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Exact wave functions and nonadiabatic Berry phases
of a time-dependent harmonic oscillator
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Exact Schrodinger wave functions of a time-dependent harmonic oscillator are found in analyti-
cally closed forms for the eigenstates of the generalized invariant and the instantaneous Hamiltonian.
The cyclic initial state (CIS) and corresponding nonadiabatic Berry phase are also found exactly
for a 7-periodic Hamiltonian. There may exist N~-periodic CISs and corresponding Berry phases,
but the cases with unstable classical motions do not have CISs in which cases Berry phases do not
exist.
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I. INTRODUCTION

Time-dependent systems in quantum mechanics have
been an interesting subject for a long time and the gener-
alized invariant method introduced by Lewis and Riesen-
feld (LR) gives a typical and powerful method to study
these problems [1,2]. The time-dependent harmonic os-
cillator is a good example of an exactly solved model and
has applications in many areas of physics. On the other
hand, the Berry phase [3] and its nonadiabatic general-
izations [4] have been another interesting subject.

In order to find the Berry phase of a quantum state
we should know its exact wave function up to the time-
dependent phase. However, the wave functions found
in [2] using the LR invariant method do not satisfy the
Schrodinger equation, since their time-dependent phases
are fixed under the following condition: (Oi & ~0) van-
ish in the limit that the auxiliary function p becomes
a constant, where the auxiliary function p determines
the LR invariant and. its eigenfunctions. As far as we
know the Schrodinger wave function of an eigenstate of
the LR invariant in most general cases where mass and
frequency are both time-dependent, is found in Refs. [5]
and [6]. However, the wave function in [5] satisfies the
Schrodinger equation only when the mass is constant and
in which case the equivalent wave function also appears
in Ref. [7]. Furthermore, some time-dependent phase is
missing in the wave function of [6].

In this paper, we And the exact wave function of a time-
dependent harmonic oscillator using the Heisenberg pic-
ture approach previously developed [8]. The wave func-

tion found in this paper is in agreement with those in
Refs. [5,7] for the case with constant mass. However, for
the general case where mass is also time-dependent, it
is new and difFerent from that of [5]. We examine care-
fully the wave function for the w-periodic Hamiltonian,
and we find the cyclic initial state (CIS) and the cor-
responding Berry phase. There may exist Nv-periodic
CISs and corresponding Berry phases. In addition, there
exist systems which do not have the CISs, and therefore
those systems cannot possess the Berry phase although
the Hamiltonians are periodic. They correspond to the
systems with unstable classical motions.

II. GENERAI IZED INVARIANT AND
ITS EIGENSTATES

For the Hamiltonian of a time-dependent harmonic os-
cillator system

(2.1)

the following form of the LR invariant is well known:

I(t) = g —(t) + go(t) + g+(t)
p pl+ vp
2 2 2' (2 2)

where g, (t)(i = —,0, +) satisfy the linear system of dif-
ferential equations

2
g (t) = —

M(t)
go(t)—

gp (t) = M(t)~ (t)g (t) — g+(t), (2.3)
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g+ (t) = 2M (t) cu (t)gp (t) .

Moreover, in its most general solutions, g (t) has the
following form [8]:
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g (t) = ci fi (t) + cq fi(t) fq(t) + cs f~ (t), (2.4) easy to find

and go(t) and g+(t) are obtained from the first two equa-
tions of (2.3) by direct differentiations, where c; (i
1, 2, 3) are arbitrary constants and fi(t) and fq(t) are
two linearly independent solutions of a classical equation
of motion:

(Q tin) = e ') ')'-" y (()

where ( = ~~IQ and

(3 1)

M(t) .
fi, ~(t) + fi ~(') + ~'(')fi ~(t) = 0 (2.5)

(3.2)

We demand that g (t) is always positive definite be-
cause the creation and the annihilation operator of the
LR invariant should not be singular (see below). Then,
the I R invariant can be written in the form

I(t) = —P~(t) + —(dlQ'(t),
2 2 ' (2.6)

where wl = [g+(t)g (t) —go(t)]it and the new canonical
variables P(t) and Q(t) are obtained by two successive
time-dependent unitary transformations:

(ql@-(t))l —= @-(q t) —= (q, tin}I.

It follows from the Eqs. (2.7) and (2.8) that [9]

, ~o(t)
(q tl = ~ "-'" (Q tl

= (g-(t)) " '"-'"' (Q t

(3 3)

(3 4)

and therefore the result is

where H„(() is a Hermite polynomial. Now it is easy
to represent the wave function in terms of the original
coordinate variable

Ui(t) = exp
I

i q
go (t).

( 2g (t) ) (2 7) 0-( ) =( -()) ' ' "-"' (Q 'I ) (3.5)

and
a

U2(t) = exp
I

—(PQ + QP)» g (t) (2.8)

and it can be written in the original coordinate variable
as

as Q = Ui 'qUi ——q, P = Ui 'pUi ——p+ g'
q, and Q =

Ug QU2 = =Q, P = U& PUq ——vrg P, respectively.

From the form of (2.6) one defines the annihilation and
creation operator as

vr2~n( (m.g (t))
4'I I 1 X ~I 2' f « M-(t) (t) ( + 2 ) 2 (t) ~

( ~1xH„
I q I. (3.6)

A(t) =

At(t) =

—Q(t) + P(t)
2 /2(t)1

—Q(t) — P(').
2 v 2(t)I

(2.9)
'~ i)) ( t) = II(t)(t' ( t)
. 0

(3.7)

By directly substituting Eq. (3.6) into the Schrodinger
equation

Their time evolutions are found from the Heisenberg
equation of motion of quantum operators [8], and after taking some cancellations using (2.3), we get

the ordinary differential equation (see the Appendix)

At(t) e ftp (Mt)g (t) At(t )
It ~I

A(t) e ftp M(t) (t) A(t ) (2.10)
I

—2d, + 2(' Iv-(() =
I

+
2 I q (&)

( ld~ 1 ~l ( 11
2d' 2 ) "

g 2)
(3.8)

Moreover, the invariant (2.6) can be rewritten as I =
wl (AtA + z), where A and At are the creation and an-
nihilation operators at an initial time to . Now, the eigen-
states of the generalized invariant are the number states

I In) =
I
n+

I
~1 ln)2)

where In) I = ~~ I0)I and A IO)I = 0.

III. SCHRODINGER WAVE FUNCTIONS

Now comparing (2.6), (2.10), and (2.11) with the equa-
tions of the time-independent harmonic oscillator it is

which shows that (3.6) indeed satisfies the Schrodinger
equation.

When the mass is constant, i.e. , M(t) = m, our wave
function (3.6) becomes the one of Ref. [5] with setting

g (t) = '~ ~ l, and the one of Ref. [7] with setting (trl =
0 and g (t) = fi (t) + fz (t), where fi(t) = p(t) cosy(t)
and fq(t) = p(t) sing(t) are two linearly independent
solutions of the classical equation of motion. However,
our result is more general than that of Ref. [7] because
ours includes time-varying mass. We also note that the
wave function of Ref. [5] does not agree with ours in the
time-varying mass case. Their wave function seems to
be not correct because it includes the term M(t)/M(t)
only once. Its time derivative in the Schrodinger equa-
tion produces the M(t) term, but there is no other M(t)
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H(tp) ln)H(t. ~

= &-(tp) ln)H(t ) (3.9)

where E (tp) = u(tp)(n+ 1/2). Now we have found an
eigenstate of the instantaneous Hamiltonian at to and its
time-dependent Schrodinger wave function (3.6).

IV. EXISTENCE OF CYCLIC INITIAL STATES
AND NONADIABATIC BERRY PHASES

Consider the nonadiabatic Berry phase of a general
quantum system with 7-periodic Hamiltonian. The evo-
lution of an initial state g(tp) is found by solving the
time-dependent Schrodinger equation (3.7). Choosing
the initial state to be cyclic immediately gives us the
overall phase; as g(tp + 7) = e'x@(tp), we call such an
initial state a cyclic initial state. The price we have to
pay in making this generalization is that the cyclic initial
states are no longer (in general) eigenvectors of the ini-
tial Hamiltonian H(tp) [10]. The overall phase is simply
given by y, and the generalization of dynamical phase is
the time integral of the instantaneous expectation value
of the Hamiltonian,

(@-(t)I H(t) I&-(t)) « (4.1)

Aharonov and Anandan [4] show that P = y —8 is a
purely geometrical property of the evolution in the sense
that it only depends on the path followed by the system
in projective Hilbert space.

In this section, in a w-periodic Hamiltonian system:

term which cancels that away. Finally, the missing phase

factor in the wave function of [6] is exp (
—i s'

i i q }.

Now we can construct the eigenfunction of the in-
stantaneous Hamiltonian at some time, say to. To find
eigenstates of the instantaneous Hamiltonian H(tp), the
only thing to do is to find I(t) such that I(tp) = H(tp)
and this is accomplished by setting three parameters
so that g (tp) = 1/M(tp), gp(tp) = 0, and g+(tp)
M(tp)w (tp). Now it is clear that In)I ——ln)H(&

~
and

therefore the eigenstate of the instantaneous Hamiltonian
can be written

11 (dl
y„(r) = —

I
n+ —

I

dt (4.5)

tions. With these solutions prepared, we examine that
the positive 7-periodic auxiliary function can be con-
structed from thexn.

Case 2. o. is pure imaginary. We set o. = io,
(where n, is real). Case I-I. o, = im7r/N'r (m, X' =
integers). For N' = 1, fi (t), fi(t) f2(t), and f2 (t) are
r-periodic and so is any g (t), and in this case we can
always find the CISs which are the eigenstates of both
the invariant I(t) and initial Hamiltonian H(tp). We will
consider the case K' g 1 in a later section. Case 1-2.
Otherwise, the real and imaginary parts of ri(t)e' * are
two independent solutions and they are aperiodic. In this
case, the general auxiliary functions are also aperiodic,
and the eigenstates are not CISs. However, we have a 7-
periodic auxiliary function of the form g (t) = clri(t)l
which is positive definite since Iri(t) I

cannot vanish (if it
does, the Wronskian should vanish, and this contradicts
the linear independency of two solutions). Furthermore,
it cannot be monotonically increasing or decreasing since
g (t) is periodic. Therefore, we have g (t)/dt = 0 at
some times t = tp+ nr, where we find I(t) oc H(tp) using
(2.2) and (2.3). Then the eigenstate of H(tp) is also a
CIS. However, it does not mean that we can construct
the CISs, at any time, which are also the eigenstates of
the instantaneous Hamiltonian.

Case 2. n = n„+ ia; has a real part (n„, j 0).
In this case, we can take two independent solutions to
be a real (or imaginary) part of (4.4), as e " ~si(t) and
e "' s2 (t), where si (t) and s2 (t) are real (or imaginary)
parts of e' *' ri(t) and e ' r2(t), respectively. There-
fore, the only possibility that g (t) is r-periodic is such
that g (t) = c2fi(t) f2(t) = c2si(t)s2(t) . However, this
spoils the positiveness of g (t), since the oscillation parts,
si(t) and s2(t), have zeros [12]. Therefore it is impossi-
ble to construct CISs for the system which has classically
unstable motions. The unstable solutions of the Mathieu
equation [13] are good examples.

When g (t) is r-periodic, all the eigenstates of the
generalized invariant are CISs with

M(t+ r) = M(t), aq(t + r) = ~(t), (4.2)
and the nonadiabatic Berry phase is obtained by remov-
ing the dynamical phase from (4.5) as

fi(t) = e ri(t), f2(t) = e 'r2(t), (4.4)

where o. is a constant and ri (t), r2(t) are 7.-periodic func-

we find the CIS and calculate the corresponding Berry
phase in a closed form using classical solutions of (2.5).
We consider the cyclic initial state such that

0-(t + r') = e*' ' '@-(t) (4.3)
which is, in general, no longer an eigenstate of the initial
Hamiltonian H(tp). Moreover, a minimal period r may
not be equal to 7.

Inspecting closely the form of wave function (3.6), we
find that the necessary and sufhcient condition for the
existence of CESs is the existence of periodic auxiliary
functions. By Floquet's theorem [11],we have two inde-
pendent solutions such that

&-(&) —= &-(&) + (@-(t)I
H(t) I&-(t))«(4.6)

Using (vP (t)l H(t) Iv/r„(t)) = (n+1/2)[hp(t)/2] [8], where
~p(t) = [gp(t) + M'(t)~'(t)g' (t) + ~1]/[M(t)g-(t)~1]
and (2.3) we get

g (t) d f gp(t) )
(dl dt (g ('t) )

(4.7)

The partial integration using the periodicity of g, (t) and
the first equation of (2.3) lead to

P„(r) = —
I

n+ —
I

dt (4.8).( 1l g (t)
2 p Mtg taql

Thus we presented the Berry phase for the CES in a simple
closed form.
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) (t + Nr) = e'x" Q( (t), (5.1)

where

x.'"'= —
[

+ —
I

( N7-
(dI

M(t)g (t)
(5.2)

and the nonadiabatic Berry phase for this CIS is

&-'"'( ) = —
I
"+—

I2)

ivy 2(t)
M(t) g (t)col

(5.3)

(ii) The system with unstable classical motions possesses
no CIS and therefore there exists no Berry phase.
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APPENDIX: DERIVATION OF (3.8) FROM (3.6)

We are concerned here with the derivation of (3.8) from
(3.6). For the simplicity of calculation, we write

V. DISCUSSION

We derived the exact wave function of the eigenstate
of the LR invariant using the unitary transformations
and the Heisenberg operator evolutions. Futhermore, we
discussed the wave functions of the instantaneous Hamil-
tonian and the CISs. Finally we found the nonadiabatic
Berry phase of the CIS in terms of classical motions. Two
remarkable results are found in relations to the Berry
phase. (i) There may exist Nr-periodic CISs and cor-
responchng Berry phases: when o. = imvr/N'7(N' g 1),
we can easily notice that g (t) is periodic with minimal
period Nr (N = N'/2 for even N', N = N' for odd N')
and there exist Nw-periodic CISs such that

. 0 . OT . ill gi —@„(q,t) =i p„—iT q —p„,Bt Ot g 2g d
(A3)

where we have used ( = gimel/g q and a dot denotes a
time derivative. We insert the time derivative of (A2)
into (A3) and eliminate g and go by using the first and
second equation of (2.3), respectively, we get

. 8
i @„(q,t) = Zgp

Tgn
2Mg

(M~
+I

2

11+[n+ —
]2) Mg

I gp d

Mg d(

g+ go

2Mg Mg

(A4)

Now we calculate the erst term of right-hand side of (3.7):

1 0 1

2M Oq
" ' 2M

2

&g-)
d

g d(
1

2M g d(2 (A5)

From (A4) and (A5), eliminating g+ by using the identity
wl ——g+g —gp, we get the final result:

f. Bo= i' —-H(t) l~-(q, t)( Ot

t' 01. 8'
i, Ot 2M(t) Oq2

~IT 1d 1 2
t' li

, +-(' —
(

n+-
)

p„.
Mg 2 d(2 2 i, 2)

——M(t)~ (t)q
~
g„(q, t)

(A6)

T(q, t) = g (t) 'e "-(~'q e " i~i'-'~'( ''. (A2)

First, let us consider the left-hand side of the Schrodinger
equation (3.7):

where

&-(q t) = T(q t)~-(&) (Al) This leads to (3.8). It is well known in a tirne-
independent harmonic oscillator that its normalized so-
lution is (3.2).
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