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Bistability in a quantum nonlinear oscillator
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The response of a nonlinear oscillator to an external electromagnetic field is studied in the quantum regime.
It is demonstrated that bistability occurs when the shift of the resonance frequency, induced by the external

field and modified by fiuctuations (quantum and thermal), surpasses the natural linewidth. This theory can be

applied to the study of the nonlinear response, near resonance, of a single electron, trapped in a magnetic field,

to an external electromagnetic field. It is shown that, even at low quantum levels of the oscillator, bistability

can be observed due to the interplay between the small relativistic nonlinearity, the external electromagnetic

field, and the heat bath.

PACS number(s): 42.65.Pc

I. INTRODUCTION

The study of nonlinear dynamics of quantum systems is
attractive for its fundamental aspect as well as for its inter-

esting applications [1—11].A particular system, which has
been widely studied is the nonlinear oscillator (NO), as it
serves as an instructive prototype for a large class of phe-
nomena, i.e., driven tunneling [4], quantum chaos [5],
bistable resonance [6—8,10], etc.

Even classically, straightforward methods of perturbation
are not applicable in solving a large class of nonlinear equa-
tions of motion [12,13]. A successful approximation proce-
dure, which overcomes some of the obstacles, is the Krylov-
Bogoliubov (KB) method of averaging [13].According to
the KB method of averaging, bistable resonance is classi-
cally expected when the NO is driven by an external force
and the system is affected by its environment. Due to non-
linearity, the frequency of natural oscillations becomes de-
pendent upon the amplitude of the oscillations and the
frequency-response curve exhibits hysteresis when the am-
plitude of the driving force exceeds a threshold value. When
the frequency of the external force is swept through reso-
nance, a jurnp occurs from high to low excitation level. At a
different external frequency, a jump occurs from low to high
excitation level when the sweep through resonance is in the
opposite direction.

An individual electron in a magnetic field can display
bistability under the action of an electromagnetic (e.m. ) field.
The small relativistic mass increase of the electron causes the
driven motion to be highly nonlinear. This phenomenon,
which constitutes a microscopic realization of nonlinear dy-
namics, was predicted theoretically by Kaplan [14,15], who
indicated that the motion of the electron is of a forced non-
linear oscillator. This phenomenon was verified experimen-
tally by Gabrielse et al. [16,17] by probing the cyclotron
motion of one electron in a Penning trap. The intrinsic bista-
bility of this microscopic system has been analyzed classi-
cally. However, a quantum-mechanical description is re-
quired in order to understand the nature of the system at low
levels of excitation.

The subject of bistable resonance of quantum systems was
approached by Drummond and Walls, who modeled a non-
linear dispersive medium by a NO and analyzed its response

to a driving field in limiting cases [7]. They used a Fokker-
Planck equation in a generalized P representation to claim
that in the limit of large quantum noise no bistability is ob-
tained, whereas the system exhibits hysteresis in the semi-
classical limit. Savage and Carmichael have considered a
single atom in a cavity and showed that absorbtive optical
bistability can exist within a quantum-mechanical theory, in
the good-cavity limit [10].In this limit the effect of quantum
fluctuations is relatively small. Another work, by
Horsthemke and McCarty, examines the effect of noise upon
a nonlinear system [11].They analyzed a system that exhib-
its nonequilibrium transitions and bistability when critical
values are reached. The presence of noise modifies the criti-
cal points, which become shifted by a noise-dependent term.
Although this result was derived for a very different system—an autocatalytic photochemical reaction with incident light
upon it —we will show that similar results come out of the
discussions of this paper. In the analysis of bistable response,
our approach finds that the effect of fluctuations upon the
steady-state response is to shift the resonance frequency, as
found in Ref. [11].In the present paper we do not deal with
the effect of fluctuations upon the stability of the two stable
states, that is, its influence upon the time scale of the stabil-
ity.

The purpose of the present paper is to investigate the na-
ture of nonlinear resonance in the quantum regime. This
would provide an understanding of the bistable resonance in
low levels of excitation, where its feasibility was questioned
[7,14—17]. The model to be used is of the harmonic oscilla-
tor with a small anharmonic term due to relativistic effects.
The nonlinear oscillator is coupled to a heat bath, and we
analyze the effect of an externally applied e.m. field of fre-
quency 0 on this system. We formulate the problem with a
master equation that is transformed into an evolution equa-
tion in terms of the Wigner quasiprobability distribution
function. In order to analyze the interplay between the non-
linearity, the e.m. wave, and the bath, we employ two
schemes of approximation: first, by assuming that the Wigner
quasidistribution function is a Gaussian, centered around the
expectation values of the dynamical variables, and second,
by truncating the hierarchy of moments' equations extracted
from the evolution equation for the Wigner function. We find
that the two schemes lead to the same results in the long-time
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II. MODEL FOR A NONLINEAR OSCILLATOR

Consider a one-dimensional (1D) nonlinear charged oscil-
lator, interacting with a bath, under the action of an external
e.m. field. As a concrete case, to be identified as cyclotron
oscillator (CO), imagine one electron trapped in a Penning
cage. The restoring force on the electron is provided by a
constant magnetic field in the z direction. The external e.m.
field, near resonance with the cyclotron frequency, propa-
gates along the z axis with circular polarization. The oscilla-
tor is weakly anharmonic due to a weak relativistic correc-
tion, its Hamiltonian being

p moo q
HNo Hose+ Hrel + +

2m

4

Sm c (1)

limit. We show that the effect of the interactions is to trans-
form the relativistic nonlinearity into its semiclassical form
and to provide for a relativistic frequency shift that depends
upon fluctuations, quantum and thermal. As a result, the re-
sponse becomes highly nonlinear. When the analysis is ap-
plied to the experimental conditions, which occurred in the
single-electron cyclotron resonance, the response should ex-
hibit hysteresis when the relativistic frequency shift exceeds
the width of the resonance line.

H;„,=g (g, bta, +g,*bat),

H„,= eE(t)q = eE(t)
fL

(b+ b'),

where E(t) is the electric field and e is the charge, and we
have used Eq. (3).

III. DYNAMICS

where g; is the coupling between the NO and the ith oscil-
lator of the bath. By assuming this type of coupling Hamil-
tonian with the bath, we have neglected processes that do not
conserve energy and thus do not contribute to the damping of
the oscillator [201. This approximation is referred to as the
rotating wa-ve approximation (RWA), which we will main-
tain throughout the paper.

A classical e.m. wave of frequency 0, drives the NO. The
interaction between the NO and the e.m. wave is well de-
scribed by the dipole approximation, provided the electro-
magnetic wavelength is much larger than the amplitude of
oscillation of the NO. The Hamiltonian of interaction with
the field is then

Hb~th= ~ @co; a; a + (2)

where a~ and a; are the creation and annihilation operators
of the bath s ith oscillator. We can also assume that initially
the bath is at thermal equilibrium at a temperature T, in
which case the bath has a Bose-Einstein distribution. We also
introduce, for our harmonic oscillator, creation and annihila-
tion operators b~ and b in terms of q and p, namely,

( m~ 1/2 j 1 1/2

( 2A ( 2m6co

where p is the oscillator's momentum operator, q is the co-
ordinate operator, co is the natural frequency, m is the mass,
and c is the speed of light. The oscillator is weakly coupled
to a bath having many degrees of freedom. For example, the
bath can consist of a large number of 1D harmonic oscilla-
tors i, of frequency co;. In the CO case, the bath is, e.g. , the
radiation background. Then the bath Hamiltonian is given by

The interplay between the small (p(&mc) relativistic term

H„1, and the EM field term, H„, is expected to be the cause
of a dynamical nonlinearity in the system's behavior. This
kind of behavior is known to exist in the classical regime,
and we wish to investigate how the classically nonlinear dy-
namics are modified when one considers the corresponding
quantum regime. This would provide an understanding of the
bistable resonance in low levels of excitation, where its fea-
sibility was questioned.

The state of the whole system, the NO interacting with the
bath and subject to a classical driving field, may be described
by the density operator p(t), which obeys the evolution
equation

d 1—p(t) = —. [H„, , p(t)],

where

Htot =Hose+ HIei+ Hb~th+ Hint+ H

/ ) 1/2 / 1 $
1/2

b~=q ~

—ipl
I, 2A J y2mkcoj

and the oscillator's Hamiltonian of Eq. (1) is then

3 th. co)
HNo:fico btb+

2)
'tibtbbtb)

y2 16 imc

(3)

is given by Eqs. (2) and (4)—(6). Since we are interested in
the evolution of the NO only, one may derive the master
equation for the reduced density operator o(t), which we.

obtain by tracing p(t) over the bath variables, using standard
methods [20,21].

A. Wigner distribution

where the symmetrical product of creation and annihilation
operators is the average of all possibilities of ordering the
operators.

Given the model for the bath, it is convenient to describe
the coupling hamiltonian between the NO and the bath in the
form

We are concerned with the nonlinear response of the os-
cillator to the applied e.m. field, which we are able to study
by means of the master equation. In order to get insight
concerning the resemblences and differences between the
classical and quantum descriptions we formulate the prob-
lem in terms of the Wigner quasiprobability distribution
function P iv( q, p, t) defined as [21,22]
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(oo

Pw(q. p. t) = dp'(p p—'l~(t)lp+p')e '" '" dpPw(q p t) = 1.

where o(t) i.s the reduced density operator defined above
and (p —p'lcr(t)lp+p') is a matrix element of o(t) in
terms of the momentum eigenstates of the unperturbed NO,
such that Pw(q, p, t) behaves like a probability density in q
and p, namely,

Rather than using Wigner s original formulation of quasi-
distribution in terms of q and p, we will consider an equiva-
lent form that is more convenient in evaluating expectation
values of products of creation and annihilation operators b
and b~. Introducing the parameter a, defined as

dPPW(q. P t) =(ql~(t) lq)

dqPw(q. p. t) =(pl~(t)lp)

Pw(q, p, t) is a phase-space quasidistribution, i.e., a real
function that satisfies

(mt') it2 I'

I, 2A, I ( 2mfl, co/

in terms of the c numbers q and p, one can obtain by stan-
dard techniques [20,21] the evolution equation for the
Wigner quasidistribution function

8 0 8 0

Bt
P (weal, cl,'t) = l(co+ Scil) tx ~ cl' P (wact, t) + t p i(1'l cl'

li a

4I,

a) a'
Pw(ct cr t)

8 8 0 8
+ — + n* „+a +2 Pw(n, n*, t)+ rn ~ Pw(u, ct*,t)2 8Cl 0 A 80! BA' 80! 8(l

8
+iE'(t)

Bcl

8
Pw(~. ~*.t). (10)

((b (bt)")
y )= d n a' (a+)"Pw(u, a'*, t). (11)

Denoting by B=(btb'I,„,the rate of energy change takes
the form

d ] 'I

dt
—(~)= —r(~) + r n+ —+ iE'(t) ((b') —(b) ).

2i
(12)

This equation is a statement of conservation of energy: the
energy absorbed from the e.m. field is translated into the rate

Here E'(t) = —eE(t)(1/Smfi, co) U, n =(expftco/kT 1)—
represents the damping constant, p, = to(3A, co/Smc ) plays
the role of a relativistic frequency scale, and the natural fre-
quency co is supplemented by the small shift due to the cou-
pling to the heat bath Bcu, which we will not, from now on,
write explicitly.

We are concerned with the response of the system (NO) to
the e.m. field near resonance, i.e., cu-0, in the RWA. More
specifically, we concentrate on the rate of energy change,
which can be derived using the evolution equation for the
quasidistribution function and the relation

of change of energy from its equilibrium value n+-, . Simi-
larly, the equation for expectation value of the annihilation
operator reads

d (
(b)= — ice+ —(b)+ip((btb ),y

)+iE'(t).
(13)

Equations (12) and (13) determine the dynamical behavior of
the system. Notice that in Eq. (13) the nonlinear term on the
right-hand side, i.e., the small relativistic correction, is de-
picted by the ((btb ),„) expression. One should remark
that near resonance, i.e., when co-A, a straightforward per-
turbation treatment is not applicable in calculating this ex-
pectation value. In order to examine the interplay between
H„&, H„, and the heat bath, we have to resort to nonpertur-
bative methods.

B. Gaussian wave packet

As a first attempt, we make an assumption concerning the
form of the Wigner function. We look for a solution of the
evolution equation Eq. (10) in the form of a Gaussian wave
packet. Given that this choice would be exact in the nonrel-
ativistic limit, i.e., p, —+0, we expect that for a ~eak relativ-
istic correction, a Gaussian wave packet would be a good
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P~(u, a*,t) =exp[@(t)]

where

E(t) =— 1

(t) (n —n, )(tx*—u,*)+ lnv(t). (14)

Here the parameters u, and n,* represent the center of the
Wigner function and according to Eq. (11) satisfy the rela-
tions

(b) =n, , (b$) (15)

i.e., the Wigner function is centered around the expectation
values of the dynamical variables. The evolution of the cen-
ter, e.g. , the evolution of n, , is given by Eq. (13), with n,*
its complex conjugate.

The parameters ((t) and v(t) of Eq. (14) are to be deter-
mined by substituting P~(ct, ct, t) into the evolution equa-
tion Eq. (10) and comparing coefficients of like powers of
(a —a,)(n*—n,*).This yields the equations

d y—4(t) = —[1—26(t)]+ rn.dt 2

approximate solution of the evolution equation for the qua-
sidistribution. Heller has studied extensively over the years
the semiclassical dynamics of chaotic and integrable systems
by means of wave-packet dynamics [18,19]. According to
Ref. [18], the assumption of a Gaussian form for
P~(a, n, t) suggests that the distribution is well localized
in the phase space defined by a and n*. Denoting as u, and

u,* the center of the Wigner function in phase space, the
evolution of P~(ct, n*, t) turns to be affected only by the
local behavior of the potential in the neighborhood of the
Wigner function's center (the "potential" term that needs to
be approximated in our case refers to the small relativistic
Hamiltonian H„&). Therefore, in the Taylor expansion of the
potential about the wave packet's center, only terms up to
quadratic are assumed to be significant. This approximation
yields what is commonly referred to as the semiclassical ap-
proximation, namely, the factorization of the relativistic
term, (Jtbtb ),~ ) +(b~)(b—) . That means that the local ap-
proximation of the potential does not account for the quan-
tum effects that may arise due to the interaction with the heat
bath or with the e.m. field.

We shall follow a different procedure, where the Gaussian
wave packet is determined by including a self-consistent
contribution due to the nonlinear relativistic term. We as-
sume a Wigner function of the form

Our next major assumption deals with the nonlinear rela-
tivistic term of Eq. (13), (tb~b ), ). We evaluate this ex-
pectation by means of the Gaussian wave packet of Eq. (14).
This yields

((b'b'). , ) =2~~&(t)+ ~~l~tl'. (18)

where ((t) is given by Eq. (17). This result, when inserted
back into Eq. (13),yields a simpler form of a nonlinear equa-
tion, namely,

d = y—u, = —i co+ ——ip(la, l'+ 2$(t)) u, +i E'(t).
(19)

C. Moments' equations

We now would like to try an alternative way to analyze
the interplay between H„i, H„,, and the heat bath, in order
to emphasize the results of the preceding subsection. We start
with the equations for (B) and (b), Eqs. (12) and (13).Con-
sider first the expectation ((btb ),~ ) of Eq. (13). If we
write, e.g. , the annihilation operator b in terms of its expec-
tation (b) as b = (b)+ 8', where 8' plays the role of the flue
tuation part of the operator, we observe that

Equations (12), (17), and (19) determine the evolution in
time of the parameters of the Gaussian Wigner function and
they include the nonlinear dynamic relativistic term and a
relativistic quantum frequency shift. Obviously, this consti-
tutes the nonlinear response problem at hand, including the
effect of the heat bath and of the e.m. field.

Before turning to an alternative method of approximation
that will reinforce the obtained results, let us examine the
effect of the heat bath on the NO. Apart from the usual effect
of introducing a dissipative term into the evolution of the
oscillator, the effect of the heat bath on the nonlinear part of
the oscillator manifests itself through the destruction of cor-
relations, i.e., the factorization of the expectation
(ttbtb ),„), and th. e appearance of a relativistic quantum
frequency shift 2p, g(t). When t~~, i.e., when the transient
motion decays, it is interesting to analyze the classical and
quantum limits of this shift. The classical limit is obtained
for 6'(&kT and N~~, where we have identified la, l

at
steady state as the excitation level and denoted it by N.
Then, the relativistic frequency shift is modified by thermal
fiuctuations, that is, (,~kTlhto At the , lim. it T~O, i.e., in
the quantum regime, $,~1/2. This time the zero-point
quantum fIuctuations are responsible for the relativistic fre-
quency shift.

1 d 1

v(t) dt g(t) dt

with the solutions

ll
g(t) =((0)e r'+

I n+ —~ [1—e r'],

1

mg(t)
'

(16)

(17)

((b'b'). , ) =(b')(b)'+(b")(~')+2(b)&(~'A. , )

((+~'~')...) (2o)

We then notice that the contribution of the term
p,({btb ),~ ) of Eq. (13) is very small. We therefore make a
further approximation, which consists in keeping terms only
up to first order in the relativistic correction, i.e., first order
in p„ in the equation for (b), in Eq. (13). Accordingly, we
evaluate the terms (8' ), ((8~8'),~ ) and ((Bt8 ),~ ) of rela-
tion (20) in zeroth order in p, and then insert the resulting
approximate form for ((btb ),~ ) back into Eq. (13). The
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evolution of the expectations (8 ) and ((Bt6),~ ) are readily

obtained using the definitions (8' ) = (b ) —(b) and

((Btb),„)=((btb)„)—(b")(b), and ((8't8),„) is de-
fined by Eq. (20). The equations for (b), (tbtb), ~ ), (b ),
and (/btb ),„)needed to evaluate the fiuctuation expecta-
tions in zeroth order in p, are obtained using Eqs. (10) and

(11) with p, —+0 (the results are given in the Appendix). We
end up with the set of approximate equations

d—n = ——u + F'sing,t (25)

same approximation, notice that the energy B=(B) is itself
slowly varying in time.

The response to the e.m. field can now be expressed in
terms of the differential equations for the slow variables

d -2 - -1—
rp = b, + p, (a, + 2g, ) + 4'cosy —,

n,
(26)

+2n((dB), )+((8' 8 ), )]+iE'(t), (21) —B= —yB+ yg, + 25' u, sing. (27)

1)—„((~'A...)=-y((~'~)., )+y -+-, . (22)

(

d
((~'~')., )= —

' +
2

((~'~')., ) (24)

where we used the expression (b) = n, of Eq. (15).
Let us first analyze Eqs. (22)—(24). These equations de-

termine the evolution in time of the mean of the fluctuations
to zeroth order in p, . In the long-time limit t~~, the energy
variance reduces to its equilibrium value (n+1/2), while

( 8 ) and (f Bt 8 ),~ ) decay to zero. Gathering these results
and inserting them back into Eq. (21), the equation for n, in
the long-time limit assumes the same form as we have ob-
tained in the previous approximation scheme, namely, with
the Gaussian Wigner function. We have therefore shown that
in the limit t +~, the two approximation schemes yield the
same results.

We note that throughout the paper, the nonlinearity is as-
sumed to be small and all the results are valid within this
regime. However, the assumptions made concerning the non-
linearity do not imply the same restrictions upon fluctuations,
quantum or thermal. In fact, after having formulated the
problem in terms of the Wigner quasiprobabilty function, we
have not made any assumptions concerning fIuctuations. The
results, therefore, should be valid in the limit of large Auc-
tuations.

Here 6 = (A —co) is the detuning, which satisfies 5 (& co, and
H" = —e8'(I/8m', co)" and we have also used the equilib-
rium value for the energy variance (,= (n+ I/2). Equations
(25)—(27) represent the equations governing the response of
the NO, interacting with a heat bath, to the applied e.m. field.
The effect of the small relativistic correction consists of two
terms in Eq. (26): the nonlinear term p, ~n, ~, which would
arise from a semiclassical factorization of the term
p(tbtb j,„),and the fiuctuation-dependent frequency shift
2/Ls, .

In the present paper we are interested in the energy ab-
sorbed by the nonlinear oscillator in the presence of the e.m.
field. More specifically, our concern is with the average
power Q = 2n, Z' sing& (in energy units), delivered to the sys-
tem in the steady state Q„which can be experimentally
measured near resonance. In the steady state, with

Q,,
= y(B —(,), we obtain from Eqs. (25)—(27)

y/2

( /2)'+I:~+ p(2(.+ y-'Q )]'

Equation (28) is a cubic equation for Q, . In the nonrelatjv-
istic limit p~0, Eq. (28) yields for Q, a Lorentzian line
shape near resonance. When the relativistic term becomes
significant, the interplay between the nonlinear relativistic
term and the field intensity dramatically modifies the
ahsorbtion line shape. Introducing scaled variables
q=Q (2p/y ), d=25/y, and a=5" (8p/y ) (the
variables are now dimensionless), we rewrite Eq. (28) in the
form

IV. NONLINEAR RESPONSE q[(q+ d+ f) + I ]= e, (29)

Having displayed the interplay between all the constitu-
ents of the interacting system, H„&, H„„and the heat bath,
we now turn to the study of the nonlinear response to an

external e.m. field E(t) = 8'cos(At), near resonance
(co-A), in the RWA. We proceed with our analysis with
either set of dynamical equations, Eqs. (12), (17), and (19) or
Eqs. (12) and (21)—(24), with the fluctuations evaluated
at steady state. Note that we are only interested in the
steady- state response to the e.m. field. The fast time
dependence of o., can be extracted by the transformation
n, = u, exp[ —i(At —

q&) j, where n, and y are slowly varying
functions of time, on the natural fast time scale 1/A. In the

where f is the dimensionless, fiuctuation dependent, relativ-
istic frequency shift f=4(', p, /y. Equation (29) is known
in the theory of nonlinear oscillators to yield hysteretic
behavior, when threshold conditions d+ f& —+3 and
e) 8/(3 Q3) are met [12,13]. When the e.m. field is above
threshold, Eq. (29) yields two stable solutions for q and one
unstable one and the response line shape is bistable. This
nonlinear absorbtion results when the relativistic shift of the
resonance frequency modified by fiuctuations exceeds the
natural line~idth of the oscillator. Figure 1 shows calculated
curves for the rate of absorbed power at steady state Q, as a
function of the quantum mechanically modified resonant de-



52 BISTABILITY IN AIN A QUANTUM NONONLINEAR 0OSCILLATOR 3321

I

2
d+f

2-

0
0

FIG. 1. Resonance cu
q= Q, (2p, /

curves for th e scaled , dimensionless

y uctuat ons d+
) th Ch

s intens t

v+3, and (3) d+
n en from Ref .s. 1415 . n. Accordin 1,ng y,

tuning 5+2p, g, and the eld int
' '-- in

ts we have obt ista ility

he interaction
the exte 1

to
'

e essential cha
ion obtained in Ref.

p

y analyzed [14,
ent perfom d

g

e b G

(

n was tra
emperature 4.2 K.

g yclotron f
g me cont

on ', e dimens

=0.3
sionless r

'
icrelativistic

V. CONCLUSIONS

We have represented a quantum-meehan'
e of y relativistic os

h
eld and the

in th
ns is to tr e relativistic non

'

ts sem cl
e a r

' '

q ency shift that in e e e tat includes the effect

(a)
frequency was p, /

'
ear cyclotron e was

th 1 d

e axis. In
1 11 t h

I heri anges in axial fr

e ra co elated to the c
d d hn d t elevelo

ic excitation

0 d Th

g that we h

g or which th p

en the effect f

urs for h

o Duct
aximal o

is

imensio 1
'

g value
h 'th

ical regime the uctuations ins is
, in the

g

—950 he f

ff
e u reveal ce

Gi
1, hine sha e

ma skin

condit'
erimental d

e bistable ff

b }1

at ow leve

}1

h
'

1

p

estimat ions do not

'o1 d
s orahi he

g, d. Neverthel
at at any sta e

s ould be
erefore beli

'
ns, provided th'

ow-lyin c
e experimentalentally detected.



3322 DAFNA BORTMAN AND AMIRAM RON

of fluctuations, quantum and thermal. We indicated that the
bistable resonance of a trapped, single cyclotronic electron
should be observed for low-lying excitations.

—(B)= —y(B)+ y n+ —+iF'(t)(n, —cr,), (A2)dt

d ( y
t Co+ cl't+ tF (t),dt i, 2/

(Al)

APPENDIX

In this appendix we derive the equations for (b),
((blab), y ), (b ), and (ttbtb ),„)to zeroth order in p„us-
ing the equation for the quasidistribution function Eq. (10)
and the relation (11), with p, ~O:

(A3)

+ i~'(t)(2(fbtb) „)-(b')). (A4)

—(tbtb2), y )= — ito+ ((b "b2), )+2y n+ —(b)
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