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Simple cavity-QED two-bit universal quantum logic gate:
The principle and expected performances
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We present a simple scheme for a universal two-bit quantum logic gate using circular Rydberg atoms and a

superconducting millimeter-wave cavity. We analyze in detail the performances of this gate, using the param-

eters of an experiment currently under way in our laboratory.
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A computer which would manipulate quantum objects (q
bits) as the elementary information carriers could take ben-
efit of the superposition principle to achieve "massive paral-
lelism. " A prototype of such a computer is the "quantum
Turing machine" [1].This machine could solve some prob-
lems exponentially faster than any classical computer [2,3].
In particular, it has recently been shown [4] that the factor-
ization of large integers can be performed on a quantum
Turing machine in a "polynomial" time (polynomial func-
tion of the number of bits). This problem is believed to be
complex for classical computers, since the best known algo-
rithm takes a subexponential time [5].The security of many

cryptographic systems relies therefore on the difficulty of
factorizing a large integer. The possibility of performing this
factorization in a reasonable time triggered intense theoreti-
cal activity in the quantum computing field.

Though a quantum Turing machine could in principle per-
form any calculation, its architecture is clearly not an opti-
mal one. It has been shown [6] that, for any computation,
this machine can be replaced by a network of elementary
processing units known as "quantum gates. "These gates are
analogous to standard logic gates used in classical computer
construction. They are small "computing machines" having
a fixed number of input and output "bits" and performing a
fixed computation independent of the input. Instead of ma-

nipulating binary values (0 and 1), these gates perform a
unitary, reversible transformation on two-level q bits (levels

~
0) and

~
1)).Each q bit can be in any linear superposition of

these two states. A "universal gate" is such that it can be
used to build any computing network. Deutsch [6] proposed
a universal three-bit gate derived from the Toffoli [7] logic
gate. DiVincenzo [8] showed later that this three-bit gate can
be implemented by an arrangement of two-bit gates. Sleator
and Weinfurter [9], and, independently, Barenco [10],
showed then that a two-bit gate is universal. Finally, it has
even been shown [11]that any nontrivial two-bit gate is in-
deed universal.

We will consider in the following a two-bit transformation
represented in the "computational basis"

~
0) =

~
0,0);

~
1)

=
~
0,1);

~
2) =

~
1,0);

~
3)=

~
1,1), the direct product of the two-

q-bits basis, by the unitary matrix
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FIG. 1. Principle of a two-bit universal quantum logic gate.
When the "control bit" (upper line) is in state ~0), the other (lower
line) is unchanged. When the control bit is in state

~
1), the other

experiences a unitary transformation represented by the matrix V.
For an arbitrary input, the two q bits exit the gate in an entangled
state.

The two-bit gates considered in the previous literature can
be easily recovered by combining U with a transformation
represented by a diagonal unitary matrix made of mere phase
factors. As we will see at the end of this paper, such a diag-
onal unitary transformation can be trivially implemented in
the proposed scheme and will be discarded first.

The transformation U leaves the first q bit invariant.
When this "control bit" is in state ~0), the other one is also
invariant. When the control bit is in state 1), the controlled
bit experiences a unitary transformation described by the
2 X 2 matrix V (see Fig. 1). Note that, when the control q bit
is initially in a superposition of states ~0) and

~
1), the output

states of the two q bits are entangled. Most of the fascinating
features of quantum mechanics, like nonlocality and non-
separability, are therefore at the heart of the quantum com-
puting process. For 0= —m/2, y=~/2, this gate, besides a
common phase factor on the off-diagonal elements, reduces
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FIG. 2. Scheme of the cavity-QED two-bit gate. The control q
bit is the state of a superconducting cavity C, either empty or con-

taining one photon. The controlled bit is carried by a two-level

circular Rydberg atom, slightly detuned from the cavity frequency.
The state of the atom is manipulated by a classical field source S.
The atom interacts noticeably with S only if the single photon field

in C light shifts the transition in resonance with S.

to the so-called "measurement gate" or "controlled not"
[12] and can be used for quantum state swapping [13] or
teleportation [14,15].

The quantum computational networks put serious con-
straints on the experimental implementation, since all the
quantum coherences should be maintained during the com-
putation. This implies that the relaxation of the network due
to its coupling to the outside world should be extremely low.
Various possible implementations of universal two-bit gates
with low relaxation systems have been proposed. Nuclear
spin could be used to carry the information [8], but the real-
ization would be extremely difficult in the present state of
the art. A scheme using trapped ions has also been recently
proposed [16].The very small relaxation rates in Paul traps
make a practical realization foreseeable though the experi-
ment, involving very strong laser cooling of the ion motion,
would certainly be a difficult one.

Cavity quantum electrodynamics [17] also provides situ-

ations where the coherent evolution overwhelms the dissipa-
tive processes. It has been recognized recently [13,12] that a
quantum nondemolition measurement of a cavity field inten-

sity at the photon level using atomic interferometry tech-
niques [18] is a realization of the measurement, or
controlled-not, gate. Recent elaborations [9]have shown that
the parameters of the Ramsey interferometer can be tuned to
produce a universal gate transformation. We present in this

paper a simpler version of a cavity-QED two-bit gate which
does not make use of the Ramsey technique. Instead, the
light shifts experienced by the atomic levels in a supercon-
ducting cavity are used to control the coupling of the atom to
a classical field performing the required transformation. We
discuss the quality of the gate performance and the inhuence
of the cavity and atomic relaxation processes with the orders
of magnitude of an experiment under way in our laboratory
[191.

Let us first, for the sake of clarity, describe an experiment
where the control q bit is represented by the state of the
cavity mode and where the control bit is carried by a two-
level Rydberg atom (the case where both q bits are carried by
atoms adds only technicalities to the principle described here
and will be discussed later). The scheme of the proposed
experiment is sketched in Fig. 2. The high-Q superconduct-
ing millimeter-wave cavity C either is empty or contains a
single photon, these states representing respectively the

FIG. 3. Position of the atom-cavity energy levels ("dressed lev-
els") as a function of time. The atom is on cavity axis at t = 0. The
classical source S is switched on during a small time interval

around t=0. It is resonant with the transition between the dressed
states l0, —) (originating from

l
l,g)) and

l
1,+) (originating from

l
l,e) ) (solid arrow). It is therefore out of resonance on the transition

between the state lO, g) (not affected by the atom-field coupling)
and l0, +) (dashed arrow).

states ~0) and ~1) of the control q bit. We consider here a
Fabry-Perot type cavity, with a Gaussian transverse beam
profile (waist w= 5.96 mm). The experimental values of the
field energy damping time t„,for such cavities range from 1

to 30 ms. The other "controlled" q bit is carried by a "cir-
cular" Rydberg atom [20]. The state ~1) is represented by a
Rydberg level ~e), while state ~0) is represented by another,
less excited level ~g). The radiative lifetime of such levels,
with a principal quantum number of the order of 50, is also
in the 30 ms range. The cavity and atomic lifetimes are thus

long enough to complete the required operation before the
disturbing effects of relaxation could play an important role.
To be more specific, we consider in the following the two
circular levels of rubidium with principal quantum numbers
51 and 50. The

~
e)~ g) transition at frequency

cop/2m =51.099 GHz is quasiresonant with the cavity mode
at frequency co/2m. The atom-cavity frequency mismatch
8= cop co is assumed to be small compared to the frequen-
cies, but large compared both to the atom-field coupling
(measured by the Rabi frequency in a single photon field at
cavity center 2Ai2vr=50 kHz) and to the reciprocal of the

atomic transit time across the cavity mode waist t„,„,.
The controlled q bit should undergo, during its interaction

with the cavity, a dynamics conditioned by the occupation
number of the cavity mode. The circular Rydberg atom is
manipulated by an auxiliary classical millimeter-wave field,
radiated in a transverse mode not belonging to the cavity by
an auxiliary source 5 (see Fig. 2). The effect of the auxiliary
field depends upon the state of the field in the cavity C, the
control making use of the light shifts experienced by the
atomic levels in the cavity field. Figure 3 sketches the atom-
field energy levels as a function of the position of the atom
along its path across the cavity mode, i.e., as a function of
time. The ground state of the system is ~0,g) representing an

atom in ~g) in an empty cavity. This state is not sensitive to
the atom-cavity coupling. The more excited uncoupled
atom —cavity energy levels are paired in nearly degenerate
manifolds (~n, e), ~ln+ l,g)) (the energy difference between
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Cavity

Atom 1
"control

bit"

g)

Stark effect in a static electric field applied between the cav-
ity mirrors, this atom can be tuned in exact resonance with C
for a controlled amount of time. This interaction time is ad-
justed so that the atom experiences, when in state ~e), an
exact ~ pulse and releases one photon in the cavity, while it
is not affected if initially in state ~g). The interaction
amounts then to the transformation

Atom 2
"controlled

bit"

lo)(c, le)+ cslg)) ~(—ic,
l
1)+cslO)) lg) (3)

Atom 3
Replica of

Control
bit

~c, v]'P)(e)+ c,~'P))g)

FIG. 4. Scheme of the quantum gate using only atoms as the
q-bit carriers. The first atom's state is copied onto the cavity state
through a resonant interaction depicted by a solid black circle. The
second atom experiences a nonresonant interaction (open circle)
and undergoes the required conditional dynamics. A third atom,
interacting resonantly again with the cavity, carries away a replica
of the first atom's state and leaves the cavity empty. The atom—
cavity resonance condition is changed by applying a dc voltage
between the superconducting cavity mirrors.

these levels being fiB). Inside the cavity, these levels are
coupled by photon emission or absorption. They are mixed
into the "dressed states" of the atom-field system ~n, + ) and

~n, —). The energy splitting between ~n, +) (originating
from ~n, e)) and ~n, —) (originating from ~n+ I,g)) therefore
increases with the atom-field coupling. This energy level
modification, proportional to the excitation number, i.e., to
the field intensity when 6&)0, , corresponds, for the atom, to
the few-photons limit of the usual light shifts. If the atomic
motion through the cavity is slow enough, the system will
follow adiabatically the dressed energy levels. The photon
number in C is therefore unchanged after the interaction, a
clear consequence of the nonresonant nature of the atom-
cavity interaction.

The classical field radiated by S is tuned into resonance
with the

~
1,+ )~ ~

0,—) transition when the atom is close to
the cavity axis. Note that this field, not directly coupled to
the cavity mode, cannot change the photon number in C. An
atom entering in C when it contains one photon will there-
fore enter in resonance with S and undergo a Rabi pulse
whose area and phase can be controlled at will by a proper
setting of the amplitude and phase of S. At variance, S re-
mains off resonant in the case of an empty cavity, since it is
far from resonance on the ~0, +)~~g, O) transition. Any con-
ditional unitary transformation of the atomic q bit [see Eqs.
(1) and (2)] can thus, in principle, be realized.

The implementation of the gate with Rydberg atoms as
the only q-bits carriers uses three atoms crossing succes-
sively the cavity as depicted schematically in Fig. 4. The first
control q bit is carried by an atom in state c,~e)+cs~g). This
atom crosses the initially empty cavity mode. Using the

performing, within trivial phase factors, an exact copy of the
atomic state onto the cavity one [15].Note that an entangle-
ment of the first atom with another quantum system (which
should be present in any multigate quantum computer) is
also transferred to the cavity state. The "controlled" atom
crosses then the nonresonant cavity. It experiences the con-
ditional dynamics described above. The state of the cavity
field is then copied back onto a third atom entering C in state

~g), tuned to exact resonance with the help of a controlled
Stark effect, and undergoing the inverse of transformation
(3). The third atom exits C in a state which is an exact
replica of the initial state of the control bit (including pos-
sible entanglement with other parts of the setup). The cavity
is left empty, and could immediately be used for another
cycle of the gate. Note that the first atom, which exited C in
state ~g), could in principle be used to carry away the control
bit by recycling it again through the cavity, in an atomic
fountain design (it is only a matter of experimental conve-
nience to use a third atom). The interaction between the two
atomic q bits could then be viewed as a collision process,
mediated by the interaction with the same cavity field.

Let us discuss now the orders of magnitude of the experi-
mental parameters. As mentioned above, we assume that the
atom follows adiabatically the dressed states depicted in Fig.
3. This adiabatic approximation holds when the atom moves
slowly enough and when the frequency mismatch 6 is large
compared to the coupling 0 to the cavity mode. The experi-
ment is performed with velocity-selected atoms, prepared at
a well defined time into the circular Rydberg state [20].Their
position at any time is therefore well known, and the classi-
cal field can be applied only during a time t;„,, when the
atoms are close to the cavity axis (see Fig. 3). This time
selection improves considerably the performances of the gate
by preventing unwanted transitions from occurring when the
atom, outside the cavity, interacts with the detuned source.
The variation of the dressed energy levels is small during

t;„,and will be neglected in this order of magnitude discus-
sion. The auxiliary source S is resonant with the

~
1,+ )~ ~

0,—) transition at frequency

co„/=co+ QA + 8 /4+ $2A + 8' /4= coo+ 3fl /8
(4)

where we have assumed 6&)A. The atom —classical-field
coupling is represented by the Rabi precession frequency

fl2 m, and can be adjusted by tuning the power of source
S. The frequency mismatch 6 between this transition and S
1s

5 = $2A + 8 /4 —8'/2= 20 /8
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mode. In this time interval, one can distinguish two types of
evolution. When source S is off, the system follows adiabati-
cally the dressed energy states, which results in a small ad-
mixture of the uncoupled levels. The adiabaticity of this evo-
lution supports the validity of the qualitative discussions
given above. During the time when S is switched on (from
t = —23.5 to t =23.5 p, s), the populations of the two reso-
nant levels evolve rapidly. The adjustable parameters are
chosen so that state ~l,e) is efficiently transferred to state
l,g) [see Fig. 5(a)] while a system prepared in state ~O,e)

returns quite precisely to ~O,e) after a transient admixture
with state ~O,g) [see Fig. 5(b)]. This rather large admixture is
due to the fact that condition (6) is only marginally fulfilled
(there is only a factor of 2 difference between A„fand 6).
We get rid of these parasitic transitions by a proper adjust-
ment of experimental parameters. They are chosen so that the
effective Rabi frequency on the ~0, +)~~O,g) detuned tran-
sition is nearly twice the one on the resonant
~+, 1)~~0,—) transition. The second one experiences a rr
pulse, while the first one experiences a complete rotation,
returning to the initial state. The quality of the gate can be
measured by the probabilities of transition between the com-
putational basis states, provided no quantum jump occurred
in the evolution. The maximum deviation from the required
values (squares of the moduli of the elements of U) is found
to be of the order of 1.5%, comparable to the probability of
a quantum jump.

An arbitrary pulse amplitude can be achieved by decreas-
ing A„fand adjusting slightly t;„,(keeping the atomic ve oc-
ity and the atom-cavity detuning fixed). For example, the
temporal behavior of the vr/2 gate (0„f——2m X 5.46 kHZ and

t;„,=53 p, s) is depicted in Figs. 6(a) (initial state
~

l,e)) and
6(b) (initial state ~O,e)). The transition probabilities for this
gate deviate from the required values by less than 1%. The
above figures clearly demonstrate that the gate operates quite
satisfactorily even if the conditions raised by a qualitative
analysis are only marginally fulfilled.

In a quantum computation, the phases of the complex
amplitudes play a very important role and should be con-
trolled accurately. The diagonal elements of the unitary
transformation realized by this system are affected by phase
factors. These factors result from the integrated atom-cavity
level shifts. For instance, the state ~O, e), which should not be
affected by the gate, and though it stays nonresonant with S,
experiences a shift in the cavity mode depicted in Fig. 3. One
can easily adjust those phase factors to get, within an irrel-
evant global phase, the required universal transformation by
tuning the phase of the two atomic q bits leaving the experi-
ment. Differential Stark and Zeeman effects can be applied
for well controlled amounts of time separately to the two
atoms. They allow the experimenters to control the phases of
the coefficients in the atomic states, without affecting the
entanglement between the two atomic systems. Once this
trivial phase compensation is performed, the phase of the
nonvanishing nondiagonal elements of the realized unitary
matrix [corresponding to 8 in Eq. (1)] can be adjusted
through the phase of source S. We have checked that it de-
pends linearly on the phase of S, and very weakly only on its
intensity, and can therefore be controlled with precision.
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FIG. 6. Realization of a conditional ~/2 pulse on the atomic
system. (a) Initial state

~

l,e). At the end of the evolution, the sys-
tem is in a superposition of

~
l,e) and

~
l,g) with equal weights. (b)

Initial state ~O, e). After a transient admixture of other states, the
system returns to the initial state. Interaction parameters are given
in text.
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We have demonstrated here that an excellent approxima-
tion of the universal two-bit gate can be realized with a very
simple cavity-QED experimental arrangement. The condi-
tional transformation performed on the atomic q bit can be
tailored at will through a proper adjustment of the experi-
ment. The parameters are the ones of an experiment currently
under progress in our laboratory. An effective realization of
the gate is thus clearly feasible. The realization of a large-
scale network able to perform a complex calculation such as
a factorization is certainly much more difficult. The calcula-
tion time should be much less than the decoherence one,
which is much shorter than the relaxation time for an indi-
vidual gate [23]. This puts very strong constraints on the
technology. On the other hand, studying these decoherence
processes on small-scale networks made of a few elementary
gates could help us in understanding the role of these relax-
ation mechanisms.
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