constant char-
acterized by its Hamiltonian Hh of Eq. (10), one needs [9]
to get a new total wave function 'Ij' and the total energy F~
of the system that corresponds to the addition of this Hhyp to
the Hamiltonian in Eq. (2). The total Hamiltonian of the
system, including the hyperfine interaction effect, would then
be given by

Eq. (12), to the hyperfine constant in MHz, which can be
compared with the results of experimental measurements.

Because of the relatively small magnitude of the hyperfine
interaction, it is essential to have very accurate information
about the wave function in order to calculate hyperfine prop-
erties in atomic systems. For the MCDF method, this is nec-
essary because one calculates the hyperfine interaction en-

ergy from the difference between the total energy Fo and
Fz corresponding to the Hamiltonian Ho and H„. One thus
requires very accurate calculations of the corresponding ei-
genvalues F and Ez so that the errors in these terms do not
overshadow the small hyperfine energy. This then requires
incorporation of inordinately large numbers of configurations
in Eqs. (13) and (18) so that both the hyperfine-independent
and hyperfine-dependent contributions to the total energies
are obtained very accurately. The use of such large numbers
of configurations entails the solutions of correspondingly
large numbers of differential Dirac-Hartree-Fock type equa-
tions for y;, which can be very time consuming. The MB-
MCDF theory [9] overcomes this problem by incorporating
the perturbation concept and the diagrammatic technique of
the RLCMBPT approach into the MCDF method.

For the hyperfine properties in atomic systems, it has been
demonstrated in the earlier literature [9] that a link can be
established between the perturbation expansion of Eq. (9) for
the first- and second-order {n~2) terms in the RLCMBPT
procedure and the configuration expansion in Eq. (18) in the
MCDF method. For the single valence electron contribution
to the hyperfine constant, the configuration expansion of Eq.
(18) involves only the ground-state determinantal wave func-
tion 4i. The energy difference between Eqs. (14) and (17) is
expected to be the same as the (0,0) term from the valence
electron in the hyperfine interaction perturbation expansion
Eq. (9) of the RLCMBPT method shown by the diagram in

Fig. 1. Instead of taking this energy difference, one calcu-
lates just the expectation value of the hyperfine interaction
Hamiltonian with the Hartree-Fock wave functions for Ra+
just as in the RLCMBPT procedure. The closeness of the
valence electron contribution from our RLCMBPT calcula-
tions and the earlier MB-MCDF results [9] in Table III sug-
gests that both calculations have the correct result at the (0,0)
level.

Considering the ECP and phase-space diagrams repre-
sented at the (0,1) level by Figs. 2(a) and 2(b), one can use,
for instance, excitations of the form 1s-6s~ks where the
core s electrons 1s through 6s are excited to higher states
ks. Instead of taking a set of higher ks in Eq. (13) for exci-
tations of each of the core states 1s-6s, MB-MCDF uses a
general ks and determines the excited-state function cp&, by
solving the Dirac equation for it, using the minimization pro-
cess in Eq. (14). One can similarly consider excitations of
the 2p-6p core states and 3d-Sd core states to kp and kd,
respectively, and using the combined functions in Eq. (13) to
get the appropriate contributions to the ECP and phase-space
diagrams Figs. 2(a) and 2(b) from diagonal excitations of the
core states, that is states of same l(~). However, from our
RLCMBPT work [8] one finds, as expected from the infiu-
ence of the 1/r&2 electron-electron interaction vertex in Figs.
2(a) and 2(b), that there can be significant contributions from
nondiagonal or angular excitation of the type 6s~kd,
6p~kf, and 5d —+ks, kg which can contribute to the "dipo-
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lar" components of the hyperfine interaction vertex in the
nonrelativistic approximation. There could of course also be
p~p and d~d excitations due to the dipolar components of
the hyperfine interaction. These interactions have not been
included in the MB-MCDF work [9] on the present systems.
Correspondingly, the consistency effects from the angular
excitations are also not included in the latter work while they
are included in the present work. The above considerations
may account for part of the difference in the net ECP contri-
butions between the two calculations, our analysis of the
corresponding RLCMBPT contributions suggesting, how-
ever, that this error could at most account for about 15% of
the difference between the results of these two procedures.

For the correlation diagrams like the leading ones of the
(0,2) type diagrams shown in Figs. 4(a) and 4(b), one has to
consider pair correlation effects involving simultaneous
excitations associated with two orbitals, for instance,
(7p,6p)~(kp, k'p) and (7p,6p) —+(nf, nf') at the first
1/r&2 vertex and corresponding two-electron excitations at
the second 1/r &2 vertex which returns the core electron 6p to
its original state and leaves the valence 7p&/2 or 7p3/2 elec-
tron in an excited state. In the MB-MCDF calculations [9],
excitations in Figs. 4(a) and 4(b) of the type 7p~nf after
the second pair excitation are not included. This then leads to
the omission of some of the (0,2) correlation diagrams, just
as was the case for the ECP diagrams. In addition, the (0,2)
correlation diagrams corresponding to excitations of the d
core states, especially the 5d core electron which makes a
large contribution as compared to 3d and 4d core electrons,
have not been included in the MB-MCDF procedure. For the
(1,1) correlation diagrams in Figs. 5(a) and 5(b), a parallel
procedure involving first pair 1/r&2 excitation and then a
single excitation due to the hyperfine vertex, has been
adopted in the MB-MCDF procedure. This contribution,
however, has been found from our RLCMBPT calculations
to be rather small compared to that from the (0,2) diagrams.
A consideration of the angular excitation contributions from
the (0,2) diagrams in our RLCMBPT work suggests they
cannot account for more than 10% of the difference in the
two results in Table III. However, the neglect of the pair
excitations involving the d core electrons in the MB-MCDF
method contributes about 40% of the difference in the corre-
lation contributions. That still leaves about half of the differ-
ence to be explained.

Therefore it seems that while there is quite good agree-
ment between the net contributions to the hyperfine constants
for the P3/2 and P&/2 states of Ra+ by the RLCMBPT and
MB-MCDF procedures, there are significant differences be-
tween the net ECP and correlation contributions which tend
to nearly cancel each other out for the P3/2 state and par-
tially for the P»2 state. Studies for more systems by the two
procedures are needed in order to explain this situation, with
the MB-MCDF [9] calculations being carried out in a way
that will provide a more detailed correspondence between
individual diagrams and excitations of one electron states for
ECP and correlation processes w'ith the RLCMBPT proce-
dul e.

The third line of Table III shows the results obtained
through the differential equation procedure [10]. This
method was developed by Sternheimer [28] for the quadru-
pole polarization and antishielding effects associated with

AJ(ECP)

(c( I )v(2) i
I/r, zi v ( I )k(2))(kiH„'

i
c)

a c

(19)

in which c, v, and k denote the wave functions of the core,
valence, and excited states, respectively, and e, and e& cor-
respond to the energy level of the core and excited states.
The DE method defines a function

(, )

'"'
(v(1)k(2) I I~&&zlc(1)v(2)) lk)

k c
(20)

so now the ECP contribution to the hyperfine interaction can
be expressed in a simple matrix element term

(21)

Instead of obtaining P~'~ by summing over excited states,
one obtains it in the DE method by solving the differential
equation of the form .

1
(e,—hp) P,

' (r, ) = @,(r&) @,*(rz) @,(rz)drz
r12

core
1

I ) I'2 I'i

X @q(rz)dr, drz @1(rt), (22)

where ho is the Hartree-Fock Hamiltonian.
Alternately, one can evaluate the ECP diagram 2(a) by

solving for the perturbation of the core electron c by the
magnetic hyperfine interaction Hamiltonian HI', „, the differ-
ential equation being

electric field gradients at nuclei, required for study of nuclear
quadrupole interaction. It was applied subsequently [28] to
magnetic hyperfine effects, for electron-nuclear dipolar hy-
perfine interactions and later to contact hyperfine interactions
[29,30]. One of the latter two approaches [29] involved per-
turbation of the core electron states by the valence electrons
in atoms by their mutual exchange interactions. The other
approach [30] involved perturbation of the core electrons by
the nuclear moment through the Fermi contact interaction.
This latter approach, referred to as the moment perturbation
method, was also applied to study ECP effects in solid state
systems [31].It was further developed [32] later to apply to
the evaluation of the diagrams of many-body perturbation
theory. In this method [10,32], referred to as the DE method,
for each of the perturbation terms corresponding to a particu-
lar physical effect, an inhomogeneous differential equation is
developed as a substitute for the infinite summation over the
excited states in the perturbation expansion in Eq. (9). For
example, the ECP effect of the hyperfine interaction as rep-
resented by Fig. 2(a) corresponds to the (0,1) term of the
perturbation expansion and is expressed in RLCMBPT as
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(e,—ho) 0,'"(r ) =Hh»(ri) 4,(rt)

4 k (ri)Hh»(rt)

&& 4,(ri)dry 0k(rt) (23)

and then

1 ) 1
AJ(ECP) = —g P,*(r,) P,*(r2) P, (r, ) P, (r2)dr2.IJ c r12

(24)

This second technique is more commonly used [10,11] to
evaluate the ECP diagram in Fig. 2(a).

For other diagrams like the consistency diagram in Fig.
3(b), for the DE method one would have to solve appropriate
differential equations for the electron-electron interaction
vertex involving perturbation of a single electron. For the
correlation diagram in Fig. 4(a), one needs to solve corre-
sponding differential equations for the correlation vertex in-
volving perturbation of two electrons. The latter equations
are difficult to solve because of the simultaneous perturba-
tion of two electrons. It is therefore difficult to evaluate
higher-order correlation effects using the DE procedure.

The results in the third row of Table III give the direct and
ECP contributions by the DE procedure [10]. The zeroth-
order Dirac-Hartree-Fock contributions in this procedure
were calculated using the 7p&/2 and 7p3/2 states as an empty
excited state for the Ra + ion and this accounts for the dif-
ference seen from Table III among the values of the zeroth-
order contributions by the DE procedure and those by our
RLCMBPT method and the MB-MCDF approach, where in
the latter two cases one uses Hartree-Fock wave functions
for the 7p&/2 and 7p3/2 states of the Ra+ ion. The smaller
value for the DE calculations can be understood, as ex-
plained in our earlier RLCMBPT investigation [33] regard-
ing the 7S&/2 state, by the fact that in the Ra + ion with the
valence electron absent, the core states are more tightly
bound than in the Ra+ ion and therefore shield the nuclear
charge more strongly, making the 7p»2 and 7p3/2 states more
loosely bound and therefore have a smaller density at the
nucleus. The ECP result by the DE procedure is larger than
our RLCMBPT result in the 7p3/2 and smaller in the 7pi/2
case. The results are closer to those obtained by the MB-
MCDF approach. It is difficult to ascribe a definitive reason
for this feature, since the DE procedure is not as transparent
as the summation over excited states in our RLCMBPT cal-
culations. Additionally, the use of Ra + wave functions in
the DE procedure makes a quantitative comparison with our
results and the MB-MCDF results difficult.

The results reported on the fourth row in Table III are
obtained [11)using a combination of the DE method [10,32]
and the RLCMBPT procedure for summations over excited
states. Thus, for the hyperfine interaction vertex, the authors
use the DE procedure to obtain the perturbation associated
with the vertex while for electron-electron interaction verti-
ces they use the summation over excited states as in the
present RLCMBPT investigations. For the wave functions of

the valence and excited states, they have adopted the Hamil-
tonians for the Ra + case. Because of this reason and the fact
they have used the DE procedure for the hyperfine vertex,
their results for the (0,0) and ECP contributions are close to
those in Ref. [10].The correlation contribution in Ref. [11]
for the 7P3/2 case is quite close to that by the MB-MCDF
procedure while in the case of the 7P»2 state their result is
substantially larger than both our RLCMBPT result and that

by the MB-MCDF procedure. In view of the fact that the
calculations in Ref. [11]use the Ra wave functions and the
correlation results for the 7P&&2 and 7P3/2 states compare
differently with those by the MB-MCDF procedure, and also
the fact that the correlation and consistency contributions do
not include the role of the d shells in the MB-MCDF case, it
is difficult to make conclusions about any similarities ex-
pected in the results by the two approaches, because of the
fact that the DE techniques are employed although only par-
tially in the case of Ref. [11].It is interesting, however, to
notice that as in the case of the MB-MCDF procedure, even
though the individual contributions are somewhat different in
detail from our RLCMBPT results, the net hyperfine con-
stants calculated by this approach are quite close to our
RLCMBPT results, which are in excellent agreement with
experiment.

V. CONCLUSION

The RLCMBPT treatment of the hyperfine interactions
has been successfully used here for the excited 7 P3/2 and
7 Pi/2 states of the 'Ra+ system. From the discussion in
Sec. IV, the MB-MCDF approach [9] is an interesting alter-
native to the RLCMBPT method in the calculation of hyper-
fine properties of the atomic systems. The advantage of the
RLCMBPT perturbation approach is that once the complete
set of one-electron ground- and excited-state wave functions
and energies are obtained, one can use them to calculate any
properties including the magnetic hyperfine interaction and
nuclear quadrupole interactions for an atomic system. By
using the diagrammatic technique, all the physical effects
contributing to these properties can be clearly illustrated and
conveniently treated as perturbations to the zero-order many-
particle wave function of the system. This enables one to get
not only the total value of the property involved but also the
breakdown of contributions from different mechanisms and
therefore the physical underlining of these effects can be
better understood. The RLCMBPT method requires the sys-
tem to have a single determinantal configuration as in the
case of a single valence electron outside closed shells, or a
dominant wave function configuration as in the case of half-
filled open shell. The MCDF method, on the other hand, can
deal with systems with any configuration. However, because
this approach uses optimization of the total energy of the
system including the contribution from the property under
consideration, it requires a different accurate description of
the total wave function for the system for each particular
property. The number of differential equations resulting from
this approach can become quite large and the results obtained
cannot be categorized according to the physical mechanisms
as detailed in the case of the RLCMBPT method. The MB-
MCDF procedure [9] incorporates some of the advantages of
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both approaches. Currently, the hyperfine structures of the
ground 7S»2 and the excited 7 P3/2 and 7 P»2 states of the

'Ra+ ion are the only cases where this method has been
applied. Further studies concerning the hyperfine interactions

and other properties in different atomic systems are needed
to better understand the relationship between the MB-MCDF
results and the contributions from different physical effects
described by the RLCMBPT approach.
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