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Transfer-matrix approach to tunneling between Kolmogorov-Arnold-Moser tori
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We consider splittings of the energies of degenerate quasimodes in a two-dimensional channel. This system
is a model for splittings of degeneracies due to multidimensional tunneling in a general quasi-integrable

system. We formulate a determinant quantization condition in terms of the transfer matrix, which enables us to
relate the splittings to elements of the scattering matrix. We find that the splittings can be due to either a single-

or a multiple-scattering process. In the former case, the results reduce to an earlier theoretical analysis which

used an assumption that the splittings are canonically invariant quantities. We demonstrate a quantitative

agreement between semiclassical theory and numerical calculations of the splittings.

PACS number(s): 03.65.Sq

I. INTRODUCTION

A particle moving in a smooth potential well in d)2
dimensions typically has a mixture of regular trajectories,
which explore d dimensional tori in phase space, and irregu-
lar trajectories that explore regions of higher dimensionality.
Quantum eigenstates can be associated with a subset of the
phase space tori which satisfy the Einstein-Brillouin-Keller
(EBK) quantization rule: this states that the actions I, asso-
ciated with the d independent irreducible circuits I J on these
tori satisfy

that the spectrum contains doublets with a small splitting
[2,3]. Similarly, if we vary a parameter in the Hamiltonian,
the EBK scheme predicts that levels can degenerate for iso-
lated parameter values, whereas the noncrossing rule [4] tells
us that this should not happen. Again, numerical experiments
show that varying a parameter leads to avoided crossings
with very small splittings [5].The splittings of these doublets
and avoided crossings are the subject of this paper.

It has been suggested [2,3] that these splittings result from
a tunneling effect, and that they should decrease exponen-
tially in the semiclassical limit (taking ft~O, keeping all the
classical parameters of the Hamiltonian fixed):

AE-Aexp( —W/ft). (1.3)

where the n, are a set of quantum numbers and the y, are
integers termed Maslov indices. The energies of these torus
quantized states are approximately

E„=H(I), (1.2)
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where H(I) is the Hamiltonian expressed in terms of the set
of actions, I=(Ii,I2, . . . ,Id), and n=(ni, n2, . . . ,nd) is a
vector formed from the quantum numbers n~. Classical
Hamiltonian dynamics, the Kolmogorov-Arnold-Moser
(KAM) theorems on the ubiquity of phase space tori, and the
EBK quantization scheme are reviewed in a book by
Gutzwiller [1].

An interesting feature of the EBK quantization scheme is
that it predicts degeneracies in cases where more general
arguments indicate that they should not exist. If the system
has a geometrical symmetry such as a mirror plane, it is
possible for phase space tori to exist in pairs related by the
symmetry operation. The EBK quantization scheme predicts
the existence of torus-quantized states with exactly the same
energy. Because the irreducible representations of this sym-
metry group are one dimensional, we do not expect any exact
degeneracies in the spectrum. Numerical experiments show

Here W is a classical action, and the prefactor A may have a
power law dependence on A, . Theoretical arguments have
been advanced to support this hypothesis [6,7], and it is con-
sistent with some numerical experiments [5], although not
with others [8,9]. Because the wave functions of the two
degenerate quasimodes overlap in coordinate space, an en-
tirely satisfactory solution of this problem will require an
analysis of the Stokes phenomenon [10] in two or more di-
mensions, enabling us to describe exponentially small cor-
rections to the wave function in the classically allowed re-
gion. Progress on this problem has been slow.

In this paper we discuss a model in which the tunneling
splittings can be related to the S matrix for a scattering prob-
lem. Although there is not yet a fully satisfactory theory for
the semiclassical 5 matrix in the classically forbidden region,
procedures (pioneered by Miller and George [11,12]) for cal-
culating the exponentially small scattering matrix elements
exist which yield satisfactory results (i.e., excellent agree-
ment with numerical experiments). We will show that multi-
dimensional tunneling provides a good description of the
splittings of degeneracies in some cases, and that it is de-
scribed by a formula which is equivalent to that proposed in
an earlier paper by one of us [6]. We also show how the
simple tunneling picture can fail and be replaced by a mul-
tiple scattering process; we indicate how our approach can be
extended to the case of multiple scattering.
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We consider the following model. A particle of mass p,
moves in a two-dimensional channel, for which the smooth
potential V(x, y) is periodic in x, bounded in y, and sym-
metric:

or a Gaussian

oo

1
v(x) = g exp ——(x —nL) /P

yz = —oo 2

V(x+L, y) = V(x,y),

lim V(x, y) =~,

V( —x, y) = V(x,y).

(1.4a)

(1.4b)

(1.4c)

In many cases, we find good agreement with our formulas
for splittings due to single-step scattering. The other split-
tings must be described by a multiple-scattering theory,
which we did not consider in detail. Section VI contains
some concluding remarks.

We will apply the Bloch boundary condition

"P(x+ L,y) = exp(iKL) W(x, y) (1.5)

1
2V(x,y) = uv (x) + —y + ( ay+ e'y ) v (x)2

(1.6)

with v(x) either a periodized sech function

v (x) = g sech [(x—nL)/X] (1.7)

and the eigenvalues depend on the Bloch wave vector K.
Consider the classical motion along the channel at ener-

gies for which the channel is open, in the sense that there are
trajectories connecting x = 0 and x= L. Typically, in a
smoothly varying potential we expect that some of these ex-
tended classical trajectories will exist on KAM tori in phase
space. If K=O, the inversion symmetry of the potential im-

plies that these extended KAM tori exist as symmetry related
pairs, in which tori with opposite directions of propagation
of the particle satisfy the EBK quantization condition at the
same energy. For typical values of K there are no symmetry
related doublets, but by varying the parameter E avoided
crossings can be observed.

Our approach is as follows. In Sec. II we will set up an

exact determinantal quantization condition for the energy
levels in terms of the transfer matrix M for propagation
along the channel. In Sec. III we describe how this quanti-
zation condition leads to a simple expression for the splitting
AE of the degeneracy under certain conditions. When these
conditions are not satisfied, we can interpret the splitting as
resulting from a multiple scattering process, and discuss an
extension of our equation for the splitting to this case. Our
equations for the splitting are expressed in terms of elements

of the scattering matrix S corresponding to classically forbid-
den processes: in Sec. IV we use Miller's semiclassical
theory [11]to relate these matrix elements to classical trajec-
tories in a complex phase space. We show that the results are
in agreement with an earlier prediction by one of us [6],
which used an entirely different approach. We mention that
we recently received a report by Doron and Frischat [13],
which also discusses dynamical tunneling using a determi-
nantal quantization condition. They analyze the billiard
model discussed in [8], and their approach is quite specific to
that system.

We describe some numerical tests of this theory in Sec. V.
For convenience we will confine our numerical studies to
potentials of the form

II. THE TRANSFER-MATRIX QUANTIZATION
CONDITION

Because the Hamiltonian is periodic in x, we concentrate
on a period of the potential —Ll2~x(L/2. We will consider
the case where the period L of the potential is large com-
pared to the length k of the scattering region, so that the
channel approaches a uniform cross section when
~x~-L/2&)X. We expand the wave function satisfying the
time-independent Schrodinger equation in terms of asymp-
totic modes of propagation,

1
9"(x,y) = g (a„+(x)exp(ik„x)

k„n 1=
+ a „(x)exp( —i k„x))(p„(y ) (2.1)

where the asymptotic basis functions q&„(y) satisfy the one-
dimensional Schrodinger equation

d
2 + V(L/2, y) y„=E„q„

2p
(2.2)

with the boundary condition y(y) +0 as y —+ ~ ~. The wave
vector k„ is given by

k„(E)= g2/L, (E E„)/fi— , .(2.3)

The expansion coefficients a„(x) at different values of x
are linearly related; we write

/ a+(L/2) ~ / M++ M+ l / a+( L/2)l-
(a (L/2)) t, M M ) t, a ( —L/2))

)a ( —L/2)1
=M

pa ( L/2))—(2.4)

where a —(x) = (at (x),a2 (x), . . . ) are infinite dimensional

vectors containing the coefficients a„, and the matrix M is
termed the transfer matrix. The subscripts on the four sub-

matrices of M indicate whether, respectively, the initial or
final states represent leftgoing or rightgoing waves. Because
we are considering the case L&) k, the amplitudes a„(x) are

expected to approach constant values in region ~x~-L/2,
which will be denoted by a„and a„ for x(& —X and
x)) + k, respectively. The relationship between these coeffi-
cients can be expressed by the asymptotic value of the trans-
fer matrix, or alternatively by means of a scattering matrix

S, defined as follows:
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/ +11) /f R ) (&+t.) (&+t.)

(R T
(2.5)

The scattering matrix gives the amplitudes of the outgoing
waves in terms of the incoming waves incident on the scat-
terer. The submatrices of the transfer matrix and those of the
scattering matrix are related as follows:

d= diag((exp[i/„])) (3 2)

and @„is real valued (its explicit semiclassical form will be
given in Sec. IV). It is assumed that all of the elements of the
matrices t and r are small; in the semiclassical limit those
off-diagonal matrix elements corresponding to classically
forbidden processes are exponentially small in fi:

M++ = T+ —R+T R M+ =R+T r„=

At�

"~ exp( —W~ "~/fi),

M += —T R M =T (2.6)
t„=A ~'~ exp( —W~'l //i ) . (3.3)

a„=exp[ ~ i k„L+ i ICL]a„ (2.7)

It will be useful to introduce a modified transfer matrix M'

by means of a phase transformation of the elements of M

(M ', )„=exp[ ~ ik„L](M,)„ (2.8)

where s = ~, or in matrix form,

1M' + M'
0 ~(M„

(2.9)j(M, M

Because of the symmetry of our potential represented by
(1.4c), the reliection and transmission matrices are the same
for each direction, i.e., R =R+=R and T =T+=T.

Bloch's theorem (1.5) implies that the eigenfunctions in a
periodic potential satisfy

Formulas for the tunneling actions W„and the prefactors
A, will be given in Sec. IV.

We can ensure that the scattering matrix takes this form
by making the asymptotic regions (~x~ &) X) of the KAM tori
coincide with the asymptotic states of the scattering problem.
This can be achieved by a perturbative approach, in which
the coupling constants e and e' which break the separability
of the potential (1.6) are very small; this is the method we
adopt in this paper. An alternative approach would be to
make X&&1 as well as L&&k, in which case the transverse
mode of the channel varies adiabatically. The classical adia-
batic theorem [14] then ensures that the action I of the trans-
verse motion is a good approximate constant of motion as we
propagate along the channel.

If both t and r are small but not zero, as we have as-

sumed, we can approximate the transfer matrix M' as fol-
lows:

where a diagonal matrix v is defined by

a = diag((exp[ik„L]] ) .

The Bloch condition can then be written

(2.10) t~(d+ t) d '

(3 4)

det[M ' (E)—exp( iKL)I]= 0 (2.»)

det[M
' (E)—exp( iNKL) I]=0. (2.12)

This alternative form of the quantization condition may have
spurious additional solutions, but it can be more suitable for
further analysis.

where J is the identity matrix. This is a quantization condi-
tion on the energy for a state with a given Bloch wave vector
E. The matrix M is infinite dimensional, but we will as-
sume that accurate energy levels can be obtained by truncat-
ing this matrix to a large finite dimension 2~. The condi-
tion can also be written in the form

Then, by neglecting the classically forbidden processes (t
and r) and inserting it into the quantization condition (2.11),
we can write the EBK quantization condition in terms of
elements of d in the form

1I1„(E„)—=@„(E„)+k„(E„)L= 2 7tm ~ KL. (3.5)

Here the E are the EBK quantized energies corresponding
to the KAM tori.

Let us assume that the EBK energies of two modes with
indices ni and n2 are degenerate at energy Eo. Referring to
the EBK quantization condition (3.5), we see that this is
realized if

III. SIMPLE ESTIMATE FOR THE SPLITTING
AND ITS VALIDITY

@n (Eo) —2~m1= EL= @n,(Eo) 27rrn2. (3.6)

T=d+t, R=r (3.1)

where d is a diagonal matrix which we will write in the form

We will now consider a simple expression for the energy
splitting AE, which applies when the S matrix is close to
diagonal. We will assume that, for the case of interest, the
transmission and reAection matrices take the form

These two equations can be solved by varying the parameters
Eo and K, implying degeneracy between quasimodes with
quantum numbers (nt, m1) and (n2, m2). When the off-
diagonal matrix elements are included in the determinant
quantization condition, these apparent degeneracies are split.
By permuting rows and columns of the determinant and us-
ing the approximation (3.4), we can write the quantization
condition (2.11) in the form
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D(E) = det

i@„ i KLnl —e

tk„Lt
n2n

&

(M++) i.,

ik„Lt
n)n2

i@n i KLn2 —e

(M++)„,

(M++)„ i

(M++) i„, (M++) „—e'

(M+ )„

(M+ )„

(M+ )i i =0. (3.7)

(M'+) i„(M'+) i„ (M'+) ii eiKL

The determinant D(E) can be written

D(E) =D2(E)D'(E)+R(E), (3.8)

/ i@„ iKL

det k„Lt

e'" i' tnln2

i@„ i KL)n2 —e
(3.9)

where D2(E) is the determinant of the 2 X 2 submatrix at the

top left of (3.7), D'(E) is the determinant of the lower right
hand submatrix, and R(E) is a remainder term. If the ele-
ments in the upper right or lower left submatrices are suffi-
ciently small, the remainder term can be neglected, in which
case the quantization condition states that either D'(E) =0
or else

degenerate quasimodes are propagating in opposite direc-
tions, implying that the scattering matrix element between
these modes is a reflection.

It is straightforward to write down sufficient conditions
for the neglect of the remainder term, but we will not pursue
this here. The neglect of the remainder term cannot always
be justified, if the determinant condition is written in the
form (2.11).By rewriting this condition in the form (2.12), it
may in some circumstances be possible to show that the
conditions for the remainder term being neglected are satis-
fied for some power N. In this case, we can use a modifica-
tion of the formula (3.11) or (3.13) to calculate the splitting,
and we can interpret the splitting as being dominated by an
N-fold scattering process.

If the off-diagonal matrix element tn n is small, there will be
1 2

two solutions of (3.9) close to Ep . Approximating
exp[i@„(E)]—exp[iKL] by the first nonvanishing term of its

Taylor expansion about Eo, we can write this condition in
the form

det

d4
i (E—Ep) e'

Ikn L
n2n&

ei k„L
n&n2

d4„
i (E Ep)e' 2

=0.

(3.10)

d@„dC„
dE dE (3.11)

If we consider the case in which, at energy Eo, we have

iI2„(Ep)—2mmi =EL= —C&„(Ep)+2mm2 (3.12)

This quadratic equation is solved by a pair of energies with
separation

IV. SEMICLASSICAL APPROXIMATIONS

In order to calculate the energy splittings we require for-
mulas for matrix elements of the S matrix. Miller [ll] has
given a semiclassical theory for these matrix elements, based
on the van Vleck formula [1]:his theory gives expressions
for the matrix elements of both classically allowed and clas-
sically forbidden transitions. We will begin by describing
Miller's theory as it applies to a scatterer in a two-
dimensional channel. The asymptotic states of the scattering
problem can be described by two classical momenta; one is
the momentum p of the particle along the direction of the
channel, the other is the action variable I for the transverse
oscillations. The transverse action I is quantized and the lon-
gitudinal momentum p is determined by conservation of en-

ergy: p = $2~(E —E„).The S matrix elements take the form

S„„=g exp ~
W (I2,p2, Ii,pi, E),(2~ BI,BI, )

(4.1)

where the action is

instead of (3.6), then the formula (3.11) is replaced by W= — dt(xp+ HI). (4.2)

d4„d4„
dE dE (3.13)

Equations (3.11) and (3.13) are good approximations for the
splitting of the nearly degenerate levels provided that the
remainder term in (3.8) can be ignored. Equation (3.11) de-
scribes the situation where the dominant contribution to the
splitting of modes with indices n

&
and n2, propagating in the

same direction, comes from a single scattering from one
mode to the other. Similarly, Eq. (3.13) applies when the

(x and 8 are the coordinates conjugate to the canonical mo-
menta p and I, respectively. ) The sum runs over all the tra-
jectories which satisfy the appropriate boundary conditions,
implying that the incoming and outgoing trajectories satisfy
the EBK quantization condition for a transverse mode in the
asymptotic regions. These boundary conditions are

n
&
+ —

y& 6, 0& = arbitrary
4
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I2= ~ n2+ —
y2 fi, , )92=arbitrary

4 t
(4.3)

[and for the potential (1.6), the Maslov constants are

y, = hz=2]. Appropriate trajectories are determined by a
shooting method: the final action n2 is a function of the
initial action n

&
and of the angle 0&, and the initial condition

0& is adjusted so as to make n, 2 integer valued. If the outward
part of the trajectory continues in the same direction as the
inward part, it contributes to the element T„n of the trans-n2n1

mission matrix; otherwise it contributes to the reflection ma-
trix element R„„.

2 1

Miller and George showed [12] that this method can also
be applied to classically forbidden processes for which there
is no real classical trajectory such that n2 is integer valued;
instead, this condition is satisfied by taking complex valued
trajectories. Any observed variables must take real values,
but unobserved variables are free to take any value, includ-
ing complex values. The initial and final conditions of the
trajectory are as follows

initial

x& real, arbitrary

p, real, g2 p, (E E„)—
0& complex, variable

real, specified I2

complex, free

real, specified

final

x2 real, arbitrary

Izz real, g2 p, (E E„)—
(4 4)

(x, and xz should be located in either left or right asymptotic
regions, but otherwise they are arbitrary. ) The trajectory can
be integrated along any path in the complex t plane. Integra-
tion of Hamilton's equations in complex phase space along a
specified path in the complex t plane gives a final transverse
action I& which depends on the initial transverse action I&

and angle 0&.'

and similarly for classically forbidden reflections, with

W„"„,the action for the reflection path, replacing W„'„.
2 1 n2n1

We can now give a simple formula for the splitting in
terms of canonically invariant quantities. First note that the
phases 4 „appearing in (3.11) and (3.13) are related to the
action variable J for the longitudinal motion:
2zrJ=Ii4„(E). It follows that

If( 01 Il ) Iz (4.5) dC n
I' aH~

dE i BJ/
(4.7)

The complex value of 8& is adjusted (using a Newton-
Raphson iteration or similar procedure) until a zero of the
complex function I&

—I2 is located.
The choice of path in the complex t plane is an important

issue. For most continuous deformations of a path, the values
of any physical observable will not change. There are, how-
ever, singular points in the complex t plane, such that a
physical quantity will change discontinuously when the con-
tour passes these points. We will discuss these singular
points in more detail when we describe our numerical re-
sults.

Having found a suitable complex time path for the classi-
cally forbidden process, we assume (following Miller) that
there exists a contribution to the sum (4.1) from this path,
provided the imaginary part of the action is positive, so that
the contribution to the matrix element has magnitude less
than unity. Except when there are symmetries in the problem,
all of these trajectories will have different values of ImlV,
and usually only that trajectory with the smallest positive
value of ImW need be retained, as the others will be expo-
nentially small by comparison. The matrix elements corre-
sponding to classically forbidden transmissions will there-
fore be written

Combining (4.6) and (4.7) with (3.11), we find

g 3/2 8 W BH BH '
b E=

z 2 vari exp(i Wlft) (4.8)

where (I&,Jt) and (Iz, Jz) are the transverse and longitudi-
nal actions for the two states.

n2n 1

g2 ~(t) 1/2

exp[ i W(')„ /It, ]
1 2

(4.6)
FIG. 1. Illustrating the definition of the two sets of action vari-

ables (I,J) and (I',J') discussed in Sec. IV; the latter are, respec-
tively, tangential and perpendicular to contours of H(I,J)
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Equation (4.8) is equivalent to an expression previously
obtained by one of us [6] using an entirely different method:
the earlier expression was of the form

g 312 g2 ~ gH gH l/2

AE= 2 2 vari. . . , exp(iW/fi), (4.9)
2m BI,oI2 oJ) oJ2

T2—

R,

where I' and J' are action variables measured, respectively,
tangential and perpendicular to a contour of the Hamiltonian
H(I, J) (see Fig. 1). [We remark that in writing (4.9) we have
corrected an error in (3.18) of Ref. [6], in which a term
proportional to dr was dropped in Eq. (3.13) of that paper. ]
In (4.8) of this paper, W is differentiated at constant energy
E, implying that

oI 8 8 W BIi BI2 oI W
cosa i cos02,

aI] 812 oIi oI2 gI] gI2 BIi BI2
(4.10)

where the angles Oi and 02 are defined in Fig. 1. Also, in

(4.8) the factors r/H/r/J are evaluated at fixed I, implying
that

8H dH ojJ$ BH 1

J, cosO,
(4.1 1)

The factors involving cosOt and cosOz cancel, implying that
(4.8) is equivalent to (4.9).

The earlier paper considered a double well potential, and
manipulated the expression for the tunneling splitting to this
canonically invariant form. It was hypothesized that the tun-

neling splitting should be an invariant quantity, and that this
formula should apply to the dynamical tunneling problem, as
well as double well problems. The new derivation avoids
making assumptions about canonical invariance, but it is
only applicable in its present form when the KAM tori cor-
respond to asymptotic channels of a scattering problem.

V. NUMERICAL RESULTS

We wrote computer programs to calculate the energy
splittings AE and the elements of the S matrix directly from
the Schrodinger equation, and also to calculate elements of
the S matrix semiclassically. The programs for the quantum
mechanical computations require little discussion. To deter-
mine the energy splittings we computed the energy levels
numerically by a matrix diagonalization method. We calcu-
lated the elements of the S matrix numerically by using an
R-matrix propagation method described in [15].We had to
use a large number (up to 2000) of steps in the x direction
because we required very small amplitudes corresponding to
tunneling: S matrix elements of magnitude 10 ' could be
calculated accurate to three significant figures.

Our semiclassical calculation of the S matrix elements
follows Miller's approach, using a shooting method to deter-
mine an appropriate complex classical trajectory, as dis-
cussed in Sec. IV. Our earlier discussion did not specify how
to determine the path in the complex t plane along which the
trajectory is computed. This depends on the form of the scat-
tering potential used; in general this issue must be addressed
by locating the singularities in the complex t plane numeri-

cally, and testing all the different topologies with which the

T
X x

2

FIG. 2. Singularities in the complex t plane and paths that pro-
duce transmitting trajectories (T, and T2) and reflecting trajectories

(R, and R2).

path can wind around the singularities in order to find a
tunneling trajectory with the smallest action. In the numeri-
cal investigations which we report below, the coefficients e
and e' are small, implying that the potential is close to sepa-
rable. The singular points are easily determined in the sepa-
rable case, and can be used as a guide in the slightly per-
turbed nonseparable cases of interest. In the separable case
the motion of the x coordinate is independent, and can be
obtained by solving the implicit equation

( I ) 1/2

t = —
/L dx'[E V(x')]-

L2 ] Jo
(5.1)

t= ~t, ~nmi p
2E' sinh ' i E u) *—

(5 2)

where we choose t = 0 as the time at which the particle is at
x=0. The arrangement of these singularities in the complex
t plane is shown in Fig. 2, which also shows two paths which
generate trajectories corresponding to transmission over the
top of the barrier (T, and T2), and two paths which lead to
reflecting trajectories (R &

and R2) . For the potential
V(x) = nexp( —x /2), although the potential V(x) is finite for
any finite x in the complex x plane, it is possible for the
trajectory x(t) to escape to infinity in a finite complex time.

TABLE I. Splittings determined by the matrix element t, „,for
I 2

the sech2 potential (1.7). The parameters were fr=0.2, m=0.01.
The avoided crossing between n, =0+ and n2= 1+ states occur
close to E=0.36056 and K= —0.1744; for the n& =0+, n2=2+
crossings, F=0.55406 and K= —0.2723.

0.001
0.001
0.0
0.001
0.0

0.0
0.0005
0.001
0.0005
0.001

n&, n2

0,1

0,1

0,1

0,2
0,2

~+QM

3.9x10 '
3.9X10 '

0.0
1.6x 10
3.8 X 10

3.9X10 '
3.9X10 '

0.0
1.9X10 '
3.8X 10

3.9X10 '
4.5X10 '

0.0
1.7X10 '
3.6x10 '

for x(t) The sing.ularities in the complex t plane occur when
the potential V(x) is singular. For the potential
V(x)=nsech (x), V(x) diverges at x=sr/2i+nni, which
correspond to the singular times
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TABLE II. Splittings determined by the matrix element t„„,for
1 2

the Gaussian potential (1.8). The parameters were fi = 0.2,
a = 0.05. The avoided crossings between n, = 0+ and n2 = 1+ states
occur close to E=0.534 022, K= 0.211 64; for the n, =0+,
n2=2+ crossings, E=0.657 858 and %=0.212 82.

0.001
0.001
0.0
0.001
0.0

0.0
0.001
0.001
0.001
0.001

n&, n2

0, 1

0, 1

0, 1

0,2
0,2

~EQM

7.7x]0 '
7.7X10 '

0.0
9.3X10 '
9.4X 10-'

77X10 '
7.7X10 '

0.0
9.4X 10
9.4X 10

8.1X 10
7.7X10 '

0.0
9.0X10 '
9.0X 10

TABLE III. Matrix elements r of the S matrix for the Gaussian
potential (1.8). The parameters were a = 0.05, e= 0.01. The energy
is E=0.7459.

The transmitting and reflecting trajectories are divided by
such a singular point in this case.

We have to be careful not to come close to such a singu-
larity in the numerical integration in order to keep sufficient
accuracy. In our numerical calculations, transmission ampli-
tudes were calculated along a real t path for both potentials
from x= —LI2 to Rex=L/2. For reAection in the sech
model, we first move t along real axis until Rex reaches 0,
then along a purely imaginary time increment

i r= ~i gp, l2E, and finally we move t in a purely real direc-
tion until Rex returns to —Ll2. The same procedure was
used for reAection of the Gaussian model, except that i ~ is
replaced by the value for which the velocity changes sign in
the separable case.

We tabulate results for three different estimates of the

splitting of the degeneracy: DE&M is the splitting determined
from a diagonalization of the quantum Hamiltonian, AEs& is
determined using the semiclassical formula (4.8), and

AE;, uses the quantum mechanically calculated S-matrix
elements with the formula (3.11) or (3.13) for the splitting.
The latter quantity is tabulated for two reasons: first it speci-
fies the magnitude of the quantum S-matrix elements, and
secondly, in cases where the agreement between the quantum
and semiclassical results is not perfect, it indicates whether
the discrepancy lies in the semiclassical approximation or in
the reduction to a 2X 2 matrix.

We studied three different types of splittings, and we will
refer to them by means of the S-matrix elements which occur
in the formula for the splitting. Symmetry related doublets at
K=O, which correspond to direct reAection of the mode
n+ into the mode n, are determined by the element r„„.
We also studied the splittings of two types of avoided cross-
ings produced by varying K, in which the degenerate quasi-

0.7
0.7/3

0.7/5

0.7/7

0.7/9

(n, , n )

(2,0)
(6,1)
(10,2)
(14,3)
(18,4)

~EQM

4.19X10 '
4.86X10 '
2.73 X 10-'
1.31X 10
5 38X ]0

~Emix

4.19X 10-'
5.09X 10-'
9.26X10 '
2.07 X 10
4.82X10-'4

Esc

7.0X10 '
5.0X10 '
8.8X 10
2.2X 10
5.1X10-"

modes correspond to propagation in the same direction, or in
different directions: we refer to these as t„„and r„„split-n~n2 1 2

tings, respectively.
In Tables I and II we give examples of splittings involving

the t„„scattering matrix element; Tables I and II contain71)n2

data for the potentials (1.7) and (1.8), respectively. For both
of these examples we used p, = X = 1 and L = 10; the other
parameter values are listed in the captions of the tables. In
these tables semiclassical estimates AEsc obtained from
(4.8) agree well with quantum results b, E&M, as well as with

AE;„. We remark that if both the coupling constants e and
e are zero, the splitting vanishes, implying that this splitting
is an inherently two-dimensional tunneling process. In the
case where e=O, for both potentials we found two solutions
with the same imaginary part of the action. This degeneracy
comes from the symmetry of the potential: these two solu-
tions have the same phase for splitting between n = 0 and
n = 2, whereas they have the opposite signs for splitting n = 0
and n= 1 states, so that the splitting is zero.

Next we consider splittings determined by direct reAec-
tion by the matrix element r„„.The direct reAection occurs
even when e and e' are zero. Thus, this type of splitting can
be essentially either one dimensional or two dimensional. We
examined this point carefully, by changing values of 6, so
that we calculate splittings of states for which the quantized
tori are the same. Tables III and IV show the elements of the
S-matrix element r„„and the energy splittings, respectively,
for the potential (1.8), where the same values of p„, X, and L

00

h, E,„
SC

log, (AF)

TABLE IV. Splittings determined by the matrix element r,„, for
the Gaussian potential (1.8). The parameters and the energy are the
same as Table III.

0.7
0.7/3

0.7/5
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3.40X10 '
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3.56X 10-'
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-35.0
0.0 15,0

FIG. 3. Energy splitting as a function of 1/A. for the Gaussian
potential (1.8). The data are taken from Table IV.
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are used as above. From Table III we see that for fixed clas-
sical parameters, Miller's theory is valid in the limit of
A, —+0: the semiclassical results agree with quantum ones for
fi, ~0.7/3. Next consider the energy splittings given in Table
IV and plotted in Fig. 3: we find that for fi, ~0.7/5, Ssc
agrees well with S&M, but AFsc does not agree with

DE&M. This implies that the reduction to a 2X2 matrix
breaks down in the limit of A, ~0. Note that the formula (4.8)
gave an underestimate of the splitting. These observations
imply that, in these cases, the splitting of the degeneracy is
dominated by multiple scattering. The deviation from simple
exponential dependence of splitting on 1/fi, given is similar
to that seen in the results of [8].

We verified the multiple-scattering interpretation in sev-
eral cases by calculating the splitting using a succession of
approximations of the exact determinant quantization condi-
tion; in these cases we only obtained accurate estimates of
the splitting when matrix elements allowing transitions via
intermediate states were included.

Finally, we remark that all the examples of r„„splittings"]"2
that we examined appear to be determined by the multiple
scattering mechanism.

VI. DISCUSSION

In this paper we have given the first example of quantita-
tive agreement with a two-dimensional semiclassical theory
for splittings between KAM quantized quasimodes. Our dis-
cussion was specific to problems which can be represented in
terms of a scattering region connecting incoming and outgo-
ing channels, but the approach can be extended to potentials
with bound states. Our analysis gives a formula which is
equivalent to one suggested in Ref. [6], based on consider-
ation of a double well potential.

Our analysis also indicates a mechanism by which the
simple formulas for the splitting, (3.11) and (3.13) can fail.
Our derivation depends on the neglect of a remainder term in
the determinant quantization condition. If this remainder
cannot be neglected, our formulas, based on the assumption
that the splitting is due to a single-scattering event, are not
valid. Individually, the elements of the S matrix describe a
process (one traversal of the scatterer) occurring in a finite
time, whereas the fine structure of the spectrum contained in
the splittings between energy levels carries information
about the dynamics on very long time scales. It should not,

therefore, be too surprising that the predictions of (3.11) or
(3.13), which contain information about only one 5 matrix
element, can break down. By taking account of multiple-
scattering processes, we can describe the propagation over
longer periods and obtain more accurate information about
the splittings.

To see how this can lead to a quantitative theory, note that
multiple traversals of the scatterer can produce a larger prob-
ability for transitions between two states, and the effects of
transitions involving scattering via intermediate states must
be included. For example, if the matrix element t„„ is very

] 2

small, the product t„ t„„,describing scattering via an in-
1 t t 2

termediate mode with transverse quantum number n;, may
make a dominant contribution to the corresponding matrix

element of M' . The reduction of the quantization condition
(3.7) to a 2 X 2 matrix depends on the matrix element cou-
pling the states with transverse quantum numbers n,

&
and

n2 being sufficiently large to guarantee that the remainder
term in (3.8) can be neglected. Even if this condition is not

satisfied by the matrix M', it may be satisfied by the matrix
M', which includes the effects of transitions via one inter-

mediate state. Similarly, the matrix M', which describes N
traversals of the scatterer, may satisfy the condition for re-
duction to a 2X2 form, implying that the splitting is domi-
nated by scattering via N —1 intermediate modes.

Finally we remark that it may be possible to extend (4.8)
to the multiple-scattering case, by regarding the potential as
having a periodicity of NL rather than L. The longitudinal
action I is increased by a factor of N, and the complex
tunneling trajectory extending over N periods may have a
smaller tunneling action ImW than for a path which is con-
strained to lie within one period. The value of N would be
increased until the smallest tunneling action was found at
N =N*; because N* may depend upon 6, the splitting need
not decrease exponentially with A, in the multiple-scattering
case.
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