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It is shown that the Einstein-Podolsky-Rosen (EPR) correlations for arbitrary spin s and the Greenberger-
Horne-Zeilinger (GHZ) correlations for three particles can be described by nonlocal joint and conditional
quantum probabilities. The nonlocality of these probabilities makes the Bell inequalities void. A description
that exhibits the relation between the randomness and the nonlocality of entangled correlations is introduced.
Entangled EPR and GHZ correlations are studied using the Gibbs-Shannon entropy. The nonlocal character of
the EPR correlations is tested using the information Bell inequalities. Relations between the randomness, the
nonlocality, and the entropic information for the EPR and the GHZ correlations are established and discussed.

PACS number(s): 03.65.Bz, 89.70.+c

L. INTRODUCTION

One of the most fundamental features of quantum corre-
lations is the nonlocal and random character of microscopic
single events. Nonlocal randomness differs in a fundamental
way from the randomness associated with the concept of
local realism, which is based on the assumption that micro-
scopic physical systems can be described by local objective
properties that are independent from observation. Local real-
ism versus the nonlocal character of quantum mechanics [1]
has been described best in the framework of spin-3 Einstein-
Podolsky-Rosen (EPR) correlations [2]. The classical limit of
quantum nonlocality has been investigated in the framework
of the generalized EPR entangled correlations involving ar-
bitrary spin s [3]. In the limit of large spin these correlations
should exhibit a smooth transition to the classical regime if
the measurements do not resolve the quantum properties of
the spin [4,5].

It has been shown by Greenberger, Horne, and Zeilinger
[6] that special entangled states involving three or four par-
ticles lead to a much stronger refutation of local realism. It
has been shown that in many-particle correlations only a
single set of observations is required in order to demolish the
local reality assumption [7].

It is the purpose of this paper to show that the EPR spin s
correlations and the three-particle Greenberger-Horne-
Zeilinger (GHZ) correlations can be visualized as nonlocal
correlations between sequences of completely random num-
bers “0” and “1” corresponding, respectively, to ‘“no” and
“yes”” outcomes of the spin polarization analyzers. The co-
incidences between these random numbers are described by
conditional probabilities that are nonlocal, i.e., dependent on
the orientations of the spin analyzers. The nonlocality of
these conditional probabilities makes the Bell inequality void
because for local realism the existence of a universal,
polarization-independent transition probability between the
random sequences is essential.

A description that exhibits the relation between the ran-
domness and the nonlocality of entangled quantum states is
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well suited to study the EPR and the GHZ correlations using
the Gibbs-Shannon entropy. For a system involving two of
three correlated subsystems, the information entropy can of-
fer a measure of quantum correlation if the information of
the subsystems is compared with the total information of the
composed system. The nonlocal character of the EPR and the
GHZ correlations of the subsystems will be tested using the
information Bell inequalities involving entropies of the prob-
abilities that can be determined from the statistics of random
yes and no answers. In such a framework, the relations be-
tween the randomness, the nonlocality, and the entropic in-
formation for the EPR and the GHZ correlations will be
established.

This paper is organized in the following way. In Sec. II
general properties of the EPR correlations for arbitrary spin s
are reviewed and the randomness and the nonlocality of
these correlations are discussed in the framework of the
quantum bivalued distribution functions. The randomness
and the information of these EPR correlations is then dis-
cussed in the framework of the information entropy. The
information Bell inequality for the EPR correlations involv-
ing arbitrary spin s is investigated. In Sec. III the random and
the nonlocal properties of the GHZ correlations are dis-
cussed. The randomness and the information of these GHZ
correlations are discussed in the framework of the informa-
tion entropy. The corresponding information Bell inequality
for the three-particle GHZ correlations is introduced and in-
vestigated.

II. ENTANGLED EPR CORRELATIONS
FOR ARBITRARY SPIN s

A. Randomness and nonlocality

The EPR entangled state of the two particles ¢ and b,
each with spin s, is given by the singlet state of the two spins

sy ot
|¢EPR>“m:2_S mim’ m>’ (1)

where the states |m, ;m,;) correspond to the eigenvalues of
the z components of the two spins. In quantum mechanics,
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the joint spin transmission probability of detection of such an
entangled state by two linear polarizers is defined by the
formula

p(a;5) = Yepe| P(a)® P(b)| Yepr)- @)

In this expression P(a) and P(b) are the spin projection
operators of the particles a and b along the polarization di-
rections a and b.

Following the basic ideas of a theory based on local real-
ity, the transmissions of an arbitrary spin s through the linear
polarizers @ and b are described by objective realities repre-
sented by normalized transmission functions O$t(c; W)
=<1 and OSI(E,Ab)$ 1, with hidden variables A, and \;, . In
a theory based on local hidden variables (LHVSs), these trans-
mission functions are local realities that are averaged over
the hidden variables during a detection process. In the frame-
work of such LHV theories the joint spin transmission is
given by the statistical average of local realities

p(5;5>=fdxaf AN, PN A t(a N )t(bN,),  (3)

where the hidden parameters are randomly distributed with a
positive, normalized distribution function

f d)\af d)\bP()\a;)\b): 1» P()\a;)\b)zo. (4)

This distribution function is local, i.e., it is independent of
the polarization directions a and b. For such a local distri-
bution of random variables, the LHV transmission probabil-
ity (3) evaluated for four different polarization axes

5,5’,5,5’ is restricted by the Bell inequality [8]
—1<p(a:b)+p(a':b)—p(a:b’)+p(a’;b')—p(a)—p(b)
<0. ®)

The original Bell inequalities have been derived only for spin
3, but it has been shown that the inequality in the form (5) is
valid for correlations involving an arbitrary spin s [9].

We begin the discussion of the randomness and the non-
locality in quantum mechanics using the two-point distribu-
tion that has been introduced and applied to the discussion
of quantum jumps in optical transitions [10]. Using the
spectral decomposition of the spin projector operator
P=[d\S8(\— P), we rewrite the quantum-mechanical joint
probability (2) in the form

p(é;E):f dxaf ANy P(aN, ;DNp)N N, (6)

where the distribution function is given by the quantum me-
chanical average

P(5Xa§gkb)=<¢EPR| S(\,—P(a))® 5()\b_13(5))|‘//EPR%'7)

The projection operators P(a)=|a)(a| and P(b)=|b)(b|
corresponding to the two orientations of the linear polarizers
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a and b are obtained by a rotation of the maximum ‘““down”
spin states |m,=—s) and |m,=—s) by angles 7,=3
0,e " '%a and 1,=16,e ', respectively

la)=exp(7,S,4— 758,-)|—s),

i ) i ®)
|b)=exp(7bSb+—TZkaJI_S)»

where $ o+ and S »+ are the spin s ladder operators for par-
ticle a and b.

With the help of the distribution function (7) we have
rewritten the quantum-mechanical joint probability function
(2) in a form given by (6) that has remarkable similarities to
the LHV correlation function given by (3). Because the pro-
jection operators can have their eigenvalues equal to 1 or 0,
i.e., represent only yes or no answers, the values A, and A\,
can take only values equal to 1 and O corresponding to
“clicks” (with click—1 and no click—0) at the detectors.
The bivalued distribution given by (7) is positive every-

where, but depends on the polarization directions a and b.
The distribution function that depends on the orientation a of

the first analyzer and on the orientation b of the second (pos-
sibly even remote) analyzer is nonlocal. In the framework of
EPR correlations, it is customary to call an analyzer-
dependent distribution function a nonlocal distribution func-
tion. The nonlocality of this distribution function makes the
Bell inequality (5) void because in order to obtain this in-
equality the existence of a universal, local (polarization-
independent) distribution in the parameters \, and \, (hid-
den parameters in this case) is essential. From quantum
mechanics we obtain that EPR correlations can be described
by a distribution function of the form given by Eq. (7) with
the condition that the statistical distribution of the parameters
A, and N, is nonlocal, i.e., dependent on the polarization
direction.

In order to elucidate the statistical and the random char-
acter of the nonlocal distribution function further, we shall
perform a Bayesian analysis of the joint correlation. The
joint distribution can be written in the form

P(aXg;bN\,)=P(an |bN,)P(bN,). ©9)

The distribution P(a\,|b\,) is the conditional of the event
N\, (yes or no) to occur under the condition that A, (yes or

no) has occurred and P(l;)\b) is the marginal of the joint
distribution. In the following, for notational convenience, we
will omit the polarization directions and denote these func-
tions by P(i|j) and P(j), where the indices i and j will
denote 1 and O for a yes or a no outcome, respectively. From
the properties of the EPR entangled state (1) and the defini-
tions of the projection operators (8) it is easy to calculate all
of these distribution functions. The single-folded distribu-
tions are

P(0)=

P(1)=

2s+1° (10)

2s+1"°
Note that they are local, i.e., polarization independent. The
nonlocal, polarization-dependent conditional distribution is
given by the matrix
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P(0]0) P(0|1)

P(110) P(L|1)) (1)

P()\ap\b):[

where

1 o 4s @ 4s
P(OIO)IZ[Zs—1+(sinE) }, P(0|1)=1—(sin5) .

(12)

In these formulas « is the relative angle between the two unit

vectors a and b (cosa=5 ~l;). From these joint and condi-
tional probabilities we obtain that the joint spin transmission
function is

p(a;b)=P(1|1)P(1)=

o 4s
5 vl (smi) . (13)

From the Bayes analysis (9) we have the following sum
rules fulfilled by the conditional probabilities:
P(0|0)+P(1|0)=1, PO|D+P(1|1)=1. (14)

This result shows that one can regard the EPR correlations as
correlations of two sequences of random numbers repre-

sented by transmission functions t(‘;’)\a):)\a and t(l;,)\b)
=\, that are jumping between values 0 and 1 (no and yes
answers) for measurements performed with linear analyzers.
These are the only possible outcomes of the transmission
experiment. This positive and nonlocal distribution leads to a
simple statistical interpretation of the spin correlations and of
the violation of Bell’s inequality in terms of random numbers
1 and O for the transmission functions. On each single polar-
izer, the outcomes are completely random and the yes and
no answers occur with probabilities P(0) for no and P(1)
for yes. The nonlocality of the EPR correlations shows up
in the fact that these two perfectly random sequences (on
the first and second polarizers) are correlated and the corre-
lations are given by Eq. (12). These formulas predict that
the EPR entanglement can be understood as a nonlocal

correlation between the two random sequences t(z;,)\a)

=(1,0,0,1,1,0,0,...) and t(l;,)\b)=(0,0,1,1,0, ...). The
nonlocality of these correlations follows from the fact that

whenever t(l;,)\b)=1 on the polarizer b, we must have

t(c;,)\a)=1 or 0 on the polarizer a with the probabilities
P(1|1) and P(0|1), i.e., the outcomes on a (possibly even a
remote analyzer) are determined by the outcomes on the ana-
lyzer b. This is how the EPR quantum sequences of random
numbers violate local realism. Only for =0 and a= 7 do
we have P(0|0)=0 and P(1]/1)=1 and the events occur
with certainty. In this case the EPR correlations are perfect
and the Bell inequality is not violated. In Figs. 1 and 2 are
plots of the conditional probabilities P(1]|0) and P(0|1) as
functions of the angle « for different values of the spin s. It
is clear from these figures that with the increased value of the
spin s, the probability P(1|0) tends to zero while the prob-
ability P(0|1) tends to one, except for the angle a=r,
when P(0|1)=0. In this limit the random and nonlocal char-
acter of quantum mechanics goes away and if s— o we have

P(110)

FIG. 1. Conditional distribution function P(1]0) as a function
of the angle « for different vaules of the spin: spin—%, curve a; spin-
1, curve b; spin-2, curve c; spin-5, curve d.
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This means that for «= 7 we have 100% confidence that the
outcome on a will be the same as the outcome on b and for
a=0 we now have 0% confidence that the outcome on a
will be the same as the outcome on b. This is precisely what
we can expect from the entangled correlations in the classical
limit corresponding in this case to s—o. In this limit the
quantum nonlocal distribution becomes a local probability
distribution corresponding to sharp yes and no outcomes of
the measurement involving classical antiparallel angular mo-
menta. In quantum-mechanical terms, in this limit the quan-
tum amplitudes become classical probabilities for a classical
spinning top [11,12].

for a#m, (15)

P(}\al}\b):

for a=1r. (16)

P(0[1)

0 150 360
a
FIG. 2. Conditional distribution function P(0|1) as a function

of the angle «a for different vaules of the spin: spin-3, curve a; spin-
1, curve b; spin-2, curve c; spin-5, curve d.
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B. Randomness and information

We have shown that the outcomes of the EPR correlations
can be visualized as nonlocal correlations between com-
pletely random sequences of random numbers A, and \,.
The transitions between these random numbers are described
by joint and conditional probabilities given by Eq. (12). We
have shown that due to the nonlocal character of these tran-
sition probabilities, the local reality of the spin correlations is
incompatible with the quantum-mechanical predictions. The
nonlocality of the transition probabilities (12) violates the
Bell inequality.

On the other hand, random sequences A, and X\, with
their correlations provide information about the correlated
system of two spins. The joint or the conditional probabilities
for these random sequences reflect what we know about the
correlated system. This knowledge, called information, can
be described by the Gibbs-Shannon information-entropy H
(in bits). From the definition of joint and marginal distribu-
tion functions, we can construct the information entropies for
the EPR correlations

H(a:b)== 2, p(\oaikb)logap(N,a:hsb)  (17)
aMb
and its marginal functions

H(5)=—§ p(an,)logop(an,),

H(b)= —; p(bA,)1ogp(bNy,). (18)

In the same way we introduce a conditional information en-
tropy by the definition

H(alb)= —AZA p(N.a:h,b)logop(Naln,b).  (19)
a*™b

From the Bayes theorem (9) relating a conditional probabil-
ity with a joint probability, we obtain that

H(a;b)=H(a|b)+H(b)=H(bla)+H(a).  (20)

From the properties of the joint and the conditional prob-
abilities follow the inequality

H(a|b)<H(a)<H(a;b). 1)

This inequality has a simple interpretation that removing a
condition never decreases the information carried by the sys-
tem.

For a system involving two correlated subsystems, the
entropy can offer a measure of quantum correlation if the
information of each of the subsystems is compared with the
total information of the composite system. A very important
property of the information entropy is its subadditivity. The
subadditivity states that [13]

H(a;b)<H(a)+H(b), (22)

i.e., when forming marginals one loses the information about
the correlations. Before discussing some applications of
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FIG. 3. Plots of the information entropies H (a I};) (curve a),

H(a) (curve b), and H(a:b) (curve c) as functions of the angle
a for spin s=73.

subadditivity, let us make some remarks about the monoto-
nicity of entropy. Neither in quantum mechanics nor in clas-
sical physics is it true that H(a)<H(a;b). This failure of
monotonicity is expressed by the Araki-Lieb (AL) triangle
inequality [14]

|H(a)—H(b)|<H(a;b)<H(a)+H(b), (23)

with the right-hand side representing the subadditivity of the
entropy.
From the EPR marginals (10) we obtain

(25)%
log, 7571 »
2s+1 (2s+1)

H(a)=H(b)=— (24)

i.e., the information contained in the single-spin measure-
ments for the two subsystems is equal to one bit for s =3 and
zero if s—oo. This follows from the fact that for s=3 we
have P(0)=P(1)=1 and for s—o we have P(0)=1 with
certainty. With this marginal information the AL inequality
(23) takes the form

2 (25)%
- log, 25+ >
2s+1 (2s+ 1)~

0<H(a;b)< (25)

where the joint entropy for the information accumulated by

the two polarizers a and b is a function of cosa=a-b. Let us
note that this entropy is different from the von Neumann
definition involving Tr{p Inp}. The EPR combined state is a
pure state and as a result the von Neumann entropy will be
equal to zero. The Gibbs-Shannon entropy as defined by Eq.
(19) is different. It involves statistical information associated
with possible ““states” of the EPR system, labeled by indices
N, and N, and described by a transition probability
P(N\,4|\p) to find the system in A, if the system has been in
Ny .

In Figs. 3 and 4 we have plotted the conditional
H(z;ll;), the joint H(c;;l;), and the single H(c?) folded infor-
mation entropies as a function of the angle « for spin 3 (Fig.
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FIG. 4. Plots of the information entropies H(ﬁll;) (curve a),

H(a) (curve b), and H(a;b) (curve c) as functions of the angle
a for spin s=2.

3) and spin-2 (Fig. 4). We see that the AL inequality (25) and
the inequality (21) are satisfied for all values of «. From this
plot we see that the additivity of entropy [i.e.,
H(g;l;) =H(5) +H(5)] holds only for «= 1, i.e., when ais
antiparallel to b. This can be easily understood on the basis
of the transition probabilities. For this geometry the only
nonvanishing joint probabilities are P(1|1)=P(0]|0)=1 and
as a result P(1;1)=P(1) and P(0;0)=P(0). For the EPR
correlations we conclude that the information satisfies the
monotonicity condition, i.e., H(&)SH(é;E). Because of this
property the AL inequality and the curves the Figs. 3 and the
Fig. 4 exhibit the subadditivity of the Gibbs-Shannon en-
tropy when applied to the nonlocal transition probabilities
P(NNy).

Based on objective local realism, Braunstein and Caves
[15,16] derived the information Bell inequality involving the
conditional entropies for pairs of probabilities. The
Braunstein-Caves (BC) inequality has the form

H(alb)<H(a|b')+H(a'|b')+H(a'|b) (26)

and the simple physical interpretation that four objective
quantities cannot carry less information than any two of
them. We shall apply this inequality to the information en-
tropy that corresponds to the joint and conditional probabili-
ties (12) predicted by quantum mechanics for the EPR cor-

relations. For a coplanar geometry a-b'=a’-b'
=a'-b=cosa and cos3a=a-b, the BC inequality (25) takes
a simpler form

H(3a)—3H(a)<0, (27)

where by H(a)=H (5 |I; ") we have denoted the conditional
entropy as a function of the angle «. In Fig. 5 we have

plotted the information difference from the left-hand side of’

this inequality for different spins s. From these curves we
conclude that the information Bell inequality (26) as pre-
sented by Braunstein and Caves is violated and that the vio-
lations decrease with the spin value s. Note that the degree
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INFORMATION DIFFERENCE

FIG. 5. Plots of the information difference in the BC Bell in-
equality as functions of the angle « for different values of the spin:
spin—%, curve a; spin-1, curve b; spin-2, curve c; spin-5, curve d.

of violation and the behavior of this violation for large values
of the spin is different from the conclusions reached in [15].
This is due to the fact that in this reference the information
entropy has been calculated for measurements that resolve
consecutive values of m and such measurements are inher-
ently nonclassical in nature. The measurements presented in
this paper and represented by the projections (8) do not re-
solve values of m and as a result have a well defined classi-
cal limit.

III. ENTANGLED GHZ CORRELATIONS
A. Randomness and nonlocality

One particularly simple, entangled GHZ state of three
spin-3 particles, a, b, and ¢ discussed by Mermin [17] has
the form

1
|Youz)=—=(+.+.+)=|—.—. =N, (28)

V2

where |+) or |—) specifies spin up or down along the ap-
propriate z axis. As shown by Mermin, this entangled state
provides an always versus never test of local realism. The
joint probability for detection of the three particles a, b, and
¢ by three polarizers 1, 2, and 3, respectively in an x-y plane
perpendicular to the particles’ line of flight is

p(d)=p(d;h2;h3)
=(Ycuzl P($1) ® P(¢2) @ P(#3)|¥ouz)

1
=§[1_COS(¢1+¢2+¢3)], (29)

where ¢,¢,, and ¢ represent the orientation angles of the
detectors and ¢= ¢+ ¢, + ¢3. The case where a definite
prediction of spin measurement is possible corresponds to
d1+d,+d3=m with the joint probability equal to
p(¢p=m)=1and to ¢, + ¢,+ ¢$3=0 with the joint probabil-
ity equal to p(¢$=0)=0. These two cases correspond to
perfect correlations, i.e., such correlations that by measuring
two spins one can predict with certainty the outcome of the
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measurement involving the third spin. Contrary to the EPR
correlations, the GHZ correlations exhibit strong nonlocal
properties for perfect correlations. While for the two-particle
EPR spin-singlet state perfect correlations can be made com-
patible with a stochastic model of hidden-variable theory
based on local realism, the three-particle GHZ perfect corre-
lations offer a never versus always refutation of local reali-
ties. It has been shown that the GHZ correlations can be
analyzed in the context of cavity quantum electrodynamics
and that the joint three-particle probability can be measured,
in principle, by using single-photon detection [18].

Following the basic ideas of a theory based on local real-
ity, the transmission of an arbitrary spin s through linear
polarizers ¢, ¢,, and ¢5 is described by objective realities
with hidden variables A,, A, and A.. In a theory based on
LHVs, as in the EPR case (3), the three-particle GHZ corre-
lations are given in the form of the statistical averages of
local realities

p(¢1;¢2;¢3)=fd)\ajd)\bj dN P(NgiNp5Ne)
Xt(¢ls)\a)t(¢2’}\b)t(¢3’)\c)’ (30)

where the hidden parameters are randomly distributed with a
positive and normalized distribution function. For such a lo-
cal distribution of random variables the LHV transmission
probability (29) evaluated for four different polarization axes
b1,01.0,,¢; and a fixed ¢p; is restricted by the simple
generalization of the Bell inequality (5)

—p(D3)<p(d1:02:03)+p(d1:d1:h3)+p(db1:d;5h3)

—p(D1:0y:83) —p(b1:d3) —p(ha:p3)<0.
(31)

Using the spectral decomposition for the three GHZ projec-
tor operators, the three-particle GHZ correlations can be
written in the form

p(¢)=f d)\af dkbf AN P(Di1NasdaNp; P3NINN PN,
(32

where the distribution function is defined as

P(PiNasdaNp aN) =(Wauzl SN — P($))® S,

= P(¢:))® 6.~ P($))| Youz).
(33)
The relation of the randomness and the nonlocality of the
GHZ correlations will be addressed with a statistical analysis
of the three-particle distribution function. We discuss these
correlations in the framework of the Bayes analysis using the

three-point generalization of the two-point EPR (7) distribu-
tion [19]. For this distribution we can write

P(gbl)\a ;';bZ)\b ; ¢3)\c): P(d’l)\a' ¢2)\b¢3}\c)

XP(poNp| D3N )P(P3\,),
(34)

where the distribution P(,\,|@s\.) is the conditional of
the event A, (yes or no) to occur under the condition that
N, (yes or no) has occurred. The distribution
P(é N, dohpd3\,) is the conditional of the event N, to
occur under the condition that A, and A\, have occurred. The
distribution P(¢3\,) is a onefold marginal of Eq. (34). The
three-particle distribution function is positive everywhere,
but depends on the polarization directions ¢;. The nonlocal-
ity of the GHZ distribution function makes the Bell inequal-
ity (30) incompatible with quantum prediction. As in Sec. II,
for notational convenience, we will omit the polarization di-
rections and denote these functions by P(i|jk), P(i|j), and
P(j), where the indices i, j, and k will denote 1 and O for a
yes or no outcome. From the GHZ spin state (28) we obtain
that P(\,)=3 and P(\,|\.)=13 for all values of A, and A,
and all orientations of the polarizers. The threefold condi-
tional probabilities are

P(1]11)=P(0]|01)=P(1|00)=P(0|10)=5(1 —cos¢),

P(0]00)=P(1]|10)=P(1|01)=P(0|11)=3(1 +cos¢).
(35)

These last expressions reveal the statistical nature of GHZ
correlations that the value of the third spin is known with
probability 3(1 = cos¢) if the other two spins have been mea-
sured. This statistical picture leads to a simple interpretation
of GHZ correlations in terms of random numbers 1 and O.
The quantum-mechanical average in this case is represented
by an-ensemble average of three sequences of random num-
bers 1 and O, which are the only possible outcomes of the
experiment. On each single polarizer or pair of polarizers the
outcomes are completely random and the yes and no answers
occur with equal probability P(\,|\,)=13. The GHZ corre-
lations show that these completely random sequences are
correlated if a third polarizer is involved. For example, for
¢$=0, if the two detectors have registered (0,0), the third
detector has to register the outcome O with certainty. For
¢ =, if the two detectors have registered (1,1), the third
detector has to register the outcome 1 with certainty. Any
subsequence of random numbers composed only of pairs
(NguNp)s (Ng,N.), and (A, ,N,) is completely random and
uncorrelated, while sequences involving three outcomes
N..Np, A, are correlated and described by a nonlocal
polarization-dependent distribution function. Note that the
threefold probability distribution (35) fails to satisfy the
property that the probability of an event such as the registra-
tion of each measurement depends only on the preceding
outcome and not also on earlier states of the measured sys-
tem. In short we have

P(NaNpA ) # PN M) P(Np[N,). (36)

These conclusions are valid for any arbitrary orientation of
the polarizers and indicates that strong nonlocality is exhib-
ited even for perfect correlations corresponding to
cosp==1.

B. Randomness and information

The outcomes of the GHZ correlations can be visualized
as nonlocal correlations between completely random se-
quences of random numbers \,, \,,, and A, . The transitions
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FIG. 6. Plot of the three-particle GHZ information as a function
of the polarizers angle ¢.

between these random numbers are described by joint and
conditional probabilities, given by Eq. (35). Due to the non-
local character of these conditional probabilities, the local
reality of the GHZ spin correlations is incompatible with the
quantum-mechanical predictions. The nonlocality of the tran-
sition probabilities violates the Bell inequality. On the other
hand, random sequences A,,\;,\. with their correlations
provide information about the correlated system of the three
spins. The joint or the conditional probabilities for these ran-
dom sequences reflect what we know about the GHZ corre-
lated system. Following the definitions of the information
entropy for the EPR correlations, we introduce the informa-
tion entropy for the GHZ correlations

H(¢isb3)== > P(dhasdohyidah,)

a>Mp e

X10g, P(P 1Ny 5N, 5 P3Ne). (37)

For a system involving three correlated subsystems, the en-
tropy can offer a measure of quantum correlation if the in-
formation of the subsystems ¢ U ¢p3 and ¢, U ¢p3 are com-

;:3_‘} ¢1=

NE

$2=0

FIG. 7. Coplanar orientations of the three polarizers with
¢1=37l4, py= w2, ¢,= w4, and ¢,=0.
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FIG. 8. Plot of the three-particle GHZ information difference
following from the Bell inequality as a function of the angle ¢;.

pared with the information of the subsystems ¢; and ¢;.
For such measurements Lieb and Ruskai [20] derived the
inequality

H(¢1:¢3) —H(p1)+H(by;03) —H(y)=0. (38)

The Lieb-Ruskai (LR) inequality implies that more informa-
tion can be obtained in joint measurements involving various
two-particle correlations than in single measurements involv-
ing only one particle. For the GHZ correlations,
H(¢;¢3)=H(dy;¢3)=2 and H(¢p,)=H(p,)=1 and we
see that this inequality is satisfied independently of the po-
larization orientations. For the three-particle system, the sub-
additivity for the entropy difference takes the form

H($1 523 b3) — H(bo) <H($1 3 2) — H(ho)
+H(¢3:¢2) —H(hy). (39)

This inequality implies that the information content of
d1U ¢, and ¢3U ¢, relative to ¢, is greater than that of
&1U ¢, U 5 relative to ¢, . For the GHZ wave function this
inequality reduces to

H($)=H(}1;¢2:¢3)<3. (40)

As in the case of the LR inequality, this inequality is satisfied
for all values of the angle ¢. In Fig. 6 we see a plot of the
joint three-particle information entropy as a function of the
polarizers angles forming ¢. We see that the maximum in-
formation is reached if ¢+ ¢+ Pp3=.

Based on objective local realism, we generalize the BC
information Bell inequality (25) involving information entro-
pies of the GHZ three particles. The three-particle BC infor-
mation Bell inequality for the GHZ correlations has the form

H($i|drp3)<H(d1|dy03) + H( 1|y 3)
+H(p1| preb3), 41)

where H(i|jk) are the conditional three-point distributions
P(i|jk) given by Egs. (35). In order to investigate the prop-
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erties of this inequality, we select the following orientations
of the polarization angles: ¢|=3m/4, ¢P;= /2,
¢,= /4, and ¢,=0 (see Fig. 7). For this particular geom-
etry the information Bell inequality (41) for the GHZ corre-
lations reduces to

T 3ar
H(Z+¢3)—3H(T+¢3)s0. 42)

In Fig. 8 we have plotted the information difference repre-
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sented by the left-hand side of this inequality. From this
curve we conclude that the information Bell inequality (42)
as presented by Braunstein and Caves is violated.
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