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Analysis of the Dirac-Coulomb problem in the free-particle representation
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The problem of an electron bound by a Coulomb field of strength a =Za' (a' = 137 ') is considered in
the free-particle representation of the Dirac equation in momentum space. It is shown explicitly how
O(a ) contributions to the energies for all s-wave states that come from the relativistic free-particle
kinetic energy and from the modified Coulomb interaction are canceled by a contribution from electron-
positron pair formation. The relativistic correction to the momentum-space Schrodinger wave function
is also shown to remove an unwanted 0 (a lna) energy dependence that arises in lowest-order perturba-
tion theory. The work shows how to perform more accurate calculations in semirelativistic quasipoten-
tial approaches that are commonly used in quark models.

PACS number(s): 03.65.Pm, 03.65.Ge

While the problem of an electron (or any other
massive, charged fermion) bound by an external Coulomb
field can be solved exactly using the Dirac equation, a
considerable interest remains in approximate treatments
that avoid the difBculty of negative-energy solutions.
There are valid reasons for such an interest both for the
single-particle problem exemplified by the difficulty to ap-
proximate solutions variatonally [1] as well as for the
many-electron problem, for which the so-called continu-
um dissolution problem arises [2]. Of course, one can
avoid the pitfalls of the presence of negative-energy solu-
tions and perform successfully a

multiconfigur

atio
Dirac-Fock scheme to attack the many-electron problem
[3]. Nevertheless, the curiosity remains whether the rela-
tivistic bound-state problem can be attacked in a
Schrodinger-like fashion. Further motivation for such an
endeavor comes from the two-particle positronium prob-
lem, for which the covariant approach present one with
major fundamental di5culties. In a Schrodinger-like ap-
proach the aim is to work with a single equation—
usually an integral equation in momentum space —that
contains only positive-energy eigenvalues and thus can be
treated variationally. Whether the energy eigenvalues
that are bounded from below represent upper bounds to
the exact (field-theoretic) eigenvalues represents a
separate problem.

It is straightforward to derive a relativized Schrodinger
equation for the two-particle problem for each J sym-
metry sector. It amounts to a single-channel reduction of
the 16-component Salpeter equation [4], which represents
an energy eigenvalue problem and singles out the center-
of-mass frame of reference. It contains the free relativis-
tic kinetic energy of a particle co& =+p +rn (we employ
natural units A=c = 1) and a potential energy that results
from the sandwiching of the Coulomb potential between
positive-energy projectors. If the coupling to the sma11
component is ignored, the so-called "no-pair" equation

emerges [5]. Such no-pair equations were investigated for
pairs of spin-0 and spin- —, particles of different mass [6]
and later the discussion was extended to treat transverse
photon exchange as well [7—9]. These results were ob-
tained within a Hamiltonian variational Fock-space
method, which was*shown to be powerful enough to treat
couplings of the two-photon continuum [10].

It was shown recently [11]how the Dirac equation can
be transformed exactly into a single-component represen-
tation in which the no-pair equation emerges as a limit
and the presence of virtual positron-electron pairs is
represented by multidimensional kernels in the integral
equation. The no-pair wave equation for fermions is
known to have an energy spectrum that agrees to 0 (a )

with the Dirac spectrum, but contains an 0 (a ) contri-
bution for the s states. It was conjectured that this con-
tribution would be canceled by the simplest virtual-pair
contribution depicted in the language of old-fashioned
time-ordered perturbation theory in Fig. 1 [5]. In addi-
tion, a perturbative analysis based on the exactly known
Schrodinger solution in momentum space displays an
0 (a lna) dependence of the eigenenergy.

The aim of the present paper is to demonstrate explic-
itly how the no-pair equation is corrected by a single
virtual-pair contribution. We analyze the Dirac equation
in a free-particle representation, which is equivalent to
the Feshbach-Villars representation of the Klein-Gordon
equation. For the latter a successful resolution of the
equivalent, technically somewhat simpler problem was
obtained recently [12]. In this representation one still
deals with positive- and negative-energy solutions, but
one can perturbatively eliminate the E &0 solutions,
which is equivalent to the transformation to a single
E )0 equation [11].

In the free-particle representation [13],the Dirac equa-
tion for an electron in the static Coulomb field reads
(m = 1, m is the electron mass)

d
(co~ —E)u(p)=

~ I f (p, q) 1+ u(q)+
2m. (p —q)

v(q)
coq+ 1

—(co~+E)v(p)=,J,f(p, q)2n(p —q). u(q)+ 1+ v(q)
coq+ 1 cd+ 1 cop+ 1 Q)q+ 1

(lb)
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particle

X 1 Gj+Eo u' '(x)= f zu' '(y)
2 2m2 (x—y)

(4)

FIG. 1. Time-order perturbation-theory diagram depicting virtual-
pair production by a massive particle in an external Coulomb field.

Here E is the total energy of the particle,
a=Za'=Z/137 is the coupling constant, cr is the set of
Pauli matrices [14],co~ =+1+p, and

f (p, q) =
[ [(co~+ 1)(co~+1)]/4coyco~ I'~ . (2)

The functions u (p) and v (p) represent amplitudes for the
particles and antiparticles in the field-free limit, respec-
tively. The amplitudes u(p) and v(p) differ froin those
used in Ref. [13] by a factor of +2coy/(co +1), which
transforms the equation's kernel to a symmetrical form
[11]. We denote the spin-up and spin-down components
by plus and minus signs: u (p)=(u+(p), u (p)) and
v (p)=(v+(p), v (p)). We consider now the s-wave
states with the energy [15]

E„=(1+Ia l[(n —1+& 1 —a ) ]])

u„' ' i(x) = A i/(x +1)
u„' '2(x)= Az(4x —1)/(4x +1)

(7)

etc. The normalization constants A„are fixed by the
condition

p u''p a =1.
Combining Eq. (la) for the component u+(p) and Eq.

(4), we write out the exact expression for the correction
to the energy as

E =1—a2/2n2+N '(Ek+Eu+Ev ) (10)

where we have isolated a "kirietic-energy" contribution

follows from (1), when the limit a~O is taken for fixed
x =p/a:

u+(ax)=u' '(x)+ . , a~O (5)

E =1—a (Eo+ ),
while all the other components vanish. The s-wave solu-
tion corresponding to eigenenergies Eo„=1 /2n i are, in
particular [13],

Q=1-
2n

a' 3
1 — +O(a ), a~O .

4n
(3)

2E"= d pu' ' ~ co —1 — u (p},1 a ~ 2

Let us introduce the scaled variable x =p/a. The
Schrodinger equation for the nonrelativistic Coulomb

I

a potential-energy contribution involving the u+ ampli-
tude only

—1 u+(q),

qz px lpyPz

(co +1)
Ev

1

fd () P f q f( ) 1+ Pqcz

2~' a (p —q)~
'

(coy+1)(co +1)
and contributions that depend on the antiparticle amplitudes as well

r

, fd'p u"' f,f(p, q)
27T2 a (p —q)'

(12)

lpga

v (q) . (13)
co&+ 1

Note that there is no explicit correction in (10) from the
particle of the opposite spin u (p). The quantity N in

Eq. (10) stands for the overlap integral

N= f d p u' '(p/a)u+(p)=l+O(a ), a~O . (14)

and

3Ei= —(a/2n ) 2 — +
4n

(15)

The leading corrections to the nonrelativistic binding
energy come from E& and E&. Introducing the approxi-
mation (5) into Eqs. (11)and (12) yields

I

a fixed x =p/a. Following Ref. [12] we write

u+(p) =uo(p)+, a~O,
uo(p)=u' '(p/a)gQ(p),

(17)

with go(0)=1. We demand that in the limit a~O the
function uo(p) should satisfy Eq. (la) for u+(p) with
u (p)=v+(p)=v (p)=0. In contrast with the limiting
case of Eq. (5), the variable p is now held fixed. Making
use of the wave-function asymptotes

u' '(x)=(2/na) ~ (1/n.x ), x —woo,

E", =(a l2n )+
we get

(16)
go(p) =[(coy+ I) ~ ]/2+2co

yielding the complete a correction in Eq. (3).
To proceed e6'ectively with deriving the corrections of

higher order, an expansion of u+(p) in the limit a~O for
a fixed p is needed [12] in addition to the expansion (5) for

(20)

for any s-wave state. The function uo(p) goes over into
the Schrodinger-Coulomb solution u '0'(p /a ) only for
p ~0.
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With the expansion (17) introduced into Eqs. (11) and (12) we arrive after some manipulations at

and

Ek= —— + d3p u(0) P
8 n' CX

2 4

coo —1 — go(p) + Sa 64+ ~ ~ ~ +
8 n3 15~

16z,
+E~ (21)

7T n

4

f d3 „(o) p Jd3 „(o)
2n 2' a

ff(p, e) —1]4(e)+ + '
go(q) ——

p q + .p +q f (p, q) 1

8 (coo+1)(co +1) 4

a4

2n

16z2 ~~

7T n

6Q lncx

4n
(22)

The numerical constant z, and zz entering Eqs. (21) and
(22) stand for the integrals

(coo —E)b, ,u+ (p)

and

- d o(p) —1dp op
p (co~+1)

(23)

d3 f (p, q) 1+2~' (p —q)' (~o+1)(~,+1)

Xh, u+(q)+ U, (p)+ V, (p), (30)
~ dgz2=

4 0 q =1 Oq —1 + =0 2934.

(24)

where

U', (p) = —(co —E)uo(p)+ f z f (p, q)2~' (p —q)'

b, iu+(p)=u+(p) —uo(p) . (25)

Let us now calculate the antiparticle correction (13).
Using either of the approximations (5) or (17) in Eq. (lb)
we obtain in the limit a~O the first-order approxima-
tions for the wave-function components associated with
negative energy that describe antiparticles

j/22a'
v+(p)=

n

f (p, O) Pz

(co +1) p
(26)

In Eqs. (21) and (22) all the terms coming from the func-
tion uo(p) from Eq. (18) that are of the order of a and
higher are collected into the terms E2 and E2, respective-
ly. These E2 terms incorporate also the terms coming
from the correction to the function uo(p), and

V, (p) = J,f (p, q)2'' (p —q)'

p, v+(q)+(p —ip )v (q)
X

(co„+1)

q, v+(q)+(q„iq )v —(q)

(co +1) (32)

1/2
2a f (p, O) Px V'y

n (co +1) p

Substituting (26) and (27) into (13), respectively, yields

E
&
=(4/3m )(a In )+E~ .

(27)

(28)

7/2
U((p)+ V)(p) = +

4n pQco~(co +1)
a~O .

(33)

Equations (31) and (32) together with Eqs. (26) and (27)
yield the limiting the expression

Collecting the a contributions from Eqs. (21), (22), and
(28) we obtain a perfect cancellation of these terms

64
15m

16zi 16z2 + =0,
7T 3' n

(29)

where the identity z, +z2 =7/20 was used.
In order to obtain all the terms of the order n 1ncx in

the expansion of the energy E, we have to derive a correc-
tion to uo(p). The function h, u+(p) from (25) obeys the
equation

Let us represent the function h&u+(p) for a~O at a
fixed p as

h, u+ (p) =u, (p) = u ' '(p /a )g&(p) . (34)

The function g, (p), as obtained from solving Eqs. (30),
(33), and (34) for a~O, reads

g')(p) =(m/8)[(co~+ 1)/2' ]'~ pa . (35)

Naturally, the function g&(p) is dependent on the
particle-antiparticle coupling that determines the antipar-
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ticle contribution V, (p) to the inhomogeneous term in
Eq. (30). We remark, however, that the linear behavior of
the function g&(p) for small momenta is governed solely
by the p behavior of U&(p) in Eq. (31) and is thus in-
dependent of the antiparticle term V&(p). The resulting
expansion of the solution u+ (p) takes the form

W a' (,+1)'"
"+(»=

Z Z 2(p +a ) 2+2to
1+— P +

4 6)p+ 1

a~0 . (36)

We are now ready to determine the corresponding
corrections to the energy E. We find that

2E"= d pu' ' ~
Co

—1 — u (p)+.2 P 2 1

ln +O(a6),
2n

(37)

fd pu' ' ~ f f(p, q) 1+
2772 a (p —q)2

'
(ro +1)(co +1)

—1 u&(q)= — +O(a ),a inca

4n
(38)

and

Ez=O(a )

It is essential to note that the corrections of order a 1ne
in Eqs. (37) and (38) are independent of the coupling to
the antiparticle sector, being determined by the behavior
of the function u &(p) in the region of small p only, which
is independent of that coupling. Combining Eqs. (22),
(37), and (38) shows that the corrections of order a lna
cancel perfectly.

Thus, for the energy to be calculated correctly at order
a, one has to take into account the particle-antiparticle
interaction in the first order of perturbation theory.
However, the correct n contributions from E" and E"
that are canceling the effect of virtual pairs cannot be ob-
tained easily from the zeroth-order nonrelativistic
Coulomb wave functions. Instead one has to make use of
an appropriate zeroth-order solution to the integral equa-
tion given by Eqs. (17), (18), and (20). Furthermore, the
second term in the large parentheses in (36) is required to
obtain a perfect cancellation between the cx 1na contribu-
tions. As a result, one can get the energy E correctly up
to a already after the first iteration.

We consider now briefly the relativistic corrections for
the states with nonzero angular momentum. Due to cen-
trifugal barrier, the wave functions for these states are
less singular at the origin in the coordinate-space repre-
sentation as compared to the ones for the s-wave states.

I

That manifests itself in a faster decrease of the wave func-
tion at high momenta, e.g., as p for the p-wave states
[13]. As a result, no terms of order a or a lna are
present in the expansions of expression (11)—(13) for these
higher partial waves. The terms of uneven power in a
which will eventually appear in such expansions, like cz

terms for the p-wave states, may be treated using the
same technique.

For practical atomic physics applications of the
method one has to deal with the problem of finite nuclear
size, i.e., radius Ro. This can be done perturbatively as
Ro represents an additional small parameter. The first-
order nonrelativistic correction can be calculated in coor-
dinate space and is of order Ron for a simple cutoff
Coulomb potential. To estimate the relativistic correc-
tions a careful analysis along the lines of this paper can
be performed in p space.

We hope that the free-particle representation approach
may be found useful for estimating energy corrections in
the case of small molecules and ions. Implying that fairly
accurate nonrelativistic momentum-space wave functions
are obtained, one would expect that using the improved
wave functions [Eq. (36)] and taking antiparticles into ac-
count will provide accurate results for relativistic energy
corrections.
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