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We define a quasiprobability distribution Syp(n,6) which describes the quantum statistics of the photon
number and phase observables of a single-mode field (or, equivalently, a harmonic oscillator). The properties
of Snp(n, 6) are the photon number and phase analogies of the properties of Wigner’s original function; which
describes the position and momentum observables. For example, the marginals of Syp(#, 6) are the continuous
phase and the discrete photon-number probability distributions. We give examples of the Syp(#n,6) represen-
tation of various states and show, in particular, that Syp(#n, §) displays the quantum interference associated with
Schrodinger cat states. We also describe how Syp(#, 8) can be determined from quantities that are, in principle,

measurable.

PACS number(s): 03.65.Ca, 42.50.—p

I. INTRODUCTION

It is now over 60 years since Wigner introduced his cel-
ebrated quasiprobability distribution for illustrating the dif-
ference between classical and quantum statistics [1]. Wign-
er’s function expresses the quantum statistics of a pair of
canonically conjugate observables that have continuous
spectra. Over the intervening years a number of related qua-
siprobability distributions have been introduced mainly for
quantum observables with discrete spectra and associated
with finite-dimensional systems. For example, Agarwal [2]
(see also [3]) introduced quasiprobability distributions for
finite-dimensional systems based on the atomic coherent
state formalism of Arecchi et al. [4]. Agarwal’s quasiprob-
ability distributions are functions of continuous variables in
contrast to the discrete Wigner function defined by Wootters
[5], which is a function of discrete variables for the same
finite-dimensional systems. The discrete nature of Wootters’s
function reflects the discrete nature of the spectra of the un-
derlying pair of general canonically conjugate observables.
Mukunda [6] introduced a Wigner function for the canoni-
cally conjugate rotation angle and angular momentum ob-
servables; recently this function was further justified and
studied comprehensively by Bizarro [7]. An interesting point
about the Mukunda-Bizarro function is that one variable is
continuous (angle) and the other is discrete (angular momen-
tum) and so it strides both discrete and continuous domains.

Another pair of canonically conjugate observables having
both a discrete and a continuous spectrum are the phase and
photon-number observables of a single-mode field (or,
equivalently, a harmonic oscillator). The definition of the
phase observable has been studied extensively in recent years
[8] and there are now a number of different formalisms for
describing it that yield identical physical results; these are
the Newton, Pegg-Barnett, Ban, Helstrom-Shiparo-Shepard
probability-operator measure (POM), and the Hy,,, formal-
isms [9]. Each of the these formalisms is based on a different
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state space. Newton [10] uses a Hilbert space that contains
negative as well as positive photon-number states. Pegg and
Barnett [11-14] use a Hilbert space of finite dimension and a
special procedure for taking the infinite-dimensional limit. It
has been shown recently [15] that the special limiting proce-
dure essentially builds a vector space E that is larger than the
conventionally used Fock space. Ban’s approach [16,17] em-
ploys a tensor product of two Fock spaces. In the POM ap-
proach of Helstrom [18] and Shapiro and Shepard [19] (see
also [20,21]) only the conventionally used Fock space is re-
quired and phase operators are not considered explicitly. In-
stead only the phase probability distribution is defined and
from this expectation values of a stochastic phase variable
are found. The Hy,, formalism [22] is based on an infinite-
dimensional Hilbert space Hyy,, , which is an extension of the
conventionally used Fock space and contains vectors repre-
senting infinite photon number; Hy,, has the distinction of
supporting the strong limits of the Pegg-Barnett phase opera-
tors.

In this paper we wish to define a quasiprobability distri-
bution that has properties analogous to those of Wigner’s
function, but is associated with the canonically conjugate
[23] phase and photon-number observables rather than the
position and momentum observables treated by Wigner [24].
For this we require a state space on which phase and photon-
number probability distributions are defined. Fortunately, all
the previously mentioned phase formalisms agree with re-
spect to these distributions for physically relevant states.
Moreover, it turns out that we do not require a phase operator
explicitly for the definition of the quasiprobability distribu-
tion and so we have some latitude in our choice of the state
space. Since the Fock space conventionally used to represent
the state of a single-mode field does support the phase and
photon-number probability distributions it provides a suffi-
cient state space for our analysis. Thus we confine our atten-
tion to defining a quasiprobability distribution on the con-
ventionally used Fock space in this paper.

In a previous work [25] we defined a quasiprobability
distribution Wy 4(n,8) associated specifically with the Pegg-
Barnett phase formalism. This function, which we shall call
the discrete number-phase Wigner function, is based on
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Wootters’s definition of a discrete Wigner function for a
finite-dimensional space (e.g., of dimension s+ 1). In accor-
dance with the Pegg-Barnett formalism, the limit of infinite s
is taken only after expectation values have been calculated.
An unusual feature of Wy, (n,0) is that for some states of
the field (including coherent states) it undergoes a revival as
the number variable n is increased beyond the value repre-
senting half the dimension s/2. Thus there appears to be no
simple way of taking the infinite-dimensional limit of the
Wigner function itself for these states. Luks and Pefinova
[26] attempted to overcome this problem by defining an
analogous function W, (n,6) at half integer values of the
photon-number variable. Although the function W, (n,8) at
the fractional values of » has no direct physical relevance,
nevertheless, the values of W, ,(n, 6) at these values of n are
required for normalization.

We take a fresh look at the problem in this paper by
adopting a first-principles approach. We require the number-
phase Wigner function to have the analogous properties of
Wigner’s original function as described by Hillery et al. [27].
The revivals found for the discrete number-phase Wigner
function do not appear and there is no need for fractional
values of n as used by Luks and Pefinova. However, even
after ensuring that the number-phase Wigner function has
properties analogous to those of Wigner’s original function
as listed by Hillery er al., we find that the number-phase
Wigner function is not uniquely defined. We enlist an extra
property, which is responsible for the quantum interference
fringes displayed by Wigner’s function for Schrodinger cat
states, to lead us to the definition of the special number-
phase Wigner function Syp(n,6). A brief preliminary de-
scription of Syp(n,0) was given recently in [28]. Here we
give a more-detailed analysis. We illustrate Syp(n,6) for
various states and show, in particular, that it displays inter-
ference fringes for Schrodinger cat states in a manner similar
to that of Wigner’s original function. We also show that
Snp(n, 0) can be determined from quantities that are, in prin-
ciple, measurable.

The format of this paper is as follows. In Sec. II we define
the number-phase Wigner function Syp(7,6). In Sec. III we
illustrate Syp(n, @) for various states and in Sec. IV we dis-
cuss the Syp representation of arbitrary operators. Then, in
Sec. V we show how Syp(n,6) for an unknown state of the
field can be determined from measurable quantities. We end
with a discussion in Sec. VI.

I1. SPECIAL NUMBER-PHASE WIGNER FUNCTION Syp

We wish to give the special number-phase Wigner func-
tion Syp(n,#) properties analogous to those of the position-
momentum Wigner function W(x,p) (for convenience we
call these functions the NP-Wigner function and the PM-
Wigner function, respectively). To this end we shall take the
list of properties given by Hillery er al. [27] for the PM-
Wigner function and transform them into analogous proper-
ties for the NP-Wigner function. We note that Wigner [29]
has shown that the PM-Wigner function is uniquely deter-
mined by just five of these properties and also that
O’Connell and Wigner [30] have shown that the PM-Wigner
function is also uniquely determined by a different set of five
properties. Our use of a superset of seven analogous defining

properties will therefore yield a function that is acceptable as
the Wigner function for the photon-number and phase ob-
servables. We use the symbol Syp and the adjective “‘spe-
cial” to distinguish the NP-Wigner function defined here
from the discrete NP-Wigner function and the NP-Wigner
function defined by LuksS and Pefinova [26].

A. Seven basic properties

We begin by ensuring that Syp(n,6) is a bilinear func-
tional of the state vector by specifying that it is the expecta-
tion value of the NP-Wigner operator S'Np(n, 6), which we
represent as

. R :
Sne(n,0)= 57 2, 0y, (n.0)|p)d] (1)

in the Fock basis for n=0,1,2,... and for a real value of
6. Our task is to specify the elements 1, ,(n,6) of the ma-
trix (n,H) that give Syp its required properties. Most of
these properties will be expressed in terms of expectation
values; such expressions can be put into the form

2 My fife=0

P.q=

where M, , are the matrix elements of an operator M in the
Fock basis and f,,={n|f) are the Fock state coefficients of an
arbitrary vector |f) in the Fock space. Since |f) is arbitrary it
follows that the operator M itself vanishes. In the following,
this allows us to translate the required properties of Syp into
requirements for the NP-Wigner operator S ~p(7,60) and the
associated matrix elements (1, ,(n,0). We now specify
seven properties of Syp using the same numbering scheme as
Hillery et al. to aid a comparison of Syp with the PM-Wigner
function W(x,p).

(i) Snp(n,6) should be real and so S wp(r2,6) should be
Hermitian. Thus

Q,,(n,0*=Q, ,(n,0) . )

(ii) The marginal distributions of Syp should be the (nor-
malized) number and phase probability distributions

| swtn.oyao=(n)inly 3

2, Sne(n,0)=(|6)6l) . )

The phase state |8)=(2m) 227_ exp(inf)|n) in the ex-
pression (4) belongs to a rigged Hilbert space [31]. It yields
the now-well-established [10—13,15-22,32—34] definition of
the phase probability distribution P(8)=(|6)(6|) for states
belonging to the conventionally used infinite-dimensional
Fock space. Thus we require the NP-Wigner operator to sat-
isfy
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)

J; Sxp(n,0)d0=|n)(n

nZO SNP("J)):WX 0[ .

These expressions imply that

1
o f 2#Qp,q(n, 0)do=3, ,5,, (5)
and
> O, (n,0)=eP"D0 6)
n=0

respectively, where &, ,, is the Kronecker delta function.

(iii) Snp should be Galilei invariant in the sense that shifts
in phase (6|f)—(6+A|f) and photon number
(n+1|fy—(n|f) should produce the corresponding shifts
SNP(n, 0)’—)SNp(n, 0+ A) and SNP(n + l,H)HSNP(n, 0), re-
spectively, in Syp. A phase shift of A is generated by the
operator exp(iNA), where N is the photon-number operator.
Thus we require that

eiﬁAs'Np(n,ﬁ)e_"&A:S'Np(n,0+A) .
Expressing the NP-Wigner operator in terms of the coeffi-
cients given by Eq. (1) and equating matrix elements in the
Fock basis yields

i(p—q)A —
Q, ,(n,0)e P~ DA=Q  (n,0+A7)
and thus we have
= i(p—q)6
Qp,q(n’ 0)_Qp,q(n)e (=) ’ (7)
where we have defined
Q, (n)=Q, ,(n0) . 8)

Substituting €2, ,(n,6) from Eq. (7) into Egs. (2), (5), and
(6) gives

‘Qp,q(n)*zﬂq,p(”) > 9
Q, (n)=35,, , (10)
ngo Q, (=1, (11)

respectively.

The shift in photon number (n+1|f)—{(n|f) is
produced by the operator, e ®= 3%_ |ln+1)(n|, ie.,
(n+1|e”?|fy=(n|f). (We note that ¢ ‘% is the Susskind-
Glogower [35] exponential phase operator, which is well
known to be nonunitary. However, we need only the “‘up-

ward” number-shifting property of e ~‘%; the nonunitary na-
ture of e "% is of no consequence here because the operation
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|[f)—>e~i®|f) preserves the norm.) Thus, for the number-
shift invariance property we require that

e/’?’SNp(n+l,0)e{"\¢=§Np(n,0) s
where e/’?S =e/_’\‘”, from which we find that
Qp,q(n):Qp+l,q+I(n+1) (12)

for non-negative integers p,q,n. This translational property
allows a more-convenient representation of the matrix ele-
ments Qp,q(n) as follows: we extend the definition of
Q, ,(0) to negative integer values of p and g according to

prn,qfn(o)zﬂp,q(n) (13)

for n>p,q. That this gives a unique definition of {2, ,(0)
for negative integers p and g is easily proved from Eq. (12).
Thus, specifying Q, ,(0) for all integers p and g is equiva-
lent to specifying €, ,(n) for all non-negative integers
p.q,n. Equation (11) can now be written as

go Qpng-n(0)=1, (14)

which holds for all non-negative integers p,q.

(iv) Snp should be invariant with respect to a reflection in
time and a phase shift of 7 rad. That is, if (n|f)— (n|f)*,
then Syp(n, 6)— Snp(n, — 6), and if (0| f)— {6+ 7|f), then
Snp(n, 0)— Syp(n, 0+ ).

In the former invariance, the transformation is a time
reflection in the sense that if f,(t)=(n|f(1))
=(n|U()|f(0))=e""*'f,(0), where U(t)=e N is the
time evolution operator at time 7, i.e., |f(r)) =U(1)|f(0)),
then |f(2)*)=3f,(1)*|n) = U(—1)|f(0)*). This invariance
implies that

ME=O Q, (1, 0)f,f =M2=0 Q, (0. = OFfif,

for arbitrary vector |f) and so
Q,(n,0)=Q, (n,—6) .
Combining this result with Eq. (7) yields
Q, (n)=Q, ,(n) (15)
and so from Eq. (9) we obtain
Q, (M=, (m)* (16)

that is, £(n) is a real symmetric matrix. We can now express
the matrices £2(n) in a more convenient form by identifying
the diagonals of the matrix £2(0) as follows: let A(r) be the
rth diagonal of £2(0), where

Ap(r)=Q, ,-(0)=Q,_, ,(0) (17)
for integers p,q and r=0,1,2, ..., and thus, from Eq. (13),
A,_(p—gq) for p=q
Qp g n(0)=0Q =y
pona=n(0)= G g(n) Ay—n(g—p) for p<gq
(18)

for non-negative integers p, g, and n.
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The latter invariance under a phase shift of 7 rad is the
analogy of the invariance of the PM-Wigner function to a
spatial reflection, i.e., where W(x,p)—>W(—x,—p), which
is a rotation by 7 rad in the x-p plane about the origin.
However, this invariance supplies no extra restriction on
Snp as the invariance under phase shifts follows automati-
cally from the Galilei invariance property (iii).

(v) The equation of motion of Syp for a free oscillator
should be the classical one. Under free evolution the wave
function experiences the phase shift ( 8]f)—( 8+ wt|f) and
so from the Galilei invariance property (iii) we find that
Snp(n, 0,1)—>Snp(n, 0+ wt,0), which is the expected evolu-
tion of the corresponding classical phase-space distribution.
[Here Snp(n, 8,t) is the Wigner function at time ¢.] Thus the
classical equation of motion follows automatically from the
Galilei invariance under phase shifts.

(vi) Snp should have the overlap property

o0

27rf27rd02 Sxe(n, 0)Syp(n, 0)=|(flg)l* ,

n=0

where Syp(n,0) and Syp(n,8) are the NP-Wigner functions
for the pure states |f) and |g), respectively. This property
should also extend to mixed states. We note that because this
property is a special case of the next property (vii) we need
only consider the latter more-general property.

(vii) Sxp should give the trace of a product of general
operators as

tr(Aé>=zwf 46 SB(n.0)sEn.0) . (19)
2 n=0

where S and S{& are the NP-Wigner representations
SP(n.0) =ulSxe(n, 0)A] (20)
SR (n,6) =l Sp(n, 6) B] @n

of any two linear operators A and B on the Fock space. We
have introduced a different notation in these expressions to
distinguish the Wigner function Syp, which is the expecta-
tion value of the NP-Wigner operator S‘Np and has all the
properties discussed in this section, from the Wigner repre-
sentation S\ of an arbitrary linear operator A, which is
given by Eq. (20) and only need satisfy the trace property of
Eq. (19). In the special case where A and B are density
operators, Egs. (20) and (21) are identical to the definition of
the Wigner functions given by Eq. (1) and so we can drop the
superscripts (A) and (B); thus Eq. (19) extends property (vi)
to the general situation, which includes mixed states. Substi-
tuting for Sxp in Egs. (20), and (21), evaluating the trace in
the Fock basis, making use of Eq. (7) and performing the
integral over @ yields

M

’

2_ ApgBqp= 2 Z Q, (1), ,(n)
p:g=0 P-q=0 p o n=0

Q

X8p—qtp'—q'0Aq.pBarpr
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where Ap,qE(p|A|q> and Bp,qE(plﬁlq). Since A and B are
arbitrary operators we may choose the matrix elements
A, 4 and B,,,q. at will; thus choosing 4 ; and B, ; as the only
nonzero matrix elements gives

©

‘Aj,kBr,sak,réj,s= ZO Qk,j(n)ﬂs,r(n) 5k—j+xAr,0Aj,kBr,s

and thus

6k,r6j,s= 20 Qk,j(n)Qs,r(n)ak*j,r*s . (22)

Setting k=j+r—s and r=s and making use of Eq. (18)
gives

5j,s:n§0 Aj+r—s—n(r——s)Ar*n(r_s) . (23)

The expression for s>r is obtained on interchanging r
and s.

Hillery et al. also listed an eighth property concerning a
symmetry between the position and momentum representa-
tions of the PM-Wigner function. This property is, however,
unsuitable for defining the NP-Wigner function because of
the asymmetry between the unbounded discrete photon-
number and bounded continuous-phase spectra. Rather, we
define the NP-Wigner function by another criterion in Sec.
II B and then check a posteriori the presence of this property.

Collecting our results we find from Egs. (1), (7), and (18)
that

. 1 [ &
Sne(n,0)= ﬁ{;@ A, (0)[p)p]

p—

1
+ Ap,_n(p—q)
0

o
>
p=0

=
Xei(p‘q)9|p><q|+ Hc” , 24)

where {A(n)},—0,12, ... is a set of vectors with the following
properties. The elements of A(n) are given by A,,(n) for
integer m and, according to Egs. (10), (11), and (16) with Eq.
(18), satisfy

Ap*n(())zap,n ’ (25)
m§:‘,0 Ap-m(r)=1, (26)
Ap W(r)=A,_,(r)* , 27

respectively, for non-negative integers n and p and for
0<r=<p. The elements also satisfy Eq. (23), which can be
rewritten as

5,,,q=n§0 Ay n(MA 4 (7) (28)
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for non-negative p and g and for O0<r=<p,q.

It is worthwhile to trace the origins of these expressions if
only to keep track of the analysis so far: the Hermitian form
of Eq. (24) arises from property (i); the factorization of the
0 dependence in Eq. (24) is due to the invariance to shifts in
phase (iii) and the classical equation of motion (v); Egs. (25)
and (26) arise from the marginal distribution requirements
(ii) for the photon-number and phase probability distribu-
tions, respectively; Eq. (27) is due to the invariance to time
reflections (iv) and Eq. (28) arises from the overlap (vi) and
trace (vii) requirements. The invariance to shifts in photon
number, property (iii), is responsible for the translational
property of Eq. (12), which allows , ,(n) to be written in
terms of the vectors A(r) as given by Eq. (18).

Any set of vectors {A(n)} satisfying these equations will
give rise to a NP-Wigner operator, which has all seven of the
properties considered. Let us examine what sort of vectors
they are. Equation (25) specifies uniquely the vector A(0); it
has only one nonzero element ie., Ag(0)=1. Setting
p=r,r+1,r+2,... successively in Eq. (26) reveals that

A, (r)y=0 for m>r (29)

for all vectors A(r) and so Eq. (26) implies that the sum of
all the elements of any given vector is unity. We now show
that only one element of each vector is nonzero. Choose any
vector except A(0), say, A(r"), with ' >0, and for clarity
relabel its elements as d,=A, _,(r') for n=0,1,2,...,
where d, are the elements of the vector d. The remaining
elements of A(r') are zero according to Equation (29).
Equation (27) implies that the d,, are real and Eq. (28) with
p=qg=r=r' shows that the vector d is normalized as
Zf:o(d,,)2= 1. The periodic function f(6) defined as

1 2

f(9)=57—r

©
2 d eina
n=0 "

has Fourier coefficients f,,, which are given by

— imé
fm= LﬁdO f(6)e

=) o

= 2, o= 2 A7) = B

for an integer m. We arrived at the last two lines by making
use of Eq. (28) with p=r', g=r'+|m|, and r=r' and not-
ing that A,/ ,,|_,(r')=0 for n=0,12,...,|m|—1 accord-
ing to Eq. (29). Reconstructing f(6) from its Fourier com-
ponents yields

1 < |
- —imO_ _—
fO= 57 2 fue 27

which is independent of 6. Hence only one element of d, and
thus of A(r’), is nonzero and, from Eq. (26), the nonzero
value is unity. But there are no further restrictions on the
vectors A(r). Apart from satisfying Egs. (25) and (29), the
unit values can otherwise occur at any position in the vector
A(r) and so S’NP is not uniquely specified at this stage. Thus,
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even though only five of the properties listed by Hillery et al.
[27,29,30] are sufficient to uniquely define the PM-Wigner
function W(x,p), all seven of the analogous properties con-
sidered here are not sufficient to define the NP-Wigner func-
tion uniquely.

B. An additional property

We need an additional property to further restrict the vec-
tors A(n). Which extra property of the PM-Wigner function
W(x,p) should we use? The interference fringes [36—38]
displayed by W(x,y) have been a valuable tool in the study
of coherent superpositions (e.g. Schrodinger cat states [39—
41]) and the loss of coherence in noisy environments [42].
Giving Syp an analogous property would be a great advan-
tage. The interference fringes in W(x,p) arise as a result of
the wave function interfering with itself; that is, W(x,p) is
the Fourier transform of the “interfering” product
f(x—y)f*(x+y), where f(x) is the wave function. This
property is expressed in terms of the PM-Wigner operator
matrix elements as a ‘“skew diagonal” form, i.e.,

. 1 (= .
<#|W(x,p)|V>=;f_mdy e*M(plx+y)(x—y|v)

1,
=—7;e2'P<#-x>5(,L+v—2x) , (30)

where the bras and kets in this expression are position eigen-
states and &(x) is the Dirac distribution. W(x,p) is given by
the expectation value of Wi(x, P).

A first attempt at translating this form to one suitable for
the number-phase Wigner function might be to require that
(p|Sxp(n.0)|q) be proportional to the Kronecker delta
Sy 4+ 4,20 - However, we would then find that the resulting vec-
tor A(p—q), for p=gq, would not satisfy Eq. (26) since the
left-hand side of Eq. (26) would be zero for odd values of
(p+q). Similarly, requiring (p|Sxp(n,6)|g) to be propor-
tional to 6,42, results in a vector A(p—gq), for p=gq,
which gives a zero on the left-hand side of Eq. (26) for even
(rt+q). The solution to this problem is to require
(p|Snp(n,0)|g) to be proportional t0 &, 2.+ Sprgan—15
ie.,

Ap—n(p_q)=6p+q,2n+5p+q,2n—l (31)

for p=gq. It is easily checked that this expression for
A(p—q) satisfies all the requirements made above. Thus we
define the special number-phase Wigner function in the Fock
basis as [28]

. |
SNP(}’Z,G)E E el(p q)0(5p+q,2n+5p+q,2n—1)|p><q| >
2’7Tp,q=()
(32)

which can be rearranged as
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1
Sxp(n,8)= ( E e \n+p)(n—p|
n—1

+ 2 Ot p)n—p=1]] (33)
p=—n

provided we take the second sum as being zero for n=0.
Snp can be expressed in terms of the phase state basis as

A 1 . .
SNP('I,O):%L dep e 2" (1+e'?)|0+ p)(6— | .
(34)

One can check this last step by evaluating the Fock state
matrix elements (p|Sxp(7,0)|q) from Eq. (34) and compar-
ing them with the corresponding elements in Eq. (32) or
(33).

C. Comparison with other Wigner functions

It is interesting to compare Syp With the PM-Wigner func-
tion

1/ (= A
W(x,p)=;<f_mdy ez”’y|X+y><x—y|>

where the bras and kets are position eigenstates, or, equiva-
lently,

1/ (= _
W(x,p)=;<f_wdy e‘z’”lp+y><p—y|>, (35)

where the bras and kets are momentum eigenstates. The ex-
pressions on the right-hand sides of Egs. (34) and (35) share
a high degree of similarity. The main formal difference
between the operators in Egs. (35) and (34), apart from
the different limits of integration, is the extra. factor
i[1+exp(i¢)] in Eq. (34). This factor is a direct result of
the two Kronecker &s on the right-hand side of Eq. (31)
whose presence can be traced to the discrete nature of the
photon-number spectrum as follows. If the photon number
had a continuous spectrum, then the variables p,q,n in Eq.
(31) would be continuous and there would exist solutions to
p+q=2n for every value of p and g; thus we would need
only one term on the right-hand side of Eq. (31) and so the
factor 3[1+exp(i¢)] in Eq. (34) would be replaced with 1.
The upshot of this hypothetical continuous n case is that Eq.
(34) would then be in exact formal agreement with Eq. (35).
Hence, we conclude the main formal difference between
W(x,p) and Syp(n,6) is due to the discrete nature of the
photon-number spectrum.

It is also interesting to compare Syp with previous defini-
tions of number-phase Wigner functions. We consider first
the discrete number-phase Wigner function Wy, (n,6) for
physical states. We find that

+
Swe(n, 6) = lim——

§—®

where Wy 4(n, 6) is defined on a (s + 1)-dimensional Hilbert
space [see Ref. [25], Eq. (4.4)]. This shows how Syp takes

care of the approximate revival in the n dependence of
Wy for n>s/2. For example, in the case of a coherent state
the second peak in Wy, is simply superimposed on the first
peak. Comparing Syp now with the function W, defined by
Luks and Pefinova [26], we find that at the half-odd photon-
number values of n, W, , corresponds to the expectation
value of the second term in Eq. (33). In fact,

Snp(n, 0) =W, ,(n,0)+ W, (n—1/2,0)

for n=0,1,2, ..., where each term on the right-hand side is
equal to the expectation value of the corresponding operator
on the right-hand side of Eq. (33). Hence, whereas Luks and
Pefinova take the values of Wyy(n+s/2,6) as the half-odd
photon-number values of their function, here we avoid the
introduction of unphysical half-odd photon numbers alto-
gether by, in effect, simply adding Wyu(n+s/2,0) to
WN¢(71, 6) .

D. Approximate symmetry property

We now consider the symmetry (or lack of it) between the
expressions for Syp in the Fock and phase state bases; this
symmetry is analogous to the eighth property of the PM-
Wigner function listed by Hillery et al. [27]. Let us rewrite
Eq. (32) in the following way:

Se(n,0)=5— E e?n=a)0

Tp,q=0
X(5p+q,2n+evi05p+q,2n-—1)|p><q|'

We wish to interchange n with 6 and swap the Fock state
with the phase state, Kronecker’s delta & ; with the periodic
Dirac delta 8(k—j)= =, __ _exp[in(k—j)}/(27), the photon-
number variables p,q with the continuous phase variables
&,¢, and the sums = _,, 27_, with the integrals
Jondd,f,-de, respectively, in the expression on the right-
hand side. To be consistent with the symmetry of W(x,y) we
must also swap ¢ numbers with their complex conjugates.
We note that the two Kronecker deltas &,,,,, and
6, +4.2n—1 differ by a single step in the photon-number vari-
able. If, in this process of interchanging and swapping, we
adopt the principle that a single step in the photon number
corresponds to an infinitesimally small (or zero) step in
phase, then both Kronecker §’s become the same periodic
Dirac § distribution and we obtain

1

—2i(6—¢)n
27 (b dqo ¢

X&(p+e—20)(1+e™)| ) ol .

Performing the integral over ¢ gives

1 i .
o 2wd¢ e 21 +e™)| 0+ p)(6— )|, (36)

which is quite similar to the right-hand side of Eq. (34).
The only difference is that Eq. (34) contains the factor
3[1+exp(i¢p)], whereas Eq. (36) contains the factor
i[ 1+ exp(in)]. Hence this shows that there is an approximate
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z (n=0)
0.1

FIG. 1. Three-dimensional polar diagram illustrating Syp for the
single Fock state |7). The function Syp(n, ) is depicted as an in-
terpolated surface at a height of z=Sy\p(n,6) above the point
(ncos@,n sinb) in the x-y plane, i.e., above the point (n, 8) in polar
coordinates, for n=0,1,2,... and @ in (0,27). The surface is in-
terpolated linearly between the integral values of n. On the surface
radial lines indicate lines of constant # and circles indicate lines of
constant n. The triad in the top right corner gives the units for each
axis. The raised ring at n=7 illustrates the uncertain phase and
sharp photon number of a Fock state.

symmetry between the two forms of Syp in Egs. (33) and
(34), which is analogous to the symmetry of the PM-Wigner
function under the transformation from the position to the
momentum representation and vice versa. We noted earlier
that the reason the factor 5[ 1 +exp(i¢)] in Eq. (34) differs
from unity can be attributed to the discrete nature of the
photon-number spectrum. This suggests that the lack of an
exact symmetry is due to the asymmetry between the discrete
photon-number and continuous phase variables.

II1. Sxp FOR VARIOUS STATES

The Fock and Glauber coherent states are two of the most
familiar states in quantum optics. The Syp representation of
the general Fock state |m)

1
SNP(na 0): ﬁan,m (37)

is a “‘raised ring” of radius m as illustrated in Fig. 1. The
phase is completely uncertain whereas the photon number is
sharp.

For the coherent state |a) we find [28]

e lal? é ei2P(6=¢)
Sne(n,0)= |a|*
27 p==n (n+p)(n—p)!
n-l 2P+ 1)(6-¢)
+|a|2n—l

p==n (n+p)l(n—p—1)!
(38)

where a=|alexp(ip). Let us look first at the weak-field re-
gime. In the limit as @—0 the coherent state |a) becomes
the vacuum state, which is represented by a raised point (i.e.,
a raised ring of zero radius) at the origin. For small, but
nonvanishing, values of a we find that Syp(0,6)~ 1/(2 ),
Snp(1,0)~|a|cos(8— @)/, and Syp(n,B8)=~0 for n>1 to

0.0
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FIG. 2. Syp for the weak coherent state |) with a=0.1. The
largest value of n is 10. The raised point of the vacuum state has
broadened slightly.

first order in |a|. Thus the raised point of the vacuum state
broadens as || increases. This is illustrated in Fig. 2 for
a=0.1. It is perhaps a little surprising that Syp(1,6) is nega-
tive for < ¢— 7/2 and 6= ¢+ 7/2 in view of the fact that
the PM-Wigner function is positive for all coherent states.
Nevertheless, the phase probability distribution P(68) ob-
tained as a marginal of Syp(n,0) is always positive as ex-
pected, i.e., P(0)~[1+2|a|cos(6—@)/(2m) to first order in
|a|. For a slightly higher intensity with a~0.64 the picture
shown in Fig. 3 is similar. The highest point is now situated
on the n=1 curve along the #=0 direction.

For relatively intense coherent states we can approximate
the Poisson photon-number distribution of the coherent state
with a Gaussian of the same mean and variance. We find
eventually that

1
Sne(n,0)~ 5—{Gp(O)[Gn(n)+ Gy(n—=1/2) ]+ Gp(6+ )

X[Gn(n)—Gp(n—112)1} , (39)

where G y(n)=exp[—(n—)*(21)] and G p(8)=exp[—27(0
—¢)?] for 7=|a|*>1. In this intense-field regime the fluc-
tuations in number and phase decouple and both the number
and phase dependence of Syp become approximately Gauss-
ian. These features are evident even in the plot in Fig. 4 of
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FIG. 3. Syp for a coherent state | @) of a slightly higher intensity
with a=0.64. The largest value of n is 10. The peak in Fig. 2 has
moved to a point above the curve n=1 in the #=0 direction.
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FIG. 4. Syp for the coherent state |a) with a=5. The largest
value of n is 40. The hill is centered on the point n=25,0=0.

S np for the coherent state |a) with =35 where a relatively
“smooth” hill shape is centered on the point n=25, §=0.
Interestingly, there is also a small “wave” along 8= in
Fig. 4. This feature, however, has little effect on the phase
distribution, which is obtained by summing Syp radially. It
arises from the relatively small difference between the two
Gaussians Gy(n) and Gy(n—1/2) in Eq. (39). This differ-
ence vanishes as 7 increases and so in the limit of large n we
obtain

1
SNP(”,H)NEGP(G)GN(H) > (40)

which is a two-dimensional Gaussian in the polar coordi-
nates n, 6 centered on the point n=|a|?, = ¢.

To compare this result with the PM-Wigner representation
W(x,p) of coherent states we need to change coordinates.
First note that Syp(n, ) is vanishingly small unless n and
@ differ by relatively small amounts from their mean values
n and ¢, respectively. The transformation from the Cartesian
coordinates (x,p) to the polar coordinates (r,#), where
x=rcosf and p=rsinb, is characterized by the metric
dx*+dp*=dr?+r*d#*. Here the radial coordinate r corre-
sponds to amplitude in the W(x,p) phase space whereas n in
Eq. (40) represents intensity. Transforming to an intensity
coordinate n with r= \/ﬁ gives dx2+dp2=dn2/(2n)
+2nd#*. [The \/5 factor arises from the fact that the mean
of x2+p? for W(x,p) is (2N+1).] Replacing differentials
with small deviations from mean values gives

(x=%)*+(p—p)?~(n—n)*(20)+2a(6—¢)* ,

where x= \2ncos(6), p=+2nsin(#). Hence the expression
for Syp(n, ) in Eq. (40) becomes approximately

1
—expl — (x =)~ (p=5)] .

which is the PM-Wigner function W(x,p) for the same co-
herent state where x= \/ﬁcos(qp), p= \/2—5 sin(p) with
n=|a|®> and a=|alexp(ip). Thus Syp(n,6), under the
change of variables n, 0—x,p, converges asymptotically to
W(x,p) for large n.

There has been quite a deal of attention given recently to
the study of Schrodinger cats states [39]. These states may be
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FIG. 5. Syp for the Fock cat cos(7)|0)+sin(7)|7) with
n=/10. The largest value of n is 12. The interference ring lies
halfway between the raised point at the origin and the raised ring at
n="7.

defined generally as superpositions of macroscopically dis-
tinguishable states [40,41]. The position-momentum Wigner
function has been found to exhibit interference fringes for
such states [36—38,42]. In [28] we gave the Syp representa-
tion of the simplest “Fock cat,” which is an equally
weighted superposition of two Fock states. Here we shall
give the Syp representation of the most general two-state
Fock cat cos(7)|m)+e'®sin(n)|m+r). This state has a Syp
representation given by

1
SNP(n’ 0) = 2_7;[ 5n’mCOSZ 7]+ 5n,m+r5in2 7
+ 5n,m+kSin(2 n)cos(ré— (P)] ’

where k is the largest integer not exceeding (»+ 1)/2. A plot
for m=0, r=7, ¢=0, and »==/10 is given in Fig. 5.
Snp(n,6) consists of two raised rings at radii n=m and
n=m+r, corresponding to the individual Fock states, and
an interference ring at n=m+ k. The relative height of each
ring corresponds to the relative probability of finding the
Fock cat in each Fock state. The number of oscillations in the
interference ring depends on the distance » between the other
two rings and the orientation of the interference ring depends
on the phase factor ¢. A similar dependence is evident in the
interference displayed for Schrodinger cats by the PM-
Wigner function. We note also that the interference ring is
not present for the Syp function of the corresponding mixture
of two Fock states given by the density operator
cos?(m)|m)m|+sin®(n)|m~+r}m+r.

It is now well known that Schrodinger cat states involving
a discrete superposition of coherent states can be produced
by a Kerr medium [40], by transferring atomic coherences to
a cavity field [36] and by the atom-cavity interaction at the
half atomic-inversion revival time in the Jaynes-Cummings
model [43]. Let us look at the so-called odd and even coher-
ent states as typical examples. We give a plot of the even
coherent state c(|a)+|— a)) for @=0.83, where ¢ is a nor-
malization constant, in Fig. 6. This value of « gives approxi-
mately the same mean photon number as the coherent state
in Fig. 3. In Fig. 6 there are ridges along the =0 and
6= 7 directions where we would expect to see the hill shape
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FIG. 6. Syp for the even coherent state c(|a)+|—a)) with
a=0.83. The largest value of »n is 10. The mean photon number for
this state (N)~0.41 is the same as for the coherent state in Fig. 3.

of Fig. 3 and its image after a rotation of 7 rad correspond-
ing to the individual coherent states |a) and |— a), respec-
tively. The figure also shows interference fringes along the
directions 8= — /2 and 0= 7/2.

There is a striking difference between the odd and even
coherent states in the limit as «— 0 as they become the Fock
states | 1) and |0), respectively. To see how this difference is
manifested in Syp we have also plotted the Syp representa-
tion of the odd coherent state d(|a)+|—a)) for a=1.14,
where d is a normalization constant, in Fig. 7. The mean
photon number of this state is approximately one photon
more than the state represented in Fig. 6. The main features
of the plot in Fig. 6 also appear in Fig. 7. However, there is
one quite noticeable difference: the Syp representation of the
odd coherent state is zero at the origin. Perhaps this should
be expected since the overlap of the odd coherent state with
the vacuum is zero. Another interesting feature of Fig. 7 is
the absence of oscillations in the curve above n=1; evi-
dently the first Fock state in the odd coherent state plays a
similar role to that of the vacuum state in the even coherent
state.

Figure 8 is the Syp representation of an odd coherent state
with @=4. The two hills lying on the radial lines §=0 and
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FIG. 7. Syp for the odd coherent state d(|a)—|—a)) with
a=1.14. The largest value of n is 10. The mean photon number for
this state (N)~1.41.
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FIG. 8. Syp for an odd coherent state with a=4. The largest
value of n is 30. The hills along the directions =0 and 6=
correspond to the two coherent states |@) and | — a), respectively.
There are also pronounced interference fringes along the directions
0= * /2, which indicate that the field is in a coherent superposi-
tion of the two coherent states.

6= represent the two coherent states of the cat whereas the
interference at = — 7r/2 and = /2 indicates that the cat is
in a superposition of the two coherent states. This figure is
very similar to that of the even coherent state with the same
value of a in Ref. [28]. The subtle difference between the
Snp representations of these two states is that the interference
fringes in Fig. 8 are negative or positive for n even or odd,
respectively, whereas for the corresponding even coherent
state (given in [28]) the sign of the interference fringes is
reversed. Since the photon-number probability distribution is
given by the integral of Syp(n, 8) over 6 according to Eq. (4)
these figures give a different picture of how the odd and even
nature of the associated photon-number distributions of these
states arises.

Finally, this section would not be complete without men-
tioning the Syp representation of squeezed states [44—-46].
The PM-Wigner representation of these states is a two-
dimensional ‘“‘squeezed” Gaussian with elliptical equal-
height contours. These contours characterize the quantum
statistics of the field quadrature amplitudes. From the per-
spective of phase, however, the picture is quite different. For
example, the squeezed vacuum has a bimodal phase prob-
ability distribution [47-49] and being a pure state suggests
that the squeezed vacuum is a superposition of two states
with macroscopically distinguishable phase properties, in
other words, a phase cat. One would expect from this to see
evidence of quantum interference. Indeed it is well known
that the squeezed vacuum contains only even numbered Fock
states with the odd numbered Fock states lost to destructive
interference. This interference is not exhibited by the PM-
Wigner function. It is, however, displayed by the NP-Wigner
function. Figure 9 illustrates the Syp representation of the
squeezed vacuum

< [—(&|é)tanhlg]" [ (2n)!
|0’§>—,§0 2! cosh|‘f|=2n>

for £=—0.6. Syp(n,6) exhibits a great deal of oscillations
and negativity especially along 6= — 7/2 and 6= /2. View-
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FIG. 9. Syp for the squeezed vacuum |0,£) with £=—0.6. The
largest value of n is 10. There is a ridge along the #=0 and
6= ar directions. Interference fringes occur in between the ridges
and reach a maximum along the = — /2 and 6= 7/2 directions.
The relatively large photon-number spread of this state is the reason
why the interference fringes are relatively spread out. The mean
photon number of this state is approximately the same as for the
even coherent state in Fig. 6.

ing the squeezed vacuum as a phase cat can help explain the
features of the figure. The ridge oriented along =0 and
6= 1r in Fig. 9 corresponds to the two states of the phase cat,
one with a mean phase of 0 and the other 7, whereas the
oscillations along #= — 7/2 and 6= /2 are the interference
fringes associated with the superposition of the two states of
the cat.

It is interesting to compare Fig. 9 with the Syp represen-
tation of the even coherent state in Fig. 6. The states in both
figures have a mean photon number of approximately 0.41.
Although the main features of the even coherent state are
confined to a much smaller region, nevertheless, the interfer-
ence fringes in both figures do share common features such
as oscillations along = — 7/2 and 0= 7/2.

The picture of the squeezed vacuum given by Syp in Fig.
9 contrasts markedly with the corresponding PM-Wigner
representation, which is a smooth Gaussian and positive ev-
erywhere. For this reason the squeezed vacuum is perhaps
the most interesting state considered in this section. More-
over, it appears that the Syp representation of the squeezed
vacuum will give a picture of quantum interference in phase
space for an experimentally determined quantum state. In-
deed, the experiments of optical quantum-state determination
by Raymer’s group [50,51] involved the squeezed vacuum
and just recently the PM-Wigner representation of a state
with approximately the same degree of squeezing as the field
represented in Fig. 9 was determined experimentally [52].
We note that the Syp representation can be determined from
any representation of the quantum state, including the PM-
Wigner representation, as the expectation value of
S'Np(n, 6) using, for example, Eq. (33). Furthermore, the
squeezing referred to in the latter case is the squeezing de-
tected with nonideal photodetectors; the actual squeezing in
the field is much greater [52] and, correspondingly, the field
itself would have a Syp representation with more pronounced
interference fringes.

It is well known that Schrodinger cat states can quickly
decohere in noisy environments [40]. One might wonder

3483

0.0

Il/‘ W77
NN Vit sz
SN e
NI WAL \(\"9,/:/
/\\‘/}l W
P
VNS
\ AN
f%”"!l\\\ié\\\ '
NN y

— _RN
/il “\\\\\\\\\\\\\\\\\\\\\\\
NSNS
AR
10

AN
Lttiny,

IR
AUVRMWS

FIG. 10. Snp for the squeezed vacuum of Fig. 9 after having
interacted with a noisy environment and suffered a loss of 15% of
its energy. The largest value of n is 10. The interference fringes are
reduced only slightly compared to the fringes in Fig. 9. This shows
that the interference fringes associated with the squeezed vacuum
are relatively robust.

then how robust the interference fringes in Fig. 9 are. To see
the effects of a noisy environment (or detection losses) on
the fringes, consider the following. Let the squeezed vacuum
represented in Fig. 9 be the initial state of the field and let the
field interact linearly with the environment. We can model
this interaction by imagining that the field is mixed with the
vacuum at a beam splitter that has a nonunity transmittance
[40]. Let the transmittance be some reasonable value, say,
0.85. (This transmittance value, in fact, models the detection
losses in the first optical quantum-state determination experi-
ment by Raymer’s group [50].) The state of the field at one
of the output ports of the beam splitter corresponds to the
mixed state of the field after it has interacted with the noisy
environment and suffered losses. Figure 10 shows the Syp
representation of the field at this point. The interference
fringes are clearly still evident. We conclude that the inter-
ference fringes associated with the squeezed vacuum are
relatively robust in this case and it is quite likely that they
will be seen in experimental data.

IV. THE Snp-REPRESENTATION OF ARBITRARY
OPERATORS

The NP-Wigner function also supplies a representation of
operators. Each linear operator A on the Fock space has a
corresponding unique Wigner representation S fﬁ} (n,0) given
by Eq. (20). The uniqueness can be proved by showing that
every nonzero operator has a nonzero Wigner representation
and then using the linear property of the operators and the
Wigner representations to show that different operators have
different representations. In particular, this means that the
special number-phase Wigner function represents uniquely
the number and phase properties of any quantum state p.

Conversely, an operator A can be reconstructed from its
NP-Wigner representation S %P)(n, 0) by

A=2m, f d6 Syp(n,0)S(n,0) . (41)
n=0 27
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This can be proved easily by taking matrix elements in the
Fock basis of both sides of Eq. (41). However, this mapping
is not unique and there is more than one function A(n,6),

which maps to A according to

A=27D f do Syp(n,0)A(n,0) . (42)
n=0 J2mw

Let us call the set of functions {A;(n,0)}; a set of
/i-equivalent functions if all elements map to the same op-
erator A by Eq. (42). For example, adding ¢*?5,, ,,, where
|k|>2m and m is a non-negative integer, to A(n, #) does not
alter the left-hand side of Eq (42); in other words, A(n, 8)
and A(n,0)+ e”‘gﬁm , are A- -equivalent functions. The set of
A- -equivalent functions for any given operator A contains a
unique element S (A>(n, 0), which is given by Eq. (20). We
can always obtain this unique element by taking an arbitrary
element of the set, say A(n, 0) deterrnmmg the operator A
by Eq. (42) and then using A to produce S (n 0) via Eq.
(20). This procedure can be represented as a smgle operation
on A(n,0) as

(A)(n 6)=tr

Sxe(n, 0)27r2 f de Sxp(m,@)A(m, )

n

2 2i2r(0=¢)

p=-n

n—1

+ D ei@rtD(o-9)
p=—n

A(n,p) .

Thus, given any function A(n,0) one can calculate the
unique Syp representation of the associated operator A [53].

What then are the operators A associated with the func-
tions A(n,0)= (1/277) exp(zm@)" A simple calculation re-

veals that A is (e“”)m or (e~ ""')"’| for positive and negative

m, respectively, where e'®=3"_ In)(n+1| =e *' is the
nonunitary Susskind-Glogower exponential phase operator.
This result should not be unexpected for the following rea-
sons. Our use of the phase probability distribution P(6) and
the infinite-dimensional Fock space implies that we are in the
domain of the infinite-s limit of the Pegg-Barnett formalism
and so it follows that the exponential phase operators repre-
sented by Syp will be the corresponding Susskind-Glogower
operators as these are the weak limits [34] of the Pegg-
Barnett unitary phase operators. Moreover, the restriction of
our analysis to the Fock space (instead of a larger space)
implies that the phase operators of the Newton, Ban, and
Hy,, formalisms, which operate operate on larger spaces,
will be represented here by their projection onto operators on
the Fock space, that is, by the corresponding Susskind-
Glogower operators.

Taking this one step further, the operator given by Eq.
(42) with A(n,0)= (1/2)cos*(6) is not the square of the
operator represented by (1/27)cos6,

1 (e’d’ + e

= {2+ 42— [0)0))

but rather
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e+ e M= (e e 1971 2), (43)
where *...% represents the antinormal ordering operation

introduced by Luks and Pefinova [54,55]. This operation
places all positive powers of e'? to the left of all positive
powers of e ‘%, Similarly the operator corresponding to
A(n,0)=(1/2m)sin*(0) is f—i(e'?—e '")?E =i(—e'?
—e_’¢2+2) Adding this to the right-hand side of Eq. (43)
gives unity: that is, the Syp-representation gives the operator
equivalent of the mathematical identity cos?(6)+sin*(6)=1.
Thus the Wigner-Weyl correspondence between Wigner
functions and operators, embodied here by Egs. (41) and
(42), leads to a consistent set of phase operators provided we
adopt Luks and Perinova’s antinormal ordering.

Let us now look at the relationship between the photon-
number and phase operators given by Eq. (42). Setting
A(n,0) in Eq. (42) alternatively to (1/2m)n and
(1/27) e™ gives the photon-number operators N and ",
respectively. Using the fact that the phase operators are an-
tinormally ordered we find that

*ez¢ tN 1¢*_* t(N+l) ms qs*:ei(z\}ﬂ);}}e’—l\d)

*

:ezetN ,

- IQA N 1
Ko T IBiNgIDE — K i(N= 1)

1¢ zqﬁ*_ez(N 1) 1¢ ~1¢
*

:e—tetN ,

where we have used the fact that e'®eiN=ei(V+1g id

¢ PeiN = iN-1Dg=1 and ¢1%¢—1P=1, This shows that the
number and phase observables given by Eq. (42) are canoni-
cally conjugate in the Weyl sense [56].

Finally, an important point, which should be stressed, is
that the presence here of the Susskind-Glogower operators
does not mean that the description of phase is that given
by Susskind and Glogower. For example, consider the
vacuum state whose representation is simply Syp(2n,6)
=(1/2m) 68, . This representation yields a uniform phase
probability distribution and hence attributes the vacuum state
with a random phase in contrast to the nonrandom phase
description of Susskind and Glogower.

V. DETERMINATION OF THE QUANTUM STATE VIA Syp

An important feature of the PM-Wigner function W(x,p)
is that it can be determined experimentally [57,58,50,51].
Since W(x,p) represents uniquely the density operator of the
system this allows experimenters to determine (or, in a sense,
to “measure”’) the quantum state. Can the quantum state be
determined using the special number-phase Wigner function?
The results of the preceding section show that the density
operator p can be uniquely determined from knowledge of
Snp. We now consider whether Syp can be determined ex-
perimentally. For this we require the expectation value of the
Wigner operator 3‘Np(n, 0) for each value of n and 6. These
expectation values can be calculated from the probabilities of
finding the field mode in the eigenstates of the Hermitian
operator S’Np(n, 0, ie.,
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gNP(”y 0)= 21: Ni(n, 5)| i(n, 0))(‘/’i

where \;(n,6) and |;(n,6)) is an eigenvalue and an eigen-
vector, respectively, of S‘Np(n,&). Thus the task reduces to
finding the probabilities {;(n, 8)|p|¥;(n,6)), which can be
determined experimentally, in principle. This procedure of
determining the Wigner function by diagonalizing the
Wigner operator is quite general and, in fact, can be applied
to the PM-Wigner function.

It turns out, however, that the diagonalization operation in
the present case can be simplified considerably by adopting a
sllghtly modified procedure. Instead of dlagonalizing
SNP(n 6) we diagonalize the two terms F(n,6) and
G(n,0) in Eq. (33) separately, where

F(n,0)= LE e?n+pyn—p

>

) 1 n—1
G(n,0)=—

ei2p+1)8 o
3, [n+p)n—p=1| .

Solving the eigenvalue equation F(n,8)|f)=\|f) shows that
{(m|f)=0 for m>2n and
e n—m|fy=2mN(n+m|f)

for 0<m=n. From this we find that for n=0 there is a
single eigenvalue and eigenvector A = 1/(2r) and |f)=0),
whereas for n>0 there are just two degenerate eigenvalues
A= =*1/(27) and many different sets of eigenvectors. A par-
ticularly simple set of eigenvectors for n>0 is given in the
Fock basis by

| (75 0))‘\/— (|n—m)+|n+m)e?m?) |

[f(n,0))= \/—(ln m)—|n+m)e"?)

lfa)=1n)

for m=1,2,...,n, where the superscripts refer to the sign of
the eigenvalue. Thus we now have

. 1 -
F(n,0)=5=[In)nl+ 2 1f(n,0))(/(n.0)]

— (. 0))(f, (1, 0)]]

with it being understood that the first sum is zero for the
n=0 case. In a similar way we also find that G(n, 8) can be
diagonalized as

. 1 &
G(n,0)= 5= 2 |8, (n.0))(g,(n,0)| = lg,,(n.6))

X(gm(n,0)| ,

where

)
probe field

D
%) signal field output_field 2 5

beam splitter

output field 1

U

FIG. 11. Experimental setup for the determination of Syp. The
signal and probe fields are mixed at a beam splitter and then
directed onto the two photodetectors D; and D,. The Syp-
representation of the signal field is obtained from the joint photo-
count distributions for a given set of probe field states.

1 .
lgt(n,0)= E(|n—m}+|n+m— 1)e’?m=16y

i(2m— 1)0)

1
|g,;(n,6)>=$(|n—m)—|n+m—l>e

for m=1,2,...,n. Thus the expectation values of ﬁ(n,&)
and é(n, 6) can be calculated from knowledge of the prob-
abilities of finding the field mode in the eigenstates
~) for m=1,2,...,n and the Fock state |n). In other
words, the special number-phase Wigner function can be de-
termined from knowledge of the photon-number probability
distribution and the probabilities of finding the field mode in
the states |m) =+ |n)expli(n—m)¢] for all n>m and all ¢.

These probabilities are, in principle, measurable quanti-
ties. Indeed, probabilities of this type can be determined ex-
perimentally via an application of homodyne detection [59].
We now describe briefly an alternate scheme based directly
on photodetection. Let the field in question, which we shall
call the signal field, be in the state |i). For brevity we only
treat the pure state case here; the extension to the more-
general mixed state case is, however, straightforward. The
signal field is mixed with a probe field, which is in the spe-
cially prepared state | ), at an ideal beam splitter as shown
in Fig. 11. The output fields of the beam splitter are directed
onto photodetectors of known quantum efficiency €. We as-
sume that the signal and probe fields are pulsed synchro-
nously and that the detectors, field intensities, and pulse du-
ration are chosen such that they allow the counting of the
individual photoelectron events produced in the detectors in
a manner similar to the operational-phase measurements of
Mandel et al. [60]. The joint probability distribution giving
the probability of finding p and g photons in the output fields
1 and 2, respectively, is given by

ptq 2

P(p,q)= ;0 Yibp+qg—iCplkp+q—k)| . (44)

where ¢, and ¢,, are the Fock state coefficients i, =(n|¢)
and ¢,,=(m|®). The coefficients C;(n,m) are the complex
numbers [61,62]
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k'(n+m—k)! . )
Cr(n,m)=(—1)" |V A — e! ¢ =K giep(m=k)

<2, 2,0l

q
[ntp—q n—p+
X7 qpn r q5n+m—k,p+q >

where &, ,, is the Kronecker delta, (},) is the binomial coef-
ficient n!/m!(n—m)!, 7, and p are the transmittance and
reflectance, respectively, of the beam splitter, and ¢, and
¢, are phase factors as defined by Campos er al. [62]. It
follows from Eq. (44) that if the probe field is prepared in the
state

|¢)=c(aln)+blm)e') (45)

where c¢=1/\[al]*+[bl]?> is a normalization constant,
a=Cp/(p’+q’—n,n)“1, b=Cpr(p’+q’—m,m)*l, and
7 is a phase parameter, then the particular value of P(p,q) at
p=p' and g=q’ is

P(p'.q")=2|c|?Ky|O®)]

for p'+q'=n,m, where the state |@)=1/y2(|p’
+q'—n) +|p'+q'—m)e ") is in the form of the eigen-
states |f>-) and |g>>) of F and G. Thus, by choosing appro-
priate values of p', g, m, n, and 7 for the probe field state
|#) in Eq. (45) we can determine the required probabilities
of finding the signal field in the eigenstates |f, ) and |g,).
Using these probabilities and the corresponding eigenvalues
we can determine the expectation value of
S‘Np(n,0)=ﬁ(n,0)+é(n,0), which is the Syp representa-
tion of the signal field Syp(#, 6).

Of course, real photodetectors have quantum efficiencies
€ that are less than unity and so the relative frequency
M(p,q) of counting p and g photoelectron events at detec-
tors 1 and 2, respectively, is not equal to the joint photon-
number probability distribution P(p,q). By modeling the
loss in each detector as the loss from a beam splitter of
transmittance € placed in front of an ideal detector it is not
difficult to show that M (p,q) and P(p,q) are related by

o

M(m,n)= 2 (p)en(l —eyp—"

p=n \1

x 2 (i)em(he)q“’”P(p,q) :
g=m

This expression is in the form of a double Bernoulli trans-
form which can be inverted [63] to give

P(p.q)= g‘, (n> ( 1- l)nipe"’

e e
g 1—; € ‘M(n,m) .

As the values of n and m increase, the moduli of the factors

=2 (5004

decay exponentially for 3<e<1 and diverge otherwise.
Thus the experimental determination of the photon-number
probability distribution P(p,q), and hence the determination
of the Syp representation of the signal field, can be obtained
using realistic detectors provided the quantum efficiency is
greater than 3.

Experimentally the most difficult part of the scheme is the
preparation of the probe field in the states given by Eq. (45)
for a continuous range of 7 values and all two-state super-
positions of Fock states. Nevertheless, it may be possible in
the near future [64] to produce such states containing Fock
state components near the vacuum and so this scheme may
find a use in determining the Syp representation of very weak
fields [65]. We conclude that the special number-phase
Wigner function Snp(n, 0) can be determined from quantities
that are, in principle, measurable. The quantum state of the
field mode can then be found by evaluating the density op-
erator p according to

p=2m> f d6 Sxp(n,0)Sxp(n, ) .
n=0 J2m

VI. SUMMARY AND CONCLUSION

We have analyzed the problem of defining a Wigner func-
tion Syp(n, §) associated with the photon-number and phase
observables on the infinite-dimensional Fock space, which is
conventionally used to represent the state of a single-mode
field. We began by requiring Snp(#, 8) to be a bilinear func-
tional of the wave function and then we specified several
properties that the function must exhibit. For this we used the
properties of Wigner’s original function for position and mo-
mentum observables, as listed by Hillery ez al. [27], as a
basis. These properties are sufficient to define the position-
momentum Wigner function uniquely. Translated into analo-
gous properties for the photon-number and phase observ-
ables, they require that the number-phase Wigner function be
real, give the discrete photon-number and continuous phase
probability distributions as marginals, be Galilei invariant
under phase and photon-number shifts (and thus automati-
cally satisfy the classical equation of motion), be invariant
under time reflections, have the overlap property, and give
the trace property for the associated representation of arbi-
trary operators. We found, however, that these properties are
not sufficient to define the number-phase Wigner function
uniquely. An extra property of the position-momentum
Wigner function was used to define the special number-phase
Wigner function Syp(n,6). This property, which is a skew
diagonal form of the position-momentum Wigner function,
generates the quantum interferences fringes that are charac-
teristic of Schrodinger cat states.

The outcome of this procedure is that Syp(7, 6) is a qua-
siprobability distribution that has properties analogous to
those of the Wigner’s original function but with the distinc-
tive feature in that it gives a representation of states that
displays their underlying photon-number and phase proper-
ties. For Schrodinger cat states, in particular, it exhibits in-
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terference fringes that reveal the coherent superpositions of
states with either different mean photon number or different
mean phase. Also, every operator (including every density
operator) has a unique Syp representation. Syp(n,80) can be
determined from quantities that are, in principle, measurable.
We conclude that Syp(7,6) is a bona fide Wigner function,
which should be useful in the study of the phase and photon-
number properties of quantum optical systems.
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