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Adopting the recently introduced inverses of boson creation and annihilation operators, we construct a

nonunitary transformation to solve exactly a generalized Jaynes-Cummings (JC) model. The method reveals

that the JC model in a new frame can be viewed simply as a system of a spin-2 atom interacting with a

magnetic field dependent on the photon number. For the initial state with fixed photon number I, the JC model

becomes a cyclic evolution, and exhibits a geometric phase yg . We discuss the properties of yg in the large 1

limit.

PACS number(s): 03.65.—w, 42.50.—p

The Jaynes-Cummings (JC) model [1] as a basis of the

fully quantum description of radiation-matter interaction has
extensive applications in quantum optics, quantum electron-
ics, etc. Various modifications and generalizations to the

original JC model have been made to approach quantum ef-
fects such as quantum collapses and revivals of atomic co-
herence [2], squeezing phenomena [3], and so on. Among
them, the JC coherent states are used to evaluate the dynami-
cal quantities.

Recently, geometrical properties of the JC Hamiltonian
have acquired much interest, since the supersymmetry struc-
ture was found to embed in the JC model. It was pointed out
that the JC Hamiltonian may be interpreted as an element of
a superalgebra [4].Exact solvability of various JC models is
argued to attribute to some common structures among them:
Using a deformed oscillator algebra, Bonatsos et al. [5] gave
a unified solvable formulation of various JC Hamiltonians;
Yu et al. [6] pointed out further that there exists a fundamen-
tal SU(2) structure within these JC Hamiltonians. Others are
still attempting to develop new techniques to evaluate non-
perturbative expansions of the JC Hamiltonian and search for
new physical manifestations.

In this paper, we introduce an alternative method-
nonunitary transformation to approach these JC models. The
method is shown to be simple and useful. As is well known,
the unitary transformation in quantum theory preserves the
physical quantities and reality of probabilities, but not the
nonunitary transformation generally. Here we discuss the ap-
plicability of a set of nonunitary transformations to quantum
systems through. a theorem. Then using the recently intro-
duced inverses of boson creation and annihilation operators
[7], we construct a nonunitary transformation, covered by the
theorem, to solve exactly a generalized JC Hamiltonian with
multiphoton interactions and a quartic anharmonic Kerr. The
method reveals that in the transformed frame the generalized

JC model simply describes the motion of a spin--, atom in a
magnetic field dependent on photon number. When the initial
state is specially chosen, the JC model shows the property of
cyclic evolution, and exhibits a geometric phase which has
been neglected previously. The geometric phase is in fact the
Aharonov and Anandan (AA) phase [8,9], which is related to
the initial state and a certain structure of the Hamiltonian.

Let us look at a Hermitian operator A as a physical quan-
tity with a discrete spectrum

the eigenkets
l P„) are orthogonal mutually. Consider an op-

erator U which transforms A into another frame A'. lf A' is
still a Hermitian quantity and has the same spectrum as A, U
is called applicable to A. The form A' = UAU~ is generally
chosen to preserve the Hermitian of A', and UU~=I is re-
quired to maintain the unity: A=A' = 1. In the infinite di-
mensional Hilbert space, we know that UU~=I does not
mean that U is unitary. In sum, the nonunitary U we are
interested is in the following form:

UU~ =I,
U~ UW I.

We note that some nonunitary transformations, such as time
reversal T, are not included in Eq. (2), since T is an antilin-
ear operator without a proper Hermitian conjugate. In order
to ensure that A' = UA U~ has the same spectrum as A, U is
found to satisfy the conditions described by the following
theorem.

Theorem. If U has eigenvalue being zero, i.e.,

Ul@,)=0, l=1,2, . . . , s, andthe set (l@t), l=1,2, . . . , s)
(3)

is linearly isomorphic with the set (l 1/tt), l = 1,2, . . . , s),

*Electronic address: gt8822b prism. gatech. edu

U is applicable to A. Here tl Pt), l= 1,2, . . . , s) is a subset
of the total eigenkets tl 1/t„), n= 1,2, . . . ,~) in Eq. (1).
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Pvoof. Equation (4) yields that
I P, ) =X;,d„l4&;), l~s,

and

Ul 1(11)= 0, l = 1,2, . . . , s,

Ulg )40, m=s+1, . . . ,~.

Since {Ip1)} can be determined by both U and A, we treat
only the remaining subspace {Ip )}.Let

I

p' ) = U~UI 1(i ),
by Eq. (2), so we have U(IP') —IP )) =0. Equation (4) im-

plies lp')= lp )+~1=1c 11&1). Taking
I p ) into Eq

we obtain c,=o, namely,
I
P') =If ). Therefore, in the

subspace {IP )}, U acts as a unitary operator. Then it is
easily proved that A ' = UA U~ has the same spectrum as A,
its eigenkets

I
'P, ) = Ul 1/j„) are normalized, and

U'lq'. ) = I!(.)
In order to construct a nonunitary transformation to ap-

proach the JC model, we adopt a recent discovery by Mehta
et al. [7] that the boson creation operator at has a left uni-
verse b and the annihilation operator a has a right inverse

ba~ = ab~ = 1. (5)

We know in the scheme of second quantization, an arbitrary
operator can be expressed by a and a~, namely, a and a~
form a complete operator set, by citing the definition of the
completeness of wave functions. One infers further that b
and b~ can be expressed by a and a~. For this purpose, we
turn to the technique of coherent state and normal ordered
product. For the coherent state Iz),

' Iz)=exp(a'z —az*)lo),
f dz

a~=b~j
1bbt '

j, bbt

Equation (11) implies that any operator can be expressed in
terms of b and b ~. Therefore, b and b ~ form a complete
operator set too, which is connected to a and a~ by a pair of
nonlinear transformations (10) and (11).These results will be
used in the later calculations.

Now we consider a generalized JC model with a density
p(N)-dependent multiphoton (n) interaction and a nonlinear
Kerr cavity Pa ~ a,

H= a1ata+ —,
' co&a.&+ Pat a

+!1.[at"p(N)o. + p(N)a"o. +], (12)

(1 O

( (N+ n ) 1 ) 1/2

)
(13)

where (N+n)!/N! =:(N+n)(N+n —1) (N+1)
= (b"b ~") '. U has the properties

where N= a~a, co and coo are the field and atomic transition
frequencies, respectively, and X is the real atom-field cou-
pling constant [11].The Kerr cavity is used to modify the
photon statistics of the micromaser field towards the state
with a low number of photons [12], and also applied to re-
duce the amplitude noise. The detuning 5 = coo —n~ should
satisfy that

I

6 I(& coo, cu in order to maintain the reliability of
the rotating-wave approximation. We mention that various
JC Hamiltonians in the literature are covered in this general
one, Eq. (12). The k term is the main object of our treatment.
For this purpose, we construct a 2X2 operator matrix U as

we have
UU~=I,

dz
b=b„ I )(.I

*dz 2

e !'!be' 'Io)(ole"
gT

(7) U~U=
(1 0

n —1

I
0 1 —g lk)(kl

(14)

Using the normal ordered expression of the vacuum projec-
tion operator [10]:Io)(OI =:e ' ':, we obtain explicitly

(at)n —lan
-n'n y

n=1 n.

By the same process, we have

(a")na"
bt= e "ay

71=1 n.t

These two expressions can be simplified into the following
compact forms, which are provable by the same technique of
coherent state as in Eq. (7),

That is, U is a special nonunitary operator belong to Eq. (2).
Further, U has an eigenvalue of zero, namely, UI1/I, ) =0,
where

(Oi
I!l1)=' (15)

( f(N)+ 2coO g „(N)

One can check that these {I1/I&)} are exactly the eigenkets of
H with eigenvalues F& = col+ Pl(l —1)—too/2. These results
indicate that the U is covered by the theorem, and the U can
be applied to the remaining subspace of H besides Eq. (15).
Denote H1= UHU~, we obtain

( ( 1
b=

&
a, b~=a~j

(aa~~ t,
aa~ (10)

H1=
g.(N) f(N+n) —

—,
'

coo)

By Eq. (10), one obtains that a and at can be expressed by b
and b~ too,

where f(N) = AN+ PN(N 1), g„(N) = k p(N) [(N+ n)!—/
N!]" . H, is further rearranged into the following compact
form:
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Hi=BO —p, B, (17)

where Bo= —,'[f(N)+f(N+n)], B~=g„(N), B2=0, B&

=-,'[f(N) f(—N+n)+ coo], p, = —o.. Since H& is the func-
tion of N, its eigenvalues are directly obtained as

l+~(0)) =
2

sin —l+ n

(21)

E, =Bo(l)~ /B, (l)+B3(l), l=0, 1,2, . . . , (18) the evolution of the state with time is

the corresponding eigenstates are

0)
cos—

l l)2
IE;)'=

sin—l

0(—sin—
l l)2

cos—l

(19)

I+i(t))=cos ' '
e ' ' 'lE+)

+sin e '
& 'lEI ),

where 8~ was introduced in Eq. (19). l%"I(t)) yields

(22)

where Ot=cos '[Bs(l)//B, (l)+B3(l)].Then the eigenstates
in the original frame H are obtained simply by U 's acting
on Eq. (19),

cos—l

sin—'l l+ n)2

0(—sin—ll}2
(20)

0(
Os ~t+ ))2

The theorem tells us that E&, Eq. (18), are exactly the ei-
genvalues of H; the corresponding eigenstates are lE, ). —

Here the eigenket set (lE, )) forms a subspace of the Fock
space, in which U acts as a unitary operator without chang-
ing the physics. Therefore, H& and H are essentially equiva-
lent in this subspace.

The above method shows us a very simple version of
the generalized JC model: In the transformed frame H, ,
Eq. (17), the generalized JC method describes the motion

of a spin--,' atom under an effective magnetic field B de-
pendent on photon number, and there is no transition be-
tween the states with different photon numbers. In such a
frame, the atom is taken as a neutral particle having only a
constant magnetic moment p, = —o; and the magnetic field
is diagonalized to take the pure photon number state as
its eigenstate. For a pure ket ll), the Hamiltonian H, turns
out to be a simple two-level case Ht(l). From these points
of view, the JC model is actually a much simplified descrip-
tion of radiation-matter interaction, and therefore needs im-
proving. In practice, this version makes it easier to study
such properties as quantum collapses and revivals of the
atomic inversion, statistics of photon number within this gen-
eralization JC model, and all the results can be directly trans-
formed back to the original frame H by U. The above con-
clusions can be extended to other JC models without
difficulty.

In this paper, we would like to point out a previously
unobserved effect: the geometric phase in the generalized JC
model. It has been shown [9] that the two-level system is
generally a cyclic evolution, and exhibits a geometric phase.
As mentioned above, when the photon number l is fixed in
the transformed frame, Hi is just a two-level case. One fur-
ther deduces that in this case, H describes a two-level system
too. Given an initial state of H,

(23)

where r=27rl(E& —
E& ), and y= —2mE& l(E& —E, ). The

result Eq. (23) indicates that for the initial state Eq. (21),
the generalized JC model is in fact a cyclic evolution with
the period ~ and total phase y. Here y is the sum of geo-
metric phase y~ and dynamic phase yd, where
—Jo("P(t)lHl%'(t))dt. The geometric phase is then ob-
tained as

y = 7rt I +cos(Pt —01)]

One can prove that the geometric phase in the transformed
frame H, has the same form as Eq. (24), i.e., the geometric
phase is invariant under U. This is easily understood: From
physics, the geometric phase has an observable effect, there-
fore it does not change with a frame; from mathematics, y
here is in fact an Aharonov-Anandan (AA) phase [8], which
refIects the topology properties of the JC Hamiltonian in pa-
rameter space, and is invariant under feasible transforma-
tions.

Explicitly, 0& is written as

6 —Pn(n+ 2l —1)
0(= cos

$4 X p (l) (l + n)!Il!+ [5—Pn (n+ 2l —1)]
(25)

y =7r 1+cos PI —cos
2lP

v'4k (l+1)+(b.—2lP)
(26)

which indicates that yg is sensitive to n, l, and some other
parameters. An appropriate design of the Kerr cavity (p) can
possibly make 0&= ~/2 for a certain state l, and then y
relates only to the initial state. Setting p(l) = 1, P = 0,
n= 1, one obtains the expression of y for the original JC
model [I]. In the following, we discuss the properties of yg
by different n in the large I limit. Without loss of generality,
we still assume p(l) = 1.

(i) For the case of single photon interaction, i.e., n= 1,
yg becomes
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( 2P
ys= 77' 1 + cos tjbg cos

I g) '+4p'~ (27)

in this case y is determined by both cb& and P, k, which is
quite different from case n = 1.

(iii) n~3, for a large l, 8&= m/2. Hence, ys= m(1
+ sintbI). This case is similar to that of n= 1 while P=O.

For a sufficiently large l, if the Kerr cavity is so designed
that P(0, the term 4k (l+1) in Eq. (26) becomes negli-
gible, yg will relate to the initial state only:
ys=vr(1 +c os@1); if P=O, the term 4)t. (l+1) turns out
to dominate, and then ys=7r(1+sing&); if P)0, one ob-
tains ys=7r(1 —cosP&). These results show that ys varies
sharply with the sign of P in the large l limit, e.g. , for the
initial state @I=0, ys(P) 0 or P(0)=0, however,

ys(P= o) =~
(ii) n = 2, the two-photon interaction case, when l is large

enough, and P 4 0, we obtain

The above initial discussions of yg are based on the state
Eq. (21). This kind of state is the pure quantum object, and
how to prepare such a state is still a current topic in experi-
ment. As a quantum holonomy in a line bundle over the
parameter space, yg shows essentially the geometrical aspect
of the JC Hamiltonian. The approach of y would be useful
to the deep understanding of various JC models and amounts
to a proposal for a practical experiment.

In conclusion, we have proposed a method —nonunitary
transformation —to approach a generalized JC model. The
method presents a simple version of the JC model: in the
transformed frame, the JC model describes the motion a
spin--,' atom under an effective magnetic field dependent on
photon number. This version evidently simplifies the study of
the JC model in both physics and geometry. By choosing a
special initial state, the JC model shows the property of cy-
clic evolution and exhibits a geometric phase y, which is
the well-known AA phase. We discuss the properties of yg in
the large photon number limit, and hope these effects will be
manifested by experiments.

The author is deeply grateful to Professor D. Finkelstein
for discussions. The material is based upon research sup-
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