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A review of the varieties of optical solitons and their possible interactions, combined with the requirements
for a robust digital logic gate motivate the use of (3+1)-dimensional optical solitons (light bullets) as infor-
mation carriers and soliton dragging gates as switches. Soliton dragging is the asymmetric interaction between
two initially overlapping, orthogonally polarized solitons propagating at different angles so that a weak signal
soliton can drag a strong pump out of a spatial aperture, thereby implementing a phase-insensitive, high-
contrast, logical switch with gain. Light bullets may be an ideal choice for use in these soliton dragging gates
but are unstable in Kerr media, but stable (for sufficient pulse energy) in materials with physically reasonable
saturating or negative n,I” nonlinearities. An efficient technique for the propagation of spherically symmetric
(3+1)-dimensional field envelopes is developed and used to verify the theoretical stability predictions. A
split-step numerical algorithm that models the propagation and phase-independent interaction of arbitrary
(3+1)-dimensional, vector e.m. fields in anisotropic media with up to sixth-order tensor nonlinearities is
developed and used to demonstrate the features of the gates. NOT and single-stage, two- and four-input NOR
light-bullet dragging logic gates are simulated and their performance over a range of operating parameters is
presented. It is shown that, with material parameters in the range of those currently available from highly
nonlinear organic crystals, high-contrast, all-optical, soliton logic gates with a clock rate greater than 1 THz,
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latency of a few picoseconds, and switching energy of 25 pJ may be possible.

PACS number(s): 42.50.Rh, 42.50.Ne, 42.65.—k

I. INTRODUCTION

Optical solitons may soon be the primary carriers for
long- and short-distance information transmission because,
unlike pulses in a linear dispersive fiber, solitons are self-
confined, propagating long distances without changing shape
[1]. Also unlike light in linear media, solitons can interact;
while this is a source of timing jitter to be avoided in a
communication system, this interaction can form the basis of
an all-optical switch [2]. Because solitons exhibit a critical
threshold energy—below which they spread and above
which they become self-contained—they are also natural car-
riers of binary information. Thus solitons and soliton inter-
actions are well matched to the potential application of all-
optical, digital computing.

As early as the 1960s, it was recognized that Kerr self-
focusing of beams with Gaussian profiles could create one-
dimensional self-guided waves [3-5]. These one-dimen-
sional spatial solitons in slab waveguides are created by the
balance of nonlinear self-focusing and diffraction. The prop-
erties of these solitons are determined from the nonlinear
Schrodinger equation (NLSE) which describes the propaga-
tion of the slowly varying, paraxial envelope of the electric
field. The equation always contains one propagation dimen-
sion and between one and three transverse dimensions which
describe solitons with one, two, or three dimensions of
self-induced confinement [often referred to as (1+1)-, (2
+1)-, or (3+1)-dimensional propagation]. The equation
treats time and space dimensions identically, yielding the
well-known result [6] that the spatial dynamics of one-
dimensional spatial solitons are in fact identical to the
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temporal dynamics of one-dimensional temporal solitons;
one simply needs to replace the spatial quantities of
nonlinear self-focusing, diffraction, and spatial frequency
(angle) with their temporal analogs of nonlinear pulse com-
pression, anomalous group-velocity dispersion, and temporal
frequency (color). Thus, by analogy with one-dimensional
spatial solitons, one-dimensional temporal solitons in optical
fiber are created by the balance of nonlinear pulse compres-
sion and anomalous group-velocity dispersion (AGVD).

In both spatial and temporal one-dimensional solitons, the
pulse is either localized in the remaining dimensions by
static dielectric guiding (e.g., the fiber core or a slab wave-
guide) or is unbounded and infinite (e.g., the cw beam of the
spatial soliton). Within the limits in which the NLSE is de-
rived (such as the effective-index approximation) the propa-
gation equation is independent of whether any of these di-
mensions is linearly guided or unbounded — the only
modification is that the dispersion relation for the optical
wave vector must include the correct guided-wave and/or
bulk material dispersion terms. In the case of linearly guided
waves, the material normal group-velocity dispersion
(NGVD) can be dominated by guided-wave anomalous
group-velocity dispersion, which is required for bright tem-
poral solitons. Both temporal and spatial one-dimensional
(1D) solitons have been extensively analyzed [6] and dem-
onstrated experimentally [1,7].

Two-dimensional solitons can be nonlinearly confined in
either (a) two transverse space dimensions or (b) one space
and one time dimension. Two-dimensional steady-state spa-
tial filaments are formed in bulk media by the balance of
radially symmetric nonlinear self-focusing and diffraction.
Analogously, 2D spatiotemporal solitons are formed in slab
waveguides by the simultaneous effects of spatial self-
focusing and temporal pulse compression which are counter-
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acted by diffraction and guided-wave anomalous group-
velocity dispersion, respectively. Without a modification of
the Kerr-law nonlinearity, both types of 2D solitons are in-
herently unstable and break up into multiple filaments [8] or
approach a critical focus at which point the approximations
of the NLSE break down and higher-order dispersion, dif-
fraction, and nonlinearities must be included [9]. Strictly
speaking, these “2D solitons” are solitary waves, not soli-
tons, because the nonlinear Schrodinger equation which de-
scribes their propagation is not an integrable system in any
but the one-dimensional case. We will follow the usual con-
vention, however, and use the loose terminology of solitons.

The existence of three-dimensional optical solitons, which
feature simultaneous radially symmetric 2D spatial self-
focusing and temporal pulse compression, has recently been
suggested [10,11]. Unlike one- or two-dimensional solitons,
these (3+1)-dimensional optical solitons (‘‘light bullets’”)
are completely localized and are confined purely by nonlin-
ear effects; they do not require any static dielectric wave-
guide, but as a result cannot take advantage of the interplay
of dielectric confinement and material dispersion to yield a
region of anomalous GVD. Like lower-dimensional solitons,
the spatial profile of a light bullet is created by the balance of
Kerr self-focusing and diffraction, while its temporal pulse
shape is determined by the balance of Kerr pulse compres-
sion and group-velocity dispersion. Like 2D solitons, they
are also inherently unstable to propagation in Kerr media
[12,13].

Analogs of all of these solitons exist in negative Kerr, or
self-defocusing, nonlinear media. One- and two-dimensional
spatial dark solitons propagate as nondiffracting dark holes
in materials with n,<<0. One-dimensional temporal solitons
in a continuous beam are moving dark pulses which do not
disperse if the nonlinear index and the group-velocity disper-
sion constant (92k/dw?) have the same sign. Finally, two-
and three-dimensional spatiotemporal solitons can be bright
in one direction and simultaneously dark in another, as illus-
trated in Fig. 1. While dark solitons can have continuous
phase, they can also be “‘vortex solitons” which instead con-
tain a linear or spiral phase discontinuity at the location of
zero intensity. This variety of forms in the case of spatiotem-
poral solitons arises from the fact that the temporal disper-
sion can be either positive or negative. In contrast, the spatial
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FIG. 1. Possible types of bright and dark soli-
tons for two- and three-dimensional space-time
waves showing the light intensity pattern (bot-
tom) and associated nonlinear index distribution
(top). The variable ¢ represents the temporal or
propagation axis, while r represents the trans-
verse Cartesian spatial coordinate in the case of
two-dimensional solitons or the transverse radial
spatial coordinate in the case of three-
dimensional solitons. In this case, the figure illus-
trates a slice through the radially symmetric in-
tensity profile.

diffraction is always positive (except in rare cases such as
near an optical axis in a biaxial anisotropic crystal).

These mixed bright-dark solitons are not likely to be
stable (although we know of no such analysis in the litera-
ture) although it is possible that modified nonlinearities (e.g.,
saturation) and optical phase discontinuities (e.g., vortex
solitons) could restore stability. To be stable, the dark soliton
profile (vs r and ¢) must itself be stable to propagation. Si-
multaneously, the bright background soliton (which is a ra-
dially confined beam in the n,>0, NGVD case and a tem-
porally confined plane wave in the n,<<0, AGVD case) must
also be robust to both perturbations in the confined direction
as well as modulation instabilities along its unbounded direc-
tion. This second problem has been analyzed extensively
[14,15]. The stability of dark optical bullets — the three-
dimensional version of the n,<0, AGVD soliton — has re-
cently been shown using variational techniques [16].

As illustrated in the figure, in AGVD regimes, the de-
crease of intensity in the dark region, when multiplied by the
negative Kerr coefficient, results in an increase in the local
refractive index. Thus these dark solitons can interact in the
same manners that bright solitons do [17].

The properties of all of these pulses — one-, two-, or
three-dimensional and bright or dark — are derived from the
appropriate nonlinear Schrodinger equation by assuming a
solitary wave solution and forcing it to fit the boundary con-
ditions. To be seen in the laboratory, however, these solutions
must also be robust to perturbations. Of the bright solitons,
only one-dimensional temporal and spatial pulses are inher-
ently robust to propagation — higher-dimensional solitary
waves, while eigen-solutions of the NLSE, suffer from a va-
riety of instabilities including breakup into multiple waves
[8], instability to modulation in an unguided dimension [14],
and exponential growth of azimuthal perturbations [18].
These dynamics are separate from the phenomenon of criti-
cal collapse, in which incident fields with considerably more
energy than the fundamental soliton self-focus to an infini-
tesimal point.

Both propagation instabilities and critical collapse can be
counteracted by considering non-Kerr media. For example,
in reality the nonlinear index cannot actually increase with-
out bound but must instead saturate at some level; at even
higher intensities it will suffer permanent damage. By in-
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cluding a nondamaging saturating nonlinearity in the nonlin-
ear Schrodinger equation, stable two-dimensional solitons
have been predicted [19]. This is physically reasonable since
a strongly saturated nonlinear material will resemble a step-
index waveguide [20], which is well known to support stable
guided waves (e.g., fibers). Analogously for three dimen-
sions, the stability and even bistability of light bullets have
been shown numerically using simple and multilevel saturat-
ing nonlinear index variations [21]. Numerical studies have
also shown that saturation causes one-dimensional solitons to
be more stable and to settle more quickly into steady profiles
when launched from arbitrary initial conditions [22]. These
stabilized soliton waves are system attractors: arbitrary
pulses not too far from the soliton profile will form into
solitons, and lower-dimensional envelopes will break up into
sets of higher-dimensional solitons. For example, a cw
Gaussian beam with a small temporal modulation propagat-
ing in a saturating nonlinear material with AGVD will spon-
taneously divide into a chain of light bullets [23].

While saturation and similar effects are the stabilization
techniques of interest in this study, it is worth mentioning
that more exotic methods have also received attention. For
instance, a second optical pulse of a different color can be
used to modify the index profile seen by the soliton pulse
[11]. More directly, the linear index of the medium can be
modulated to produce a static transverse index profile [24],
although this tends to blur the distinction between self-
guided and linearly guided waves. Finally, vortex solitons are
dark solitons in which a topological constraint — a linear
phase discontinuity of (2n+1)7 in one dimension or a
phase spiral of 2n 7 in two dimensions — forces there to be
a region of zero intensity, helping to stabilize the dark soliton
[25].

Unlike optical pulses in linear media, these stabilized
one-, two-, or three-dimensional solitons can interact through
their nonlinearly induced index change. In the following sec-
tions, we summarize the varieties of these interactions and
compare their features to the requirements for all-optical
digital logic in order to motivate the use of light bullets as
digital-information carriers and the basis of a logic system.
Following that, we derive the properties of light bullets from
the e.m. wave equation and show that they can be stabilized
in non-Kerr media of two common types. In the final two
sections, we develop a split-step numerical technique for
vector e.m. waves in anisotropic materials with tensor non-
linearities and use this technique to numerically investigate
the properties of light-bullet dragging logic gates.

II. SOLITON INTERACTIONS

As discussed above, there are a wide variety of optical
solitons that could be used as information carriers. There are
are also a variety of ways in which two solitons can be made
to interact in order to form a switch or logic gate. These
different soliton interactions have very different properties
which will in turn strongly influence the operation of the
logic circuit. In order to motivate our choice of the dragging
interaction, in this section we briefly compare the ways in
which a pair of one-, two-, or three-dimensional solitons can
interact.

The properties of these interactions are determined solely

by the initial conditions of the two solitons. These initial
conditions are (1) the polarizations and possibly relative
phase of the two pulses and (2) the positions and relative
transverse velocity of the two waves. The first condition, the
electric polarizations of the two e.m. waves, will strongly
influence the behavior of the interaction. If the two fields are
copolarized, they will produce an intensity interference pat-
tern which is explicitly dependent on their relative phase. If
the two bright solitons are in phase, this pattern will have a
constructive maximum between the two solitons which will
increase the nonlinear optical index (through the positive
Kerr nonlinearity, n=rnq+n,|E|?) causing an initially attrac-
tive force. Conversely, if the solitons are 7 out of phase, the
destructive interference null will create a minimum in the
index between the two waves which will tend to push the
two pulses apart.

To avoid this dependence on the optical phase, the two
solitons can be oriented in orthogonal optical polarizations.
The physics of the Kerr interaction must now be described
by the fourth-order xy® tensor, rather than the scalar n,
model which is only sufficient for single polarizations. In
isotropic materials, the form of this tensor may still create
phase-dependent terms in the interaction due to periodic
traveling-wave susceptibility gratings, but proper choice of
the orthogonal polarization basis can remove these terms
[26]. Alternately, when the material is birefringent, either
because the medium is anisotropic or through form birefrin-
gence (e.g., a waveguide), the difference in the propagation
constants of the two polarizations will phase mismatch these
phase-dependent terms if the interaction is sufficiently long
(this topic is more fully discussed in Sec. VI, below). In
these cases — two orthogonally polarized solitons interact-
ing in a phase-independent fashion — the forces between the
two solitons are attractive only, via the cross-phase modula-
tion of the two waves.

Thus the polarizations (and in some cases phase) of the
two solitons determine the direction of the force between
them. Knowing this, one can then examine the second im-
portant initial condition, the geometry, to predict the proper-
ties of the interaction. This geometry consists of the relative
transverse spacing, transverse velocity, and powers of the
two solitons. These are all continuous variables, but numeri-
cal and experimental studies have shown that distinctly dif-
ferent behavior occurs for different ranges of the initial geo-
metrical parameters. These different behaviors can be used to
classify this wide variety of interactions into a relatively
small number with noticeably different features.

Figure 2 schematically illustrates these unique initial ge-
ometries in one-, two-, and three-dimensional two-soliton in-
teractions. As discussed in the Introduction, within the ap-
proximations made in deriving the NLSE, spatial and
temporal solitons have the same dynamics. Thus the arrows
in Fig. 2, indicating an initial relative transverse velocity, can
be viewed as either a relative direction of propagation for
spatial soliton interactions or a relative group-velocity differ-
ence in the case of temporal soliton interactions. Several of
the interaction geometries can be immediately dismissed as
not useful for switching. Geometries in which the solitons
are separated and initially traveling away from one another
will exert minimal nonlinear forces on one another which
will result in essentially no switching. Conversely, if the two
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FIG. 2. Possible two-soliton interaction geometries for positive
(attractive) cross-phase modulation. The two one-, two-, or three-
dimensional solitons are represented by circles which can be coin-
cident or displaced in a transverse temporal or spatial dimension.
The arrows indicate an initial transverse velocity of one soliton
relative to the other, which can be parallel to the displacement, or
have a component which is perpendicular. Because the bottom row
utilizes transverse velocity components in two dimensions, one-
dimensional solitons cannot interact in these manners. The outcome
of these initial conditions will depend on the nature of the nonlinear
interaction (such as its phase dependence) as well as the relative
powers of the two solitons.

solitons are separated and initially traveling towards one an-
other, but with a second component of velocity orthogonal to
the line of separation, an attractive nonlinear force (via either
orthogonal polarizations or in-phase copolarized pulses) will
result in spiraling or tumbling of the two solitons [27,28].
Although it might be possible to construct a switch or logic
gate from this interaction, the complexities of the motion
would make the implementation difficult. This leaves the
four simple one-dimensional interactions in the upper-left
portion of Fig. 2 as candidates for a soliton-soliton switch
(these are also illustrated for the case of spatially interacting
light bullets in Fig. 3).

In soliton attraction and repulsion interactions, the two
solitons are initially separated and propagate collinearly —
with the same frequency and thus velocity if temporally con-
fined or at the same angle if spatially confined. If the two
solitons are copolarized and 7 out of phase, they repel. This
repulsive force can form the basis of a switch or logic gate.
In a spatial soliton repulsion gate [29], for example, two
one-dimensional spatial solitons are launched in the same
direction, separated by a few beam widths but 7 out of
phase. The repulsive force on the two solitons creates a
change in their angles of propagation. After a sufficient dis-
tance, the presence or absence of one soliton can be detected
by the position of the other beam, thus forming the basis for
a logical decision. If the solitons are in phase or cross polar-
ized, the beams attract and can form a trapped pair, which
could also be used as a logic device. Soliton interactions of
these types have been observed experimentally [30].

If the two solitons are initially separated but directed to-
wards one another, they will collide at some point within the
nonlinear medium. Copolarized spatial solitons can be made
to collide by launching them with different angles, while
temporal solitons can collide if given different colors and
thus different group velocities. In anisotropic crystals, aniso-
tropic walk off can be used to bring cross-polarized solitons
together in space. Analogously, cross-polarized temporal
solitons of the same color will collide in birefringent fibers.

This collision interaction is based on the fact that, in one
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FIG. 3. Comparison of dragging, breathing, collision, and attrac-
tion light-bullet logic gates for a purely attractive (n,>0), phase-
insensitive interaction. The logical decision is implemented by the
aperture in the output plane, which passes (output equals one) or
blocks and dissipates (output equals zero) the pump soliton.

dimension, copolarized solitons (and in one case, cross-
polarized solitons) are described by an integrable system of
equations and thus two colliding solitons that are initially
well separated must emerge from the collision unchanged
except for a small positional shift (for spatial soliton colli-
sion) or a temporal shift (in the case of temporal soliton
collision). In particular, the initial angle of spatial propaga-
tion or velocity of temporal propagation will be restored for
each soliton. In nonintegrable systems — 1D cross-polarized
waves with the ratio of cross- to self-phase modulation not
equal to one and all 2D and 3D solitons — this return to the
initial propagation direction is not perfect, but is nearly so, at
least for large-angle collisions. Since the final velocity equals
the initial, increased gain cannot be produced by an increase
in interaction distance and thus collision interactions cannot
produce large gain. It has recently been shown that small-
angle collision of vector solitons can result in gain [31].
However, the behavior of the collision in this case depends
sensitively on the incidence angle; as discussed in the next
section, such a sensitivity will make it difficult to use this
interaction in any large-scale optical circuit.

The collision interaction has been suggested as a mecha-
nism for a photonic switch [32], has been demonstrated ex-
perimentally using dark spatial solitons [33], and has been
studied as the basis of a logic family [17]. A number of
authors have examined the possibility of guiding lower-
intensity pulses in the dielectric guides induced by colliding
spatial solitons [34,35]; while this phenomenon could be
used for a photonic circuit switch, it is not applicable to logic
interactions.

If the two solitons are both coincident and collinear,
breathing soliton modes will be formed by the interaction of
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the two cross-polarized waves [27]. In the literature, these
have been referred to as new forms of vector solitons, how-
ever, they can also be viewed simply as the interaction be-
tween two cross-polarized waves. This interaction could be
used as a switch by using one soliton to influence the breath-
ing period of the other, which would efficiently pass through
an aperture only if a narrow waist of the breathing mode
occurred at that point. In the “off” state the soliton would
encounter the aperture while much broader, consequently
much less energy would be transmitted. This would be a
low-contrast device and has not been examined in the litera-
ture.

The final type of soliton interaction is created when the
two solitons are initially coincident but directed at different
spatial angles or temporal frequencies. This dragging inter-
action (sometimes referred to as “trapping” [2]) can be
viewed as a modification of the collision interaction except
that the approach to collision is in a linear medium where no
interaction takes place; the nonlinear effects occur only from
the collision point onwards. With temporal solitons, for ex-
ample, this breaks the symmetry of the collision by which a
soliton’s frequency is changed as the solitons approach and
then is reset as they separate. If the initial frequency differ-
ence and energy ratio of the two solitons is not too great and
the force between them is attractive, the solitons can form a
bound, stable pair which propagates at approximately the
mean velocity of the individual solitons, weighted by their
individual momenta. This asymmetric ‘“‘temporal soliton
dragging” interaction has been proposed as an all-optical
logic gate and demonstrated in fibers [36] by measuring the
time shift due to the accumulated change of velocity of the
solitons after collision. It has also been observed using co-
polarized 1D spatial solitons in CS, liquid [37], but the per-
formance as a switch with gain was not investigated.

If the initial transverse velocity or energy difference is so
large that the two solitons cannot form a bound state, the
asymmetry of the interaction (in comparison to a symmetric
collision at large angle) will still cause the two solitons to
emerge with a permanent velocity shift. This ‘“‘deflection”
operation is thus very similar to the trapping geometry ex-
cept that the total velocity shift is reduced [38].

The dragging interaction has a number of advantages over
attraction-repulsion and symmetric collision devices. First,
since the solitons emerge from the initial collision point with
a permanent velocity shift, it is possible to create much
larger time or space shifts than the symmetric collision in-
duces. Unlike any of the previously described interactions, it
is also easy to switch an intense pump soliton with a weaker
signal soliton, resulting in logical signal restoration (gain) —
an essential feature for any cascadable logic device. This
combination of high contrast and high gain is often difficult
to obtain in nonlinear switching devices that utilize diffract-
ing beams due to the inherent tradeoff of beam size (inten-
sity) and confocal distance (interaction length). Solitons
overcome this tradeoff and make possible tightly confined
beams that can interact over long distances. The dragging
interaction takes advantage of this feature of solitons by
forming a bound soliton pair which interact over the entire
length of the switch. Nonlinear devices that use a waveguide
to confine the optical power have the same advantage, but
they have the disadvantage that they cannot be operated in

parallel in a uniform volume of material.

By only using the undragged pump in later stages and
blocking any dragged solitons, the dragging operation also
provides true three-terminal operation with input-output iso-
lation. Finally, by using pump and signal temporal solitons in
different optical polarizations that interact only through the
intensity-dependent cross-phase modulation, the logic gate
becomes insensitive to phase [2], unlike the inherently
phase-dependent repulsion interaction.

Recently [39,22], it was noted that the phase-insensitive,
orthogonally polarized soliton dragging interaction, devel-
oped and investigated for temporal solitons, can be applied
to spatial solitons as well. A distinct advantage of the spatial
soliton dragging gate is that the logical decision is made by
an aperture in the output plane which passes or blocks the
pump soliton—a considerably easier decision than ultrafast
temporal coincidence detection [38] or narrow-band spectral
filtering [2]. Numerical studies of this logic gate showed that
it should not be difficult to construct a phase-insensitive spa-
tial soliton dragging gate with high contrast and gain of 4 in
a propagation distance of only ten confocal lengths.

III. REQUIREMENTS FOR DIGITAL OPTICAL LOGIC

The theoretical, experimental, and numerical studies dis-
cussed above reveal the wealth of physical interactions that
can be used to construct soliton logic gates. In many of these
studies, the motivation for the work is said to be the con-
struction of a digital logic gate. It is well known among
designers of electronic digital logic, however, that the simple
ability to switch one signal by another is not sufficient to
construct large-scale logic circuits. This is illustrated by the
fact that electronic logic is so prevalent and that, despite a
significant research effort, optical logic is not. By examining
the features of electronic circuits that have made them such a
huge success, one can list the essential properties that a pro-
posed optical logic family must possess if it is to make it out
of the laboratory [40]. The most important of these follow.

Logical completeness. Obviously, to be generally useful,
the individual logic gates must be able to be interconnected
to implement any possible logical function. In their simplest
form, most soliton logic gates are inverters — the pump is
passed (output equals one) only if the signal is not present to
deflect it (input equals zero). The ability to construct a NOT
gate is important because all complete logic families are able
to perform this operation. NOR gates form such a logically
complete set and can be constructed from soliton interactions
by a cascade in which multiple, successive signal solitons
can interact with a single common pump. In other words, the
pump soliton is passed through a series of gates; the presence
of a signal in any one of which will deflect the pump and
cause it to be blocked, producing the correct low output of a
NOR.

Three-terminal device. These logically complete gates can
reliably be combined into circuits only if they are true three-
terminal devices. That is, photons enter the gate (terminal
one) and exit the output (terminal two) controlled by the
input signal (terminal three). The input must be isolated from
the output so that processing proceeds in only one direction,
and the output must be standardized to one of two binary
levels, independent of all variations of the input signal ex-
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cept its digital value. This can be accomplished in soliton
logic gates by supplying a pump soliton from the power-
supply laser at each gate, which is passed on as the output
only if no signal soliton is present and is blocked otherwise.
Thus the timing, position, direction of propagation, energy,
polarization, phase, and wavelength of the output soliton are
restored by the power supply at each gate. In addition, the
output of one gate is used as the input of a subsequent gate
where these signal photons drag the pump and are then dis-
carded. Thus, from stage to stage, logical information is
propagated, but physical photons are not.

Thresholding. In a digital (as opposed to analog) circuit,
signals entering a gate must be classified into their discrete
digital values based on the thresholding of the analog levels.
The nature of soliton propagation provides a natural thresh-
olding operation — a pulse can only propagate as a soliton if
it contains at least the soliton critical energy, otherwise it
rapidly diffracts and/or disperses. This digital nature of soli-
ton propagation makes solitons natural carriers of binary in-
formation.

Cascadability. A number of optical logic devices have
been proposed which change the nature of the information
carrier in the gate such that the output of one gate cannot be
used as the input to another. A common example is a change
in the color of the light. From the viewpoint of a circuit
designer, devices of this type are little more than intellectual
curiosities since they cannot be used in combination. Tem-
poral soliton logic gates, which use different color pulses to
create an initial velocity difference, fall in this category.
These devices could be cascaded by alternating them in lay-
ers in which the color of the light switches back and forth;
however, it is usually the case that only one of the two types
of required devices is easily constructed. The remainder of
soliton logic gates, in general, do not change the color of the
light but may instead, if they employ orthogonally polarized
solitons, change the polarization at each stage. In this case, it
is a simple matter to alternate the polarizations of signal and
pump at each level. Thus most soliton logic gates are cascad-
able but most do suffer from a more common limit to cas-
cadability which is a lack of gain.

Gain. Gain is the ability of the gate to drive outputs that
are more energetic than the inputs. If a logic device has no
gain, the output levels must always be less than the inputs
and eventually the output of one gate will have insufficient
energy to switch the next. Surface reflection and diffraction
losses in optical systems make this particularly significant
when designing digital optical circuits. Gain is also essential
since the output of any gate is inevitably required to drive the
inputs of more than one subsequent gate (fan out). Only soli-
ton dragging gates can easily achieve large gain and thus be
truly cascadable. Although these gates are passive, with no
electrical pump or inverted medium, they can still achieve
gain because a small signal can drag a larger pump.

Parallelism. One of the major achievements of modern
electronics was the transition from single, bulk transistors to
densely packed very large-scale integrated (VLSI) circuits in
which thousands of gates are operating simultaneously in a
small area. Similarly, any optical logic technology which
cannot be fabricated to operate many gates with high density
in a small area will not be competitive. Different soliton
logic operations allow varying degrees of dense parallel op-
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eration. Temporal soliton logic gates in fibers can only be
parallelized by complete duplication of the hardware, which
is expensive and does not achieve high density. One-
dimensional spatial soliton gates in waveguides can be oper-
ated in parallel by running many gates in the same wide slab
waveguide, but can only be extended to two dimensions of
parallelism by stacking these waveguides. To create ex-
tremely fast machines with many parallel channels, two or
even three dimensions of inherent parallelism are desirable.
In general, the number of dimensions in which a soliton logic
device can be directly parallelized is equal to the dimension-
ality of the soliton itself since in the remaining dimensions
the pulse is either infinite or confined by a static waveguide.
Thus logic gates based on 1D solitons can be operated in
parallel in one dimension, while devices based on 3D light
bullets could have three dimensions of parallel operation.

Speed. High-speed operation is arguably the single most
important feature of a device technology and is the primary
reason for investigating optical soliton logic. It is shown in
Sec. VII that light-bullet dragging logic can operate at
greater than THz rates, which is far enough beyond current
electronics technology to justify its exploration. Imple-
mented in currently available nonlinear materials, light-bullet
gates promise a switching energy of about 25 pJ, consider-
ably higher than VLSI technology. However, an examination
of the scaling law for these more conventional technologies
reveals that power requirements increase supralinearly with
speed, and reach an eventual upper speed limit. That is,
higher-speed operation requires increasing switching energy.
Thus the larger switching energy of soliton logic at its
greatly increased speed actually compares well with VLSI
and similar technologies.

Pipelining. The effective throughput of an electronic cir-
cuit can be increased by building the circuit such that mul-
tiple calculations can happen as a cascade within the circuit,
reducing the effective time per operation from the latency of
the circuit, which is the sum of all gate delays, to a latency of
only a few gates. Pulsed optical soliton gates can go beyond
this circuit-level pipelining and cascade multiple calculations
within a single logic gate, reducing the time per calculation
to much less than the latency of a single gate. This is accom-
plished by launching trains of solitons which interact while
propagating through the gate as a traveling wave. While the
gate can be arbitrarily long, it is only necessary to separate
the adjacent logical signals far enough so that they do not
interact. While gate-level pipelining can overcome the long
latency of a gate, low latency is still important in circuits
where feedback is employed. Spatial soliton gates can have
latencies in the 10 ps regime, while temporal soliton gates in
fibers are very long and have latencies measured in hundreds
of ns. On the other hand, temporal solitons are more easily
pipelined than steady-state spatial solitons. Spatiotemporal
solitons (which could be either two or three dimensional) can
enjoy the best of both worlds by using low-latency spatial
switching with tightly packed pipelining in the temporal di-
mension.

Fan in. Logically complete, multiple-input NOR gates
can be constructed from any of the inverting soliton interac-
tions by cascading the pump through a succession of gates,
one gate per NOR input. To interact multiple logical inputs in
a single stage without strong phase sensitivity requires more
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than one dimension in which to interact, thus only two- and
three-dimensional solitons can support multiple single-stage
fan in. Conceivably, a soliton logic gate could switch simul-
taneously in one space and one time dimension, but gates
which instead switch in two space dimensions are much sim-
pler to operate. This favors 2D spatial filament and 3D light-
bullet solitons.

Phase insensitivity. A requirement unique to optical logic
design is that the operation of the gate must be independent
of the phases of its optical inputs. Otherwise, the circuit will
not be robust in a large system which will expand and con-
tract due to heat, vibration, and production tolerances. Soli-
ton repulsion gates cannot be phase insensitive (in a positive
n, material), while collision, attraction, and dragging gates
can be made phase insensitive by using orthogonal polariza-
tions.

Low power consumption. Realistic logic circuits contain
many individual logic gates, each of which must dissipate a
very small amount of energy, both to reduce the power re-
quirement on the source laser and to limit the heat generation
in the circuit. Solitons which are fully confined, either by a
combination of linear and nonlinear effects (e.g., temporal
solitons in fibers) or completely by nonlinear effects (e.g.,
light bullets) can be energy efficient. In contrast, all one-
dimensional spatial soliton and two-dimensional spatial fila-
ment devices inherently consume large energy because of
their quasi-cw nature. Dark soliton devices, which require a
bright background, also must dissipate large amounts of
power.

Decreasing the energy in the soliton reduces the heat gen-
erated when this soliton is dissipated in a logical interaction.
The heat generation can be further reduced by “optical cool-
ing” in which the solitons, after interaction, are directed out-
side the volume of the circuit and dissipated remotely. Opti-
cal geometries which implement this cooling technique can
be constructed for spatial soliton switches.

Ease of implementation. Although not a formal require-
ment, any proposed logic technology that cannot be easily
fabricated will be at a disadvantage. Temporal soliton gates
in a fiber that make logical decisions based on ultrafast co-
incidence detection are more difficult to implement than spa-
tial soliton gates in which the decision is made by a simple
aperture. A narrow-band optical filter can also be used to
detect the frequency shift induced in the pump soliton by the
temporal dragging interaction, but this introduces a loss
(even at band center) which must be overcome by increased
gain and is still a significantly more complex and costly de-
vice than a simple pinhole.

By comparing the varieties of optical solitons and the
manners in which they can interact to the requirements for
logic, above, we find that only a very few combinations of
solitons and interactions are actually candidates for large-
scale digital optical logic. First, to minimize energy dissipa-
tion, the soliton must be fully confined in 3D, restricting the
possible solitons to 1D temporal solitons in fibers, 2D spa-
tiotemporal solitons in slab waveguides, or 3D light bullets
in bulk media. Second, to eliminate phase sensitivity, the two
solitons must be in orthogonal polarizations. And finally, to
achieve significant gain and to be deeply cascadable, the
dragging interaction geometry must be employed.

Orthogonally polarized soliton dragging gates of 1D tem-
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poral solitons in fibers have been the subject of a number of
theoretical and experimental studies [41,2]. To our knowl-
edge, there have been no studies of interactions with 2D
spatiotemporal solitons. In this study, we shall concentrate on
the final choice, which is the interaction of orthogonally po-
larized 3D light bullets in a soliton dragging geometry.

This type of logic gate can have large gain and is three
terminal, cascadable, and phase insensitive. They can be
densely parallelized and pipelined, will support single-stage
fan in, can be operated in the simple spatial switching geom-
etries, and are fully localized carriers of energy. The varieties
of light-bullet logic gates are illustrated in Fig. 3. Light-
bullet dragging logic gates are high-speed, all-optical devices
with the properties required for application to complex digi-
tal optical computing circuits.

Two-dimensional spatiotemporal solitons in a slab wave-
guide exhibit all of the same advantages except that they
have only one dimension available for spatial interaction and
thus cannot support single-stage logical fan in or three-
dimensional parallelism. Fabrication issues may be simpler
for these devices, however, and since the majority of the
results derived in the remainder of this paper apply to 2D
space-time solitons with only minor modifications, these
solitons may provide the first practical proof-of-principle test
bed.

Returning to the light bullet dragging gates, we must first
examine the light bullets themselves. Kolokolov predicted
that three-dimensional solitons in a Kerr medium would be
unstable to propagation [12], which we confirm with numeri-
cal propagation in the next section. It is well known, how-
ever, that a modification of the Kerr nonlinearity can act to
stabilize two-dimensional spatial solitons [18] and this has
been predicted to be true for three-dimensional solitons as
well [12]. Therefore, in the following section, we demon-
strate the robustness of light bullets under two physically
reasonable nonlinearities, those being saturation and the in-
clusion of higher-order (x®’) nonlinear interactions. To
verify these predictions, we present a highly efficient beam-
propagation technique for spherically symmetric fields.

We then describe how these stable and robust light bullets
can be used to form ultrafast, efficient, digital optical logic
devices with gain. In order to simulate this gate, we develop
a beam-propagation algorithm for the phase-independent in-
teractions of vector fields in anisotropic materials with up to
sixth-order tensor nonlinearities. This simulation technique is
used to demonstrate light-bullet dragging logic gates which
have pJ switching energies, large gain, phase insensitivity,
and subpicosecond switching times.

IV. LIGHT BULLETS IN KERR MEDIA

The existence and form of light bullets can be derived
from the scalar electromagnetic wave equation [Eq. (1)][10].
This equation does not include anisotropy or polarization
effects (although these are introduced in Sec. VI) and
assumes that the nonlinear index variation is small so that
the nonlinear contribution to V(V-E) can be neglected.
Because of the assumed scalar nature of the electric field,
the third-order (Kerr) term in the nonlinear susceptibility
(enz=x"|E|?) can be written as a purely scalar, rather than
fourth-order tensor, equation. Although thus simplified, the
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resulting wave equation is sufficient to describe a single
three-dimensional paraxial soliton of a fixed optical polariza-
tion in an isotropic Kerr medium.

We begin with the three-dimensional wave equation in
Cartesian coordinates for a single optical polarization, E:

1 &exE
V)%',,ZE—C—Z—(%2 =0, (1)
where ¢ is the vacuum speed of light, * represent the tem-
poral convolution operation, and € is the impulse response of
the relative permittivity. In the frequency domain, the con-
volution of the permittivity impulse response with the elec-
tric field can be represented as a product of their Fourier
spectra. For this analysis we assume that this permittivity can
be separated into frequency-dependent (dispersive) linear
and instantaneous (nondispersive) nonlinear parts.

e=¢(w)+ ey (E)
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where €;(w) has been Taylor expanded to second order in
frequency and €y, (E) has been expanded to second order in
electric field. It is assumed that nonlinearities with linear
dependence on the electric field are zero due to symmetry or
are phase mismatched, so they will be neglected. The optical
index n= \/; can be written to first order as

e,
dw?
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where the linear index ny= \/é: and the commonly tabulated
Kerr nonlinear coefficient is n,= x*/(2n,) and has units of
inverse electric field squared.

The definition for € [Eq. (2)] contains most of the impor-
tant physics for this situation. The first term (e;) is a linear
isotropic instantaneous background dielectric constant. Next
are the first two terms in the Taylor expansion of the dielec-
tric variation with frequency. The linear term, involving
de; /dw, determines the group velocity for the soliton, while
the quadratic term, containing ¢%€; /dw?, describes the dis-
persion of this group velocity (GVD) which causes the pulse
to spread in the propagation direction. This term will coun-
teract the tendency of the light bullet to pulse compress due
to the Kerr nonlinearity and acts as the temporal analog of
the transverse spatial diffraction operator (sz), which
counters the tendency of the light bullet to self-focus, leading
to a solution that balances these forces.

For a bandlimited field of center frequency w, and propa-
gating along a direction close to the z axis, the electric field
can be expanded into a plane-wave carrier and a four-
dimensional envelope:

E=&(x,y,z,t)el (@0t koD, 4

where kg=ngwq/c. To write the wave equation fully in the
time domain, the Fourier identity j(w— wy)= d/J¢ can be
applied to the dispersion terms of € to yield the following
expression for the scalar wave equation:

FEE N
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where V§y= 3% 9x?+ 9%/ 9y* is the transverse part of the La-
placian. To proceed to the (3+1)D nonlinear Schrodinger
equation, it is usual to assume that three groups of terms in
this equation are small and can be ignored. These are (1) the
slowly varying envelope approximation (SVEA) in which
the second spatial derivative of the field (92&197%) is as- -
sumed to be small in comparison to the first derivative term
(2jkod&19z); (2) the cross-term approximation in which
high-order terms in the d/d¢ polynomial resulting from the
€E product are assumed to be dominated by the lower-order
terms; the terms discarded are all time derivatives of €,
greater than second degree and all time derivatives of €y; ;
and (3) the slowly varying nonlinearity approximation, in
which ¢%( ey E)/dt* is assumed to be equal to — w?ey, E.
We shall also make these assumptions, but in order to estab-
lish the range of validity of the results, at the end of the next
section these terms will be calculated for a set of reasonable
physical parameters and the magnitude of the discarded
terms will be compared to those retained.

The final NLSE can be written by defining the following
normalized variables:

ok ng g dng 1 Wy J€;p.
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dw?

7= (t—2/V,)(ko/D)"?,
u =(}’l2/7l0)1/2g;

(& m,0)=(kox,koy,koz). (6)

These scaled variables define a unitless position vector
(&,m,¢) which has been scaled by the mean wave number
ko. The definition of 7 is a transformation into a group-
velocity (V,) coordinate frame which is then normalized by
the group-velocity dispersion D and the wave number k.
Positive D corresponds to AGVD and the larger the magni-
tude of D, the larger the resulting light bullet is in physical
units, although in the normalized units it is spherical. These
normalizations cause the transverse diffraction term (V,zc )
and group-velocity dispersion term (ko 8%ko/dw? (92?5’7&%)
to have the same form, demonstrating that diffraction and
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AGVD operate in the same way to spread the soliton in the
transverse and propagation directions.

The resulting normalized three-dimensional, nonlinear
Schrodinger equation is

ou o

-J 52 +3 \Y &nT

where Vi, = 0*/9&*+ 9*/9n*+ ¢*/37* . In the remainder

of this paper, we will write this three-dimensional, spa-
tiotemporal Laplacian as V2 for simplicity.

The three-dimensional, nonlinear Schrodinger equation
has several remarkable features. The isomorphism of spatial
diffraction and temporal group-velocity dispersion is com-
plete — the temporal coordinate 7 in this expression behaves
the same as the transverse spatial coordinates & and 7. We
observe from the scaled variables that |u|? is equal to
n,|E|*/ny, which is the nonlinearly induced index change
relative to the linear index. Thus solutions to Eq. (7) are
independent of the strength of 7,; the only effect of n, is to
scale the intensity of the electric field and thus the energy
contained in the light bullets. The spatial and temporal extent
of the particular solutions of the equation are also determined
by Eq. (6): Ax=(N2m)A& At=(Dlky)?Ar, and
Az=V,At, where A§ and A7 are normalized sizes of the
soliton solutions of Eq. (7) and Ax and At are their mks
equivalents.

We now proceed to solve for these normalized soliton
solutions. If one assumes a radially symmetric (in the scaled
&, m, 7 coordinate system of the equation) propagating solu-
tion of the form u=U(p) exp(jBY), Eq. (7) is simplified to
an ordinary differential equation in p= &+ 7>+ 2.

1[02 d—1

d
—+— —|U-BU+U?=0, 8
2 &p} B ®)

u+|ul?u=0, (7)

2

where d is the number of dimensions (1, 2, or 3) and 3 is the
wave number relative to the linear wave number k, and is
nonzero because the solitons are (nonlinearly) guided waves.
This equation may be integrated (in closed form for 1D but
only numerically for 2D and 3D) to determine the radial
shape of the soliton. As is well known for nonlinear as well
as linear guided pulses [42], the envelope will only decay to
zero at infinite p for a discrete set of B, each of which
corresponds to a mode of the system and has a number of
zero crossings equal to its order, as shown in Fig. 4. The
lowest-order light bullet is by far the most compact and, as
shown in the figure, can be launched with orders of magni-
tude less energy than the higher-order modes. Also, it has
been shown that the higher-order modes in a two-
dimensional spatial filament stabilized with a saturating non-
linearity are unstable to angular perturbations [18]; this will
probably be true of light bullets as well. For these reasons, in
the remainder of this paper we will exclusively be consider-
ing the lowest-order light bullet.

The scaling relationship for these solitons is worth noting
here [10]. A d-dimensional, radially symmetric soliton with
radial field profile U(p) and integrated intensity P can be
scaled by a factor a via the relation

l~J(p)=aU(ap), P=a%>"P, B=d%B. ©)
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FIG. 4. Normalized light-bullet radial shapes for several orders.
The decrease in B (which is the wave number relative to the linear
wave number kq) with increasing order indicates the higher-order
solitons are less tightly guided. The legend also gives the numeri-
cally integrated intensity (which is proportional to energy) for each
soliton order.

Thus to decrease the size of a one-dimensional temporal or
spatial soliton by a factor of a requires a total energy or
intensity which is greater by a factor of a. In two dimen-
sions, there is no dependence of the total intensity on the size
of the soliton. Finally, in three dimensions, as a soliton is
decreased in radius by increasing a, the peak intensity in-
creases by a2, but the total energy in the light bullet de-
creases by a factor of a. These remarkable scaling relation-
ships are ideal for creating small, intense, but low-energy
pulses. As the size of the bullet approaches the wavelength in
the material, the paraxial and other approximations discussed
above will become increasingly invalid so the scaling to even
smaller sizes would require a more complete analysis.

Unfortunately, these scaling relationships also show the
light bullets to be unstable. This can be proven by examining
the function d P/d 3; when this quantity is positive, the zero-
order soliton is stable, when it is negative or zero small per-
turbations from the soliton profile will grow exponentially
with propagation [12]. From Eq. (9),

>0 if d=1

dp d\[ B\ Py .

T 1-3 yom o =0 if d=2 (10)
@ <0 if d=3,

where (Pyo, Bqo) is a particular solution of Eq. (8). Thus
only one-dimensional solitons are stable. In particular, light
bullets in a Kerr medium, although consistent solutions of
Eq. (8), are intrinsically not robust to propagation.

Note that this instability is not the well-known critical
collapse of the wave to an intense point focus [9]. Critical
collapse events require an incident energy many times larger
than that required for a fundamental soliton, while in this
work the energy of the light bullets will exceed the funda-
mental energy by at most a factor equal to the gain, typically
about 4. In contrast to the dynamics of collapse, the propa-
gation instability is simply the evolution of the wave shape
away from the eigenfunction, usually to a broader, less-
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intense pulse. This evolution can be examined with numeri-
cal wave-propagation techniques, developed next.

Numerical simulations of single light bullets in Kerr media

To verify the prediction of Kerr light-bullet instability, as
well as the predictions of stability for non-Kerr media later, a
method is needed which will calculate the evolution of arbi-
trary field envelopes according to Eq. (7). Two obvious
choices for this method are the finite-difference time-domain
(FDTD) technique [43] and the beam-propagation method
(BPM) [8]. We will choose the latter, even though it involves
more assumptions about the nature of the solution, because
the BPM method requires field samples spaced at three to ten
times the wavelength (or at worst A/2) , while FDTD re-
quires many more field samples at 1/3 to 1/10 or even 1/100
wavelength spacing [44]. These different sampling densities
imply a savings of three to six orders of magnitude less com-
puter memory and time for BPM in (3+1)D simulations. The
accuracy of the assumptions made in the BPM development
will be addressed in the last section.

To begin, note that Eq. (7) has a formal solution

- . 1 - - ~
u(p.0) =TV, (5 0y, p=gbt pht et (1)

To apply this exponential operator, which will advance a
known field at {=0 forward in ¢, note that the Laplacian
diffraction operator V2 is independent of / and define the

average intensity for a small step in ¢ of length A/ as T,

- 1 {+AL 2
= A—gfg Juldg, (12)

which allows us to remove the integral from Eq. (11) and
write it in the form

W(BE+ AL =el 2 AV ) (13)

The standard technique to solve this kind of equation [8,45]
is to split the diffraction operator into a symmetric form to
yield the “‘split-step” method:

o J s o
U(p L+ AL)~ed MV T M (5 1y, (14)

The nonlinear refraction operator ¢/2¢! is a function of the
coordinates and is easily computed and applied to the field u.

L Agv?

The diffraction operator e% can be applied by writing

the field u( 5,{) as a linear combination of its linear propa-
gation modes, I', which are defined to be the eigenfunctions
of the diffraction operator V2 with eigenvalues — k. Thus if

VI (p,k)==kT(p,x) (15)

then

u(5)=ffo(E)F(ﬁ,E)d3K,

vo=[ [ [wor=oan (16)
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The eigenfunctions I'(p, ) and eigenvalues of the Laplacian
in different coordinate systems are as follows:
Rectangular:

. e+j(KXX+Kyy+KZZ)
F(P, K) - e—j(KXX+Kyy+ KZZ)

(17a)
(k2=K§+K§+ Kf);
cylindrical:
.. J(k p)e—j(nl¢+/<zz)
r(P,K)z[ ’ —j(me+x,z)
Y, (k,ple™ z
(17b)
(k2=Kf,+K§;m=~--—1,0,1...);
spherical:
- - ]l(Kpp)Y;n(ev(ﬁ)
T(p,K)= .
yilkop)Yi'(6, )
(17¢)

(K=k21=0,1,2..5m=—1,....1);

where J,, and Y, are Bessel functions, j; and y; are the
spherical Bessel functions, and Y7}" is the spherical harmonic
[46,47]. Since these eigenfunctions of the Laplacian are
guaranteed to be an orthogonal, complete set over all space,
the field u can be expressed as a weighted sum of these
functions of the form of Eq. (16). This transformation to the

wave-vector (E) domain, which is commonly referred to as a
Fourier transform in the rectangular coordinate system, al-
lows us to replace the diffraction operator V2 by — k2. Thus
the diffraction operation in the wave-vector space becomes

FLeT ATy (p)]= e TAP Y (), (18)

where .# represents the transform. This transform reduces
the application of the diffraction operator to a multiplication
by a quadratic phase factor when the field is described in the
wave-vector space. Thus alternating steps of refraction (in

the ‘“‘real” ;; space) and diffraction (in the “Fourier” K
space) will advance the field in the propagation direction.
This is usually referred to as the Fourier-transform beam-
propagation method.

It is straighforward to apply this method in the Cartesian
space (&, n,7) where the I' functions are sinusoids and the
linear expansion can be efficiently accomplished via a fast
Fourier transform (FFT). This method will be applied later to
investigate the interaction of multiple light bullets, but is not
the most computationally efficient approach in the case of
single solitons due to their spherical symmetry in the
(&,m,7) coordinate system. In the single-soliton case, the
diffraction operator V2 can be expressed in spherical coordi-
nates and, from Eq. (17c) above, has -eigenfunctions
Jo( Kpp)=eij"r>"/p for the spherically symmetric case
(m=1=0).
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The field envelope in this case is a function of a single
radial coordinate [u=u(p)] which can be transformed with
the kernel I'=¢e*/“?/p into a radial spectrum of a single
coordinate U= U(k,). In comparison, the same problem ex-
pressed in Cartesian coordinates requires a field envelope
which is a function of three space coordinates which is trans-
formed via a triple integral to a Fourier-domain representa-
tion with three angular coordinates. Thus the amount of
memory and computation time required to propagate a
spherically symmetric field expressed in spherical coordi-
nates are roughly the cube root of the same quantities when
the problem is expressed in the Cartesian coordinate system.

The speed of the spherical-transform beam-propagation
method can be further increased by noting that the transfor-
mation into and out of the spherical-harmonic space can be
accomplished with FFTs:

veep=| | | u(p)e_::pp d*p

=47TJ’ u(p)pe *ePdp

=477 Tu(p)pl,

u(p)=fij(Kp)ej;pp 2K

P dk,

1 )
=;j U(kp)e oPdr,

1
=;7_1[U(Kp)], (19)

where .% and %! represent the forward and reverse FFT,
respectively.

Thus, with the addition of the weighting terms defined in
Eq. (19), the spherical-transform beam-propagation method
looks identical to a one-dimensional Fourier-transform
beam-propagation algorithm. This allows us to propagate
three-dimensional, spherically symmetric field envelopes but
use only the computer time and memory required for a one-
dimensional simulation, reducing computation time to test
the stability and robustness of a single light bullet from many
hours to tens of seconds on high-performance work stations.

As predicted, such simulations show that the solitons
shown in Fig. 4 are not stable when allowed to propagate.
When the simulation is started with a soliton profile (as
shown in Fig. 4) as an initial condition, the field does not
maintain its shape with distance. Also, arbitrary pulses with
energies higher than the soliton threshold do not seif-
stabilize into a stable soliton and a radiating continuum as is
the well-known result for one-dimensional solitons. Thus ad-
ditional physical terms are necessary to produce stable and
robust light bullets. We now turn to the physical origin of
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these terms and will show that, when they are included,
stable solitons can be formed.

V. ROBUST LIGHT BULLETS IN NON-KERR MEDIA

By employing the Liapunov method, several researchers
have predicted the stability of three-dimensional solitons in
non-Kerr media [12,48] and the bistability of light bullets in
a medium with an instantaneous nonlinearity that displays
two saturation plateaus has been shown numerically [21]. We
have investigated two physically realizable stabilization
techniques for the light bullets: a simple saturation of the
nonlinear index and the inclusion of the next (x®) term in
the Taylor series expansion of the dielectric constant with
intensity. Each of these methods stabilizes the solitons by
limiting the peak index change. The next sections will dis-
cuss each method in turn.

A. Stabilization of solitons through saturating nonlinearity

Consider adding an instantaneous saturation term to the
NLSE so that the nonlinear dielectric is of the form

|E|?

) P S S
TFIEE L] (20)

€= 5L+X(3

This form is familiar from basic laser physics as the satura-
tion response of a two-level system [49]. For small fields,
|E|<€|E,q|, this behaves as a conventional Kerr nonlinearity.
For large fields, however, the change of index saturates at a
maximum value of Ae=x®)|E,,,|?. This will tend to flatten
the index perturbation at the intense center of the light bullet.

This dielectric variation can be inserted into Eq. (8) by
replacing the factor |U|? with |U|%/(1+|U|*/u?,,). As be-
fore, this equation can be integrated to produce the funda-
mental soliton profiles. Figure 5 compares the fundamental
soliton shape with a peak of U(0)=1 and no saturation
(uzq, =) to the eigenfunctions for materials with u,,,= 2,
1, and 1/2. The peak field has been normalized to unity in
each case so that the shapes of the solitons can be easily
compared. [Note that u,, scales as the field U:
Ugq=alUg,,, see Eq. (9)]. As expected, stronger saturation
(lower u,,,) broadens the solitons by limiting the self-
focusing effect near the center. (Reference [50] shows simi-
lar results for 2D transverse solitons.)

We can once again apply the dP/d3>0 stability test by
calculating this quantity from the eigenfunction solutions of
the NLSE. In agreement with the theoretical prediction of
Kolokolov, and unlike light bullets in a pure Kerr material, it
is now found that dP/dp is positive (the light bullets are
stable) for a sufficiently intense soliton, in particular for
U(p=0)=u,,,. This is a strong modification of the Kerr-
law nonlinearity since, according to this expression, the non-
linear index at p=0 must be not more than 1/2 of the Kerr
value.

This stability prediction can be verified by using the
spherically symmetric split-step propagation algorithm. In
Fig. 6, we use this algorithm to find the propagation distance
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FIG. 5. Normalized light-bullet radial intensities versus the satu-
ration level with the peak field fixed at U(0)=1. In contrast with
the preceding figure, this plot shows intensity U 2, not field U. This
allows a direct comparison with the nonlinear index, shown with
symbols. Note in particular that when the peak field is equal to the
saturation level [U(0)=U,,,= 1], the nonlinear index at the peak is
reduced to 1/2 its unsaturated level and the energy in the light bullet
is nearly doubled. Finally, note that the peak field of U(0)=1 im-
plies a peak nonlinear index change equal to the linear index (in the
unsaturated case), which is not physically realizable. However, the
scaling relations given in the last section describe how these profiles
can be transformed to any peak intensity and, thus, any maximum
index change.

in which the fundamental light bullet doubles its full width at
half maximum size, plotted as a function of the saturation
field. By fitting the resultant curve to an inverse fourth-order
polynomial, we find that when the peak field [fixed at
U(0)=1 in the plot] is greater than 0.99u,,, , the distance of
stable propagation asymptotically approaches infinity, which
agrees well with the theoretical prediction.
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FIG. 6. Distance of stable propagation — defined as the distance
in which the width of the fundamental soliton doubles — versus the
saturation field for a fixed soliton peak of U(0)= 1. The insets show
the spherically symmetric envelope of the field U(p) versus propa-
gation distance Z at four values of u,,, . The distance of stable
propagation approaches infinity at the predicted point of stable
propagation.
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FIG. 7. Spherical BPM simulation of self-focusing 3D Gaussian
pulses with two-level system saturating nonlinearity, showing a sur-
face plot and gray-scale image of the same data. The rightmost
pulse has a total energy E 1% greater than the light-bullet critical
energy and thus self-focuses. The middle pulse has just less than the
required energy and does not. For comparison, the leftmost pulse
shows the linear propagation of the same pulse, demonstrating the
rate of linear diffraction (£, %) and dispersion (7).

These stabilized soliton profiles are attractors — initial
field envelopes not too different from the fundamental shape
will self-focus into the soliton and a radiation spectrum. It
has even been shown that a cw beam with a temporal modu-
lation propagating in a saturating nonlinear material with
AGVD will separate into a chain of stable light bullets [23].
Figure 7 demonstrates that these stable 3D attractors in a
saturating material behave just like unconditionally stable 1D
solitons in a Kerr medium. In this spherical BPM simulation,
a pulse with an initial 3D Gaussian profile and peak field
U(0)=1.25u,,, self-focuses into a soliton if its energy is
101% of the critical soliton energy calculated from the eigen-
function solution, but is unable to do so if its energy is just
slightly below this critical value. For comparison, the propa-
gation of the same pulse in a purely linear medium is shown
on the left.

B. Stabilization of solitons through negative x*) nonlinearity

The saturation term considered in the preceding section
would occur in a two-level system, however, the nonlinear
response time of typical two-level systems, involving the
saturation of real particle populations, often is slower than 1
ns, which is not fast enough for this application where sub-
picosecond response times are required. Thus we now turn to
another physical mechanism that can instantaneously limit
the range of the nonlinear index — the inclusion of the third
term in the power series expansion of the energy, U, of an
instantaneously responding electron in a centrosymmetric
potential well:
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U=ar’+ Bri+ yrd, (21)

which, through the equation of motion of the electrons, leads
to the power series expansion of the nonlinear index with
intensity [51]:

e=e,+xP|E|*+ X |E[*. (22)

If % is negative, the nonlinear dielectric can again flatten at
high intensities. Applying the field scaling defined in Eq. (6),
the new index expression becomes

n=no(1+ul®>+qlul*), g=neny/n3, (23)

where n,=x/2n, and ¢ is a unitless constant expressing
the strength of the fourth-order index variation which scales
as 1/a’ [see Eq. (9)]. Dispersion terms in this equation have
been left out for clarity, as they are identical to Eq. (2).
Substituting this index into the normalized nonlinear Schro-
dinger equation gives

du 1
2 2 4, _
Jj &§+2 V2u+|u|*u+qlul*u=0. (24)

As before, one can assume a spherically symmetric propa-
gating solitary wave and reduce Eq. (24) to an ordinary dif-
ferential equation in the radial dimension such as Eq. (8).
This equation can be solved for the fundamental shapes of
the solitons for various orders and values of g. This equation
can be solved analytically for the one-dimensional case [52],
but must again be integrated numerically for three-
dimensional light bullets.

An examination of dP/df in this case reveals that stable
propagation occurs for g=—0.4 if U(0)=1. Using the scal-
ing relationships for light bullets [Eq. (9)], this can be rewrit-
ten in general as U?(0)=0.4/(—¢g) or, in mks units,
E?(0)=0.4ny/(—n4). Numerical propagation of the spheri-
cal fundamental soliton as a function of |g| produces a plot
equivalent to Fig. 6 and predicts stable light-bullet propaga-
tion for g<—0.41 [U(0)=1], confirming the theoretical
prediction.

Figure 8 shows the spherical BPM simulation of the same
initial 3D Gaussian envelope as was used in Fig. 7 in a
material with g=—0.5 [U(0)=1]. The fundamental soliton
profile in this case is very different from the Gaussian (unlike
Fig. 7) but the same behavior occurs. As before, the critical
soliton energy (E,,;;) was found by integrating the calcu-
lated stationary eigenfunction; the simulation thus serves as a
confirmation of this calculation.

It is reasonable to ask whether g<<O is possible in nature.
Recent measurements of organic nonlinear materials such as
P-toluene sulfonate (PTS) have found large positive n, and
negative n4 values. In PTS at 1.06 um, n,= 10718 m?/Vv?
and ny,=—2.5%x1073* m*/v* [53], yielding ¢= —425 and
stable soliton propagation for U(0)=0.03 or E(0)=40
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MV/m. Thus the soliton formation illustrated in Fig. 8, with
an initial peak field of U(0)=0.03, is physically correct for
propagation in PTS. The light bullets used to demonstrate the
dragging interactions in Sec. VII utilize a peak field of
U(0)=0.07 and a wavelength of 1.06 um, and are therefore
well into the range of stable propagation in PTS. Thus ny,
nonlinearities of the necessary sign and magnitude exist to
allow stable light-bullet propagation.

With these stabilized light-bullet profiles, we can now
check the validity of the assumptions made in deriving the
NLSE [Eq. (7)]. To evaluate the magnitude of the neglected
terms, we require the following typical values for the physi-
cal parameters.

(1) Ny = 1.06 wm, due to the availability of high-power
lasers at this wavelength.

) n, = 10™'® m?/V2, which is the measured value for
PTS at 1.06 um [53]. This value was measured using 35 ps
pulses and no discernible dispersion of the nonlinear pulse
was observed. As stated in the NLSE development, we will
assume an instantaneous nonlinear response.

(3) D = 7X1072* s2/m?, a typical value for glasses, al-
though of the opposite sign. Thus this value would be proper
for a pumped medium in which the absorption bands have
been inverted to reverse the sign of the dispersion [54]. Fur-
ther comments on realization of AGVD in bulk media are
made in the conclusion.

We will take the soliton scaling factor a [see Eq. (9)] to
be 0.07, which in Kerr media would imply a peak Kerr-
induced index change of 7%. Both n, stabilized solitons with
g=—0.5 and saturating-index stabilized solitons with
Uz, =1 reduce this to roughly 3.5% or a peak An=~0.05 for
an n=1.5 material. Both cases yield a fundamental soliton
that is 5 wm by 5 um by 40 fs, has a total energy of 25 pJ,
and a peak intensity of 1.5 GW/cm®.

A study of the changes in light-bullet propagation due to
the various terms dropped in the 3D NLSE development is in
progress. However, using the stable soliton profiles and the
physical parameters given, one can evaluate these terms to
estimate their importance. It is found that the terms ignored
in the SVEA expansion are at most 4% of the peak field and
thus are reasonable to neglect. However, dropping them does
cause a subtle effect on the nature of the propagation. The
linear solution of Eq. (7) implies that the propagation con-
stant is one-half the sum of the square of the transverse spa-
tial and temporal frequencies. This paraxial approximation is
well known to be accurate only for small angles, but, as
pointed out by Rothenberg [55], it also implies that the pulse
propagation is separable in the transverse space and time
dimensions. This separability causes the group velocity of
off-axis rays to be the same as on-axis rays, which is incor-
rect, and can be seen in the simulation results of Sec. VII.

The expressions of the cross-term approximation are
found to have peak values less than 0.6% of the field U and
thus neglecting these terms should not significantly change
the nature of the solutions. Note that there are third- and
fourth-order time derivatives of the field in this expression
which come not from higher-order dispersion terms, but
from the interaction of first- and second-order dispersion
terms and the second-order time derivative implicit in the
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FIG. 8. Spherical BPM simulation of self-focusing 3D Gaussian
pulses with x® and negative x> nonlinearities.

wave equation. Thus, when including higher-order dispersion
to account for pulse asymmetry, these cross terms should
also be retained [56].

The terms neglected in the slowly varying nonlinearity
approximation are those that typically lead to asymmetries in
the pulse envelope. The “‘shock’ term in the slowly varying
nonlinearity approximation, d(|U |2U)/ 87, has been shown
to result in self-phase modulation of the wave [57], self-
steepening of pulses [58], and shock-wave development [56].
It can be expanded by the product rule into two further
terms, Ud(|U|?)/dt and |U|?9U/d7, the first of which has
been shown to induce carrier downshift characteristic of the
Raman effect [59]. Like the SVEA, these terms are found to
be a maximum of 4% of the peak field and thus can be
neglected.

We have now demonstrated that light bullets are robust
under several physically reasonable situations, found their
size and energy for typical experimental parameters, and
checked the validity of the assumptions made in the NLSE
development. In the second half of this paper, we turn to the
use of these stable three-dimensional solitons as computa-
tional units through soliton interactions. First, however, we
must expand the previous mathematics to include vector,
rather than scalar, fields.

VI. NUMERICAL SIMULATION OF NONLINEAR
VECTOR FIELDS

In order to be implemented in a complex circuit with
many devices, an optical logic gate must operate indepen-
dently of the relative phases of its inputs. If this were not the
case, path-length changes within the machine of only frac-
tions of a micrometer caused by heat or vibration would
change the operation of the logic gate. To achieve phase
insensitivity in soliton-dragging logic, we assume that the
two input solitons are made up of orthogonally polarized

electric fields that can only interact through nonlinearly in-
duced index variations [2,22]. In contrast, soliton repulsion
gates use copolarized beams and depend critically on the
relative phase of the two signals. The difficulty with placing
the solitons in orthogonal polarizations is that it complicates
the nature of the interaction and it is not immediately obvi-
ous if phase-insensitive nonlinearities can be found. As will
be shown in this section, with a proper choice of the orthogo-
nal polarization states, such phase-independent interactions
can indeed be achieved.

With the introduction of two distinct electric field compo-
nents, the scalar wave equation [Eq. (1)] is inadequate; the
complete vector nature of the problem must now be consid-
ered. For example, the simple n=ng+ n,/ model of the non-
linear material is no longer valid, and the tensor nature of the
nonlinear interaction must be included. Also, we must con-
sider the tensor nature of the linear dielectric properties of
the material. In order to investigate the interaction of two or
more of the stabilized solitons described above, we now de-
velop the techniques for simulating the nonlinear Schro-
dinger equation in both isotropic and uniaxial materials with
a saturating x® nonlinearity or a nonsaturating nonlinear
polarization expanded up through x‘>. In order to maintain
interactions that are only intensity (not phase) dependent, the
proper optical polarizations for the solitons will have to be
selected for each case.

A. Anisotropic and isotropic x® materials

As in the simple scalar fields case, we wish to include the
effects of group velocity and group-velocity dispersion, and
thus in a uniaxial material with ordinary and extraordinary
indices of refraction n,= \/-e—{, and n,= \/e—e

de,; 1 ,0%€,,
Eo(w)zeaL+(w_w0) EPS) +5(w“0)0) 00)2 s
@ ]
(25)
&EeL 1 28268L
Ee(w)zeeL_'—(w_wO)%— '*’5(“"‘00) P ,
@g @9
(26)

which completely specifies the linear dispersive response of
the material. To account for the vectorial nonlinear polariza-
tion we will use the full x® formalism:

Py =eoxPEEE, @7

where x® is the fourth-rank nonlinear susceptibility tensor
which is assumed to be instantaneous and thus nondisper-
sive.

Together, these definitions transform the wave equation
(1), in the crystallographic principal axis coordinate system,
into
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Equation (28) is a fully vector partial differential equation
and is rather difficult to solve analytically or numerically. It
is well known, however, that the linear homogeneous version
of Eq. (28) (with the right-hand side equal to zero) has two
orthogonally polarized plane-wave eigenmode solutions for
each direction of propagation, referred to as the ordinary and
extraordinary waves. If the nonlinear polarization is assumed
to be small, then these two scalar wave equations can be
taken as solutions to the vector equation with the addition of
a nonlinear coupling term provided by the right-hand side of
Eq. (28). Under this assumption, the vector Eq. (28) can be
reduced to two scalar equations for the eigenmodes of linear
propagation:

2 2.2

V2, B 7| 2 (0= 00) 4 3 (0 wp) ot
Xﬁzi—;;rdl = % gz‘Z‘(Axgid)jklEjEkEl)’
szzE(ext)—Cl_2 ne(0)2+(w—w0)19—n—;%)2+5(w—w0)2

where E(,,, and E,,, are the scalar electric field strengths
in the ordinary and extraordinary waves and
n.(60)=(cos>O/n>+ sin@n>) "2 is the directionally depen-
dent index of refraction of the extraordinary wave. A is a
degeneracy factor which will depend on the physical origin

of the nonlinearity. The term V(V -E ) has been included in
the homogeneous solution of Eq. (28), which is essential to
capture the behavior of the fields [Eq. (29)] in anisotropic

media, but the small value of this term when E is spatially
varying due to the nonlinear coupling has been neglected.
Also note that, in this and the following equations, the Ein-
stein summation convention over repeated subscripts for ten-
sor expressions is used.

In addition to the tensor nonlinearities, the propagation of
the two eigenmodes described by Eq. (29) contains all of the

linear physics of paraxial propagation in an anisotropic crys-
tal, up to second order in the angle and frequency. The dif-
ferences in the indices give each polarization a different
phase velocity which will reveal effects such as polarization
rotation and phase mismatch. The first-order expansion of
this index with angle of propagation and frequency will re-
sult in different anisotropic walk off and group-velocity walk
off for the two fields. Finally, the second-order expansion of
the index with angle and frequency will result in differing
rates of diffraction and group-velocity dispersion for the
waves in each polarization. As the spatial and temporal ex-
tent of the solitons decrease, increasingly higher-order as
well as mixed terms become important; in this study we have
truncated the expansions at second order and limited the soli-
ton sizes to regimes where this approximation is justified.

While the simplification of Eq. (28) to Eq. (29) has re-
duced us from a vector to two coupled scalar equations, we
are still left with a fully vector coupling term through a
fourth-order tensor. To simplify further, note that the polar-
ization direction of the two scalar waves depends on the
direction of propagation, but the two waves are always or-
thogonally polarized with E,,; always perpendicular to
both the uniaxial axis of symmetry and the direction of
propagation. Thus the x® tensor may always be rotated to a
coordinate system in which the ordinary polarization lies
along the x direction and the extraordinary polarization lies
along the y direction such that the electric field may be rep-
resented as

E= Eflfef(‘“of“’iord)"‘)Jr &y pel (@t —ken e (30)

where &1(x,y,z,t) and &,(x,y,z,t) are the four-dimensional
envelopes and E((,,d) =n,wo/c and Ig(ex,) =n,(0)wy/c are
the momentum vectors of the plane-wave carriers.

Note that this transformation is only valid for beams with
small angular extents since the directions of the ordinary and
extraordinary polarizations change with the direction of
propagation. However, since the implementation of the
beam-propagation method used in this study is also paraxial,
this requirement does not further limit the applicability of the
simulations.
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With this definition of the electric field, the third-order
nonlinear polarization terms in Eq. (29) may be written as

szld)(w) = Pi,”((x))

=—‘360X(13~3<l(w=w+ o—)E;EES,

P32 (0)=PP(w)

(ext)

=360)((2§;d(w=w+w—w)EjEkE*, (31)

where {j,k,l} vary over the x and y directions (indices 1 and
2). The degeneracy factor for the Kerr nonlinearity of
A =3 has been used in these expressions. A typical term of
the ordinary sum will look like

PR(r, 1) =3 egx 15151 &8 F e~ Ktorr exn kora) el ot

+ 7 other terms. (32)

For propagation in any direction other than the optic axis
of the crystal (discussed below), the wave vectors of the
ordinary and extraordinary waves are different. Since E(ex,)
#* E((,,d) , the term shown above will not be phase matched to
the x-polarized, propagating ordinary wave and will not con-
tribute significantly to the macroscopic nonlinear polariza-
tion if the length of the interaction, L, is greater than
1/|(k(oray=— k(exry)|. The only terms in the nonlinear polariza-
tion which will be phase matched to the propagating wave in
each direction will be

PO (r.)=3eo(x1h %1% &F

+2x 3,528, 85 ) el Ko,

Pf)(;”) =3 €)( Xpba22 &%
+2x50 8 £ 8 el R (33)
These are the familiar self-phase modulation and cross-phase

modulation terms. The equation for the nonlinear index of
refraction can therefore be written

3269
n(ord):no+ nf)eZlfI ;)fl ]2+ nngOSSI ;52 2’
T (oxry=To( 0)+n2621f| &2+ nSS| &) (34)

When Kleinman symmetry holds (in transparent frequency
regimes far away from material resonances), these equations
become nearly identical since 755 = 3" and n°Y%=n,

These equations verify that the fully vector wave equation
(28) including the complete tensor nature of x® can be de-
scribed by two scalar wave equations that are coupled by
simple self- and cross-phase modulation terms and are there-
fore completely phase independent. This simplification does
require that the polarization of the two waves be selected to
be the ordinary and extraordinary eigenmodes of the linear
anisotropic wave equation and that the various linear and
nonlinear indices be correctly calculated for the resulting po-
larizations.

When the direction of propagation is near the optic axis
— specifically, when the angle of propagation € is less than
{M[27L(n%/n? —1)]}">— the ordinary and extraordinary
polarizations become nearly degenerate and the phase match-
ing of nonlinear polarization terms becomes identical to that
in an isotropic material (although other optical effects such
as rate of diffraction will still distinguish the two types of
material). In either case, there is no difference in the ordinary
and extraordinary wave vectors to enforce a phase mismatch
on terms like that in Eq. (32); nonlinear polarization terms
like this one make it impossible to perform phase-
independent interactions for linearly polarized beams. It is
possible, however, to regain a phase-independent geometry
through the choice of a different basis set for the polariza-
tions of each soliton [26,60].

First, it will be useful to derive the form of the nonlinear
x® tensor for isotropic materials. This is tabulated in a num-
ber of sources, but in the next section we will also need the
form of the x*® tensor in isotropic materials, so we present
here a simple construction method for any order. We note
that in an isotropic material the tensor must be invariant to
the reversal of any electric field component. This leads to the
rule that a tensor component with an odd number of any
particular index must be zero (e.g., x12,=0), which forces
all even-order (odd-rank) y tensors to be identically zero.
Secondly, the tensor must be invariant to any permutation of
the indices, corresponding to a 90° rotation about some axis
(e-g-, X1221=X3113= X2332= - - ). To impose the last neces-
sary constraint, the tensor must be invariant to rotation
around an axis by an arbitrary angle, leading to the result that
the complete x® and x® tensors can be written as a sum of
the remaining unique terms. Thus the isotropic x* and
x® tensors would be written as

xﬁfﬁz: X11226i; 067 X12120ik 61+ X12218: 0k » (35)

sy _
ngk)lmn = X1122330; Ok Omn + X 11232301 Okm O1n T X11233264 Okn Otm+ X 12123301k 01 Oun + X 12132301k Ojm S1n + X1213326ik O Oim

+ X1221330:1 0k Omn + X1223130im Ok O1n T X1223310in Ok Oim+ X 123123011 6jm Oten + X 1231320110 Ok X1232136im 671 Okn

+ X1232310in 01 6km + X 1233120im Ojn O+ X1233216in Ojm

Ol s (36)
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where §;; is the Dirac delta function. To prove that these are
the correct forms for an isotropic material, we must show
that the nonlinear polarization is independent of an arbitrary
rotation of the coordinate system. Writing the frequency-
degenerate third-order nonlinear polarization for an arbitrary
electric field,

E= e g+ey+es)el @ Thd e,

Pz('”:fng;k)zEjEkEz*’ (37)

where & is the magnitude of the electric field and
(ey.e,,e,) is its unit polarization vector. The P® of Eq.
(37) is written for the case of the Kerr nonlinearity, but the
proof is valid for any combination of annihilation and cre-
ation operators.

Inserting the definition of x‘® above and summing over
repeated indices leads to

PP = eo(x 1122+ X1212F X1220) (| E1 [P+ | Eo 2+ | E5| ) E;

=eo(X 1122+ X1212F X1221)| E1°E;

or

PP = e,(x 11227+ X122+ X1221)| 41°E, (38)

which shows that P is always parallel to E with a magni-
tude which is independent of direction and thus our postula-
tion of the form of the x tensor is verified. Precisely the same
proof can be applied to x> to find that

PO=a| S xJE [+ EPHIERE,

PO=e| S xiatE, (39)

where, in analogy to the P result, (3 y) is the sum of all of
the unique x® tensor components given in Eq. (36). Finally,
note that far from material resonances, Kleinman symmetry
applies and all of the y terms in Egs. (35) and (36) become
equal, leaving only one independent constant in each tensor.
In this case (which is the one used in the simulations in the
next section) physically correct nonlinear materials can be
modeled without a detailed knowledge of the entire tensor
forms of x® and x©, which are rarely adequately tabu-
lated.
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Continuing with the interaction of vector fields in an iso-
tropic x>’ material by using the form of the tensor given in
Eq. (35), the vector third-order nonlinear polarization for a
Kerr nonlinearity becomes

PO=3eox VEEE*

=3 50[(X1122+X1212)(E'E*)E+X1221(E'E)E*],
(40)

which is not a phase-independent interaction because of the
second term, which can be thought of as a traveling-wave
susceptibility grating with frequency 2w and wave vector
2k. This can be seen by examining the coupling between an
x-polarized and a y-polarized wave:

E=|& e/ Pi+| & |5,

PP =3 €[ (x1122+ X121 (| &2 +] gy|2)| &, lel s

x| B et | 2, 2e2%)

Ele I,
41)

The first term generates a polarization field that is in phase
with the electric field and dependent only on the magnitude
of the x and y fields; this term could be written as a nonlin-
early induced index. In contrast, the second term is not in
phase with the electric field and depends explicitly on the
phases of both fields. As the phase of one electric polariza-
tion shifts, this nonlinear polarization will change in both
magnitude and phase, altering the behavior of the two-field
interaction by allowing a phase-dependent exchange of en-
ergy between the two polarizations.

Following the procedure of Maker and Terhune [26], we
rewrite this equation in terms of circularly polarized electric
fields,

L _XEjy

T+ \/5,

E=E.6,+E_6_, (42)

which transforms the nonlinear polarization [Eq. (40)] into

PO=3 e[ (x1122+ X121 |E+|*+ (2X 121+ X112
X122 E-PIE L6+ + [ (X1122+ X 1212) | E— P
+2x12F X122t X2 |E+|P1E_6_}. (43)

Thus by transforming to circular polarization states, we have
reestablished a phase-independent interaction. Equation (43)

serves to define self- and cross-phase modulation terms,
analogous to those in Eq. (34). If the center frequency of the
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light bullets is far from any material resonance, Kleinman
symmetry holds and all of the independent y terms in Eq.
(35) become equal, reducing the number of unknowns in the
nonlinear polarization expressions to just one. The expres-

sions for P3 for linear and circular polarizations in isotropic
media are thus as follows.
Linear polarization:

PO =9€0x o[ |E\|*+2/3|E,|*1E %

+[|E,|*+2/3|E||?]E,¥} + (phase-dependent terms);

circular polarization:

=6eoxi2Al|EL[*+2|E_|P]E G,
+[E_|*+2|E,[*1E_d_}. (44)

While the symmetries of an isotropic material allow us to
deduce these forms, the values of the self- and cross-phase
modulation strengths due to linearly polarized electric fields
in an anisotropic material will depend on the particular crys-
tal, its orientation, the frequency of operation, and the values
of all the elements in the X(B) tensor, which are not well
tabulated. However, as discussed above, Eq. (44) is the cor-
rect form for the nonlinear polarization in anisotropic crys-
tals with sufficient birefringence and thickness since the
phase-dependent terms will be phase mismatched and can be
neglected. The expression for the third-order polarization due
to linear fields in an isotropic medium is only included to
emphasize that, even in identical isotropic materials, the
choice of polarization states alters both the self- and cross-
phase modulation strengths. For the case of circularly polar-
ized fields, the single remaining independent value,
n3=6x1512, can be scaled out of the propagation equa-
tions via Eq. (6) making it possible to perform a physically
correct simulation of soliton interactions without using any
measured x>’ values. Assuming a simple instantaneous satu-
ration of the total nonlinearly induced index, the resulting
coupled propagation equations for the case of circularly po-
larized electric fields in an isotropic medium are

‘9”+ |u+|2+2|u |2
—j = ng 5 uy=0,
oz " T (e P2l P,
o"u; u_ |24+20u,|?
V lu | +2]u | 0
I Y Vet T u P 2le, i, Y

(45)

This form of the nonlinear index enforces a saturation of
the total nonlinearly induced index seen by each polarization.
This choice is somewhat arbitrary and should instead be de-
rived from the quantum-mechanical dynamics of a particular
nonlinearity. The fundamental properties of the equations,
however, are independent of this choice. In particular, note
that each field polarization propagates in a (3+1)-
dimensional space with a three-dimensional transverse dif-

fraction operator, Vém, and a nonlinear index dependent
only on the intensities of the two field polarizations. The
particular ratio of cross- to self-phase modulation strength, 2
in this case, is determined completely by symmetry argu-
ments for the isotropic crystal. This cross-phase modulation
couples the two fields, which otherwise would support inde-
pendent light-bullet solutions. Due to the choice of circular
polarization states, this coupling does not depend on the rela-
tive phase of the two fields. In the next section, we expand
this concept to the higher-order x> interaction.

B. Anisotropic and isotropic ,\/(5) materials

In order to make use of the y® stabilized solitons devel-
oped in Sec. V B, we must be able to interact multiple po-
larizations as in the preceding section, but with the addition
of the sixth-rank x> tensor. The preceding section has
shown that in either anisotropic or isotropic materials, the
interaction of two electric polarizations can be modeled as a
simple self- and cross-phase modulation term which couple
the two optical fields through their respective intensities
alone. In this section we wish to develop the same formalism
for instantaneous nonlinear polarizations expanded through
the ¥ term, as required to stabilize light-bullet propaga-
tion.

First, we note that in anisotropic crystals, the arguments
of the preceding section hold and terms like

5) 7\ — 5 o ok gk
PO(r,1)=10€0x 1131015152 EF 5,7
X e I Kkorayt kexty “Kora) t K(exty ~K(ora)) - r w1

+31 other terms (46)

cannot be phase matched due to the difference in Iz(md) and

lg(m) for a sufficiently long interaction length. The degen-
eracy factor given by A=51/(3121)=10 is calculated for
this combination of annihilation and creation operators. A
study of all possible terms of the form of Eq. (46) reveals
that two optical fields restricted to only the ordinary and
extraordinary waves can only have intensity-dependent inter-
actions and that these x> terms must be of the form

1P+ ngg 5|+ gy

2
Rora)y=n +n(}4 |

n(6)+ngy

Rexny= +ncr0<slé)l|4+nm1xed|((| I(p2|2

Thus, when the optical polarizations are restricted to the
eigenwaves of the linear crystal, vector fields can propagate
and interact through intensities alone in a material displaying
both x® and x> nonlinearities. The final task of this sec-
tion is to show that this is also true in isotropic materials
displaying a x® nonlinearity.

Equation (36) gives the form of the x©® tensor in isotro-
pic materials. The frequency-degenerate nonlinear polariza-
tion field is thus
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PO)=10eoxVEEEE*E* = eo{[ X 112233+ X121233F X1221)(E - E)(E* - E*)E

+[X112323F X112332F X121323F X 121332+ X123123F X123132](E - E*)(E-E*)E

+x122313F X122331F X 123213 F X123231 F X 123312+ X 123321 )(E - E)(E - E*)E*}

= yi(E-EY(E* E*)E+ yy(E-E*)(E-E*)E+ y3(E-E)(E-E*)E*, (48)

where vy, v,, and 3 are defined for convenience.

This interaction is phase dependent in the same manner as
Eq. (40). To reduce it to a phase-independent geometry, we
once again transform the electric field into circular polariza-
tion states via Eq. (42), which results in

PO =[ | EP|EL P+ 4y + 27+ 2y3) | EL P |E_|?
+(y2+2y)E_PIE_PIE 6 +[vol E_|P|E_|?
4y +27+27) ELP|E_|?

+ (v +27)|ELPIELPIE 6. (49)

This establishes that the nonlinear polarization for each elec-
tric field polarization is proportional to the electric field in
the same direction and otherwise depends only on intensities.
Thus these equations may be used to define fifth-order non-
linear indices of refraction that, although they are calculated
differently and link circular rather than linear fields, are ex-
actly of the form of those for the anisotropic case [Eq. (47)].
Note that for propagation along the optic axis of an aniso-

|

Linear polarization:

tropic crystal, the circular basis states are only eigenpolariza-
tions for an infinitesimal angular spectrum around the axis.
Thus, in this particular case, the transverse size of the soliton
will have to be sufficiently large to limit its angular spectrum
to a narrow range. This restriction is similar to the require-
ment for small angular spectrum during off-axis propagation
in an anisotropic crystal since the linear eigenpolarizations
change as a function of angle. This does not mean that large
angular spectrum light bullets cannot propagate and interact
in these crystals, only that the techniques developed in this
paper to model them are not sufficiently detailed.

With this result, we have established that, given the
proper choice of the soliton polarizations and the proper cal-
culations of the nonlinear indices of refraction from the
x® and x© tensors, light-bullet interactions can always be
made phase independent and can be simulated as two lin-
early propagating waves coupled only by intensity-
dependent index functions. As in the preceding section, in
isotropic materials far from any absorption resonances,
Kleinman symmetry is obeyed and the constants in Eq. (47)
and Eq. (49) can be calculated to within a single constant:

PO =150€0x112233{[ | E1|*+ U Eo|*+ Y E | |2 Eo|21E \Z+[| Ey|* + 3 E, |*+ 4 E || Eo |21 Eo5}

+ (phase-dependent terms);

circular polarization:

=60€oX 112233{[ | E+|*+3|E_[*+6|EL P|[E_|P1E. 64 +[|E_|*+3|E,|*+6|EL P|E_|*]E_G_}. (50)

As in the preceding section, we include the expression for
the fifth-order polarization induced by linearly polarized
fields in an isotropic medium (even though it does not reduce
to a phase-independent interaction) so that it can be com-
pared with the phase-independent, circular basis. This equa-
tion for the fifth-order polarization induced by orthogonally
circularly polarized electric fields will allow us to simulate
soliton interactions mediated through sixth-order tensor non-
linearities without having to specify any of the 3 compo-
nents of this tensor, which are (to our knowledge) not tabu-
lated for any material. The normalized coupled propagation
equations for the circularly polarized fields in this case are

L Ouy
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+q(u_|*+3up|*+6lu_|Hus|»)u_=0. (51

As in the case of a saturating nonlinearity discussed in the
preceding section, the two field components propagate in a
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(3+1)-dimensional space and, in the absence of the other
field, each polarization will support stable light-bullet propa-
gation, so long as x® is positive and x> is negative and
assuming that sufficient power is used so that the peak non-
linear index is decreased by the negative x® to about half of
the x® contribution. The two field polarizations are coupled
by a nonlinear index dependent only on the intensities, not
phases, of the two polarizations. The coefficients of the
higher-order cross-phase and mixed-phase coupling strengths
(3 and 6) are determined by the symmetry restrictions of the
isotropic crystal class and allow us to perform simulations
without measured values of the x> tensor.

The final section of this paper uses the results of the pre-
vious two sections to demonstrate light-bullet logic gates that
are phase insensitive, cascadable, achieve gain, exhibit high
contrast, and are logically complete.

VIL. LIGHT-BULLET DRAGGING LOGIC GATES

We now have the tools to examine the feasibility of ul-
trafast digital optical logic based on the interaction of cross-
polarized, three-dimensionally confined optical solitons. As
discussed in the Introduction and shown in Fig. 3(a), the
soliton-dragging logic gate described in this paper differs
from other spatial soliton logic presented in the literature in
that the two (or more) optical pulses are brought into coin-
cidence in a linear material and only then are allowed to
interact in the nonlinear medium. This is in contrast to the
usual symmetric collision geometry, as shown in Fig. 3(c), in
which the signals are allowed first to approach and then to
separate entirely within the nonlinear material. The disadvan-
tage of the collision gate is that the pump soliton is pulled
first to the right and then to the left, making large displace-
ments difficult to achieve. Numerical studies with one-
dimensional spatial solitons show that collision interactions
at grazing angles can achieve some gain by greatly extending
the length of the interaction regime, in which the pump soli-
ton is traveling at an angle to its initial (and final) direction.
However, this is at the cost of a much larger gate length than
the dragging interaction because there is an inherent tradeoff
between the initial beam separation, output aperture sizes,
grazing angle, and beam shift. Thus, for reasonable gate
lengths, it is not possible to achieve gain (the energy of the
pump exceeds the energy of the signal) with the collision
interaction.

Conversely, the dragging gate presented here allows the
optical pulses to approach in the linear medium where they
feel no nonlinear interaction force. The pulses collide at the
nonlinear material boundary and form a bound soliton pair
and thus experience an immediate, strong deflection force
that causes the pump to propagate at an angle which can be
estimated simply by the conservation of momentum of the
two solitons. As is shown in the diagram, the weaker signal
soliton, after deflecting the stronger pump, usually becomes
trapped and orbits around the pump. This formation of a
bound soliton pair efficiently transfers the entire transverse
momentum of the signal soliton to the bound pair. In con-
trast, the collision gate does not permanently transfer any
transverse momentum to the pump so that after the interac-
tion, the pump is traveling in its original direction. (In non-
Kerr media or Kerr media with d>1 or d=1 and cross-
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FIG. 9. Light-bullet dragging with a gain of 4 resulting in a
contrast of 32 in 880 um. The three frames shown the 100 pJ pump
light bullet, rendered as a grid isosurface at 1/10 its total intensity,
interacting with the 25 pJ signal light bullet, rendered as a solid
isosurface at the same intensity. The energy of both the pump and
the signal are projected onto the three back faces of the box and
rendered as contour plots (with contours at —3, — 10, and —20 dB
of peak) and density maps, respectively. The position of the 10
pm square aperture is indicated and can be used (by comparison
with the projected pump intensity contours) to estimate the success
of the dragging operation.

polarized solitons which interact with neoss/pself 1 this is
not strictly true, but is nearly so.) The permanent deflection
of the pump beam achieved by the dragging gate means that
virtually any amount of contrast can be obtained by simply
extending the distance to the pinhole aperture. Conversely,
this effect can be exploited to achieve large gain; the small
deflection produced by a weak signal can be amplified by a
long propagation length which resolves the small angle into a
large contrast. In reality, of course, this must be balanced
against optical loss and latency constraints. We plan to de-
scribe the effects of optical loss, both linear and nonlinear, on
the spatial soliton-dragging interaction in a future publica-
tion.

A beam-propagation simulation of an asymmetric light-
bullet dragging interaction is shown in Fig. 9. This shows a
dragging of a circularly polarized, 5 umX5umX4um 100
pJ pump (/,=6 GW/cm?) by a 25 pJ signal (I,=1.5
GW/cm?) in the orthogonal circular polarization in 880
pmm of propagation distance using a saturating nonlinearity
(Iyq,=1,) of n,=10"'8 m?/V2, roughly that available from
PTS [53]. The transverse size of the light bullet is easily
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FIG. 10. Light-bullet deflection with an initial 6° intersection
angle, all other parameters being the same as the preceding figure.
In this case the majority of the signal energy escapes, however, it
still manages to impart some transverse momentum to the pump,
which propagates at an angle resulting in a contrast of 9.3 after
further propagation to the the aperture located at 0.88 mm. In (c) the
signal energy has collided with the reflective boundary condition of
the simulation space and the reflected energy is interfering with the
incident signal; this does not affect the simulation results.

achieved with high-quality optics, while the longitudinal size
is several times greater than that being produced by ultrafast
pulsed Ti:sapphire lasers [61,62]. The value of the AGVD is
D=7X10"2*s2/m?, which could be realized from a pumped
(inverted) medium [54].

Note that, at least in isotropic materials, the strength of
the cross-phase modulation is proportional to this n, and that
the proportionality constant (often labeled B in the literature)
is determined only by symmetry and degeneracy factors.
This proportionality constant completely determines the op-
eration of the gate including the length and contrast — only
the energy of the light bullets is scaled by the magnitude of
n,. In this case, the constant B is equal to 2, which is the
value for circularly polarized fields in isotropic media with
Kleinman symmetry.

The simulation space is 128 by 64 by 64 samples, is ter-
minated by reflective boundary conditions, and is advanced a
total of 100 8.8 um propagation steps. In normalized values,
the peak signal soliton field is U(0)=0.071, which translates
to a maximum Kerr-induced index of 5X 10™3n,. However,
the saturation of this nonlinearity with u,, set equal to #(0)
reduces this by a factor of 2 to 2.5X 10 3n,.

In the bottom frame of the figure, the 25 pJ signal soliton,
rendered as a solid isosurface at 1/10 of its peak intensity, is
initially overlapping (in both space and time) the 100 pJ
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pump light bullet, represented by a grid isosurface at the
same intensity level. As the two solitons propagate upward,
with the signal tilted at an initial 4° angle, the pump is pulled
out of the 10 micrometer aperture to implement the inversion
or switching operation. The contrast of the gate, defined as
the amount of energy in a fundamental soliton (25 pJ) over
the total pump energy that escapes the aperture, exceeds 32
in a gate length of only 880 um. Note that in the absence of
the signal, the pump propagates straight up and 96% of the
pump energy passes through, which can then be fanned out
as a logically true signal for subsequent gates. This interac-
tion implements a simple high-contrast inverter with gain
which completely restores the logical and physical character-
istics of the information carrier.

If the initial angle is increased to 6°, the pump and signal
solitons do not form a bound pair, as shown in Fig. 10. In
this case, a deflection, rather than dragging, interaction (see
Sec. 1) is implemented. Even though the two solitons sepa-
rate, the signal still manages to impart a permanent trans-
verse momentum to the pump. After a sufficient propagation
distance, this causes the pump to move out of the path of the
aperture, implementing the desired switching function with a
contrast of 9. This contrast can be increased by simply
lengthening the gate beyond the 880 um simulated here.

Figure 11 summarizes the operation of this light-bullet
logic gate by plotting the contrast of the gate versus initial
interaction angle and gate length for saturation and negative
x® stabilized light bullets in both isotropic and anisotropic
media. (The details of the simulations are the same as those
given above, except as noted in the figure caption.) As was
developed previously, circularly polarized solitons in an iso-
tropic material with Kleinman symmetry interact indepen-
dent of their relative phase and the cross-phase modulation
strengths can be determined completely by symmetry [see
Eq. (44) and Eq. (50)]. In anisotropic materials, however, the
magnitude of these cross-phase terms depends on the par-
ticular crystal, its orientation, and the soliton color. Since
these values are not well tabulated, particularly in the case of
x®, the simulations of light-bullet interaction in anisotropic
materials in Figs. 11(c) and 11(d) were performed with linear
polarizations but with the cross-phase modulation strengths
for an isotropic crystal. The similarity of the four plots serves
to demonstrate that, though the quantitative behavior of the
switch depends on these ratios, the qualitative behavior does
not change.

In particular, the figure shows that there is an optimum
angle for the dragging interaction. As illustrated in Fig. 9,
this occurs when the signal nearly escapes from the attractive
potential well formed by the pump. In this case, a saturating
nonlinearity in an isotropic material, the large ratio of cross-
to self-phase modulation makes possible a large contrast in
less than a millimeter with an optimum angle of 4°. In con-
trast, all other cases have a somewhat reduced cross-phase
modulation strength, and thus the optimum angle of interac-
tion drops and a larger gate length is required to achieve the
same contrast.

This figure also illustrates the robustness of the gate to
minor angular misalignments — there is no critical angle for
operation but rather a gradual change from one type of inter-
action to the next. When the interaction angle equals zero,
this is the soliton breathing gate mentioned in the Introduc-
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FIG. 11. Contrast equal to energy of fundamental over pump energy leaked through 10 um square aperture versus initial interaction angle
and propagation distance for two different linear isotropic nonlinear media and two different polarization basis sets (note that the angle and
distance scales vary between plots). For the saturating media [(a) and (c)] U,,, = 1; for the x> media [(b) and (d)] ¢= —0.5. The soliton
scaling relation is used to yield an actual peak field, in the normalized units, of U(0)~0.15 in both cases, which was chosen to yield a
fundamental soliton with the size described in the text. The cross- to self-phase modulation ratio for circular polarizations in an isotropic
medium [(a) and (b)] was derived in the text; this choice was shown to result in phase-independent interactions. Linear polarizations in
isotropic media [(c) and (d)] are phase dependent, and thus an anisotropic crystal is required. However, the cross-phase modulation strengths
in this case depend on the particular anisotropic crystal, its orientation, and the frequency of the optical carrier. As an illustrative example,
(c) and (d) show the contrast for a phase-independent interaction utilizing the nonlinear index ratios for an isotropic material. No linear
anisotropic behaviors (such as walk off) were included. The labels on (a) indicate the frames rendered in the previous two figures.

tion, which achieves a contrast of 3 [from Fig. 11(a)]. Con-
versely, when the interaction angle is very large, the two
solitons do not form a bound pair and quickly separate,
implementing the deflection operation, as illustrated in Fig.
10. In the absence of absorptive loss (which has not been
included in this study) the contrast of the gate can be in-
creased simply by making the gate longer. In reality, this
must be balanced against the loss of pump and signal energy
in the length of the gate.

The interaction shown in these figures can be used as a
phase-insensitive inverter with a gain of 4 and contrast
greater than 32 by placing an aperture in the output plane
that would pass the undeflected pump (as indicated by the 10
pm square in the figures). This implements a logical inverter,
two of which can be placed in series to create a two-input
NOR gate [2,39,63,22,64]. Since NOR is logically complete,
any combinatorial logic function can be implemented with
this gate. Note that although the latency of the 0.88 mm gate

(for a linear index of 1.5) is about 4 ps, the time occupied by
a single dragging operation is much shorter. If operations
were pipelined within the gate spaced at ten times the tem-
poral duration of the bullets to avoid intersymbol interfer-
ence, a single computation would occur each 200 fs. These
gates can be operated in parallel in a uniform block of non-
linear material (except for the apertures); distributing them
transversely at ten times the soliton width and longitudinally
at twice the gate length yields a density of gates of one-half
million per cubic inch. Coupled with the pipelined operation,
this yields an (extremely optimistic) upper bound of
2.5 10'8 bit operations per cubic inch per second.

The multidimensional nature of the light-bullet dragging
logic gate can be utilized to create a simpler, single-stage
NOR with fan in by allowing three solitons to interact, as
shown in Fig. 12. This simulation is identical to the previous,
one-signal results, except that two signals are present, one
tilted towards x, and the other towards y. Since there are
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FIG. 12. Simulation of a single-stage NOR gate with a fan in of
2. The signals, in the same polarization, are 5/6 7 out of phase and
produce an initial interference null. Some energy is radiated, but the
majority forms a complex, bound vector soliton which propagates
out along the diagonal between x and y.

only two available orthogonal electric field polarizations, the
two signal solitons (which are chosen to be in the same po-
larization) must now interfere. The figure shows nearly the
worst-case scenario in which the two signals are 5/67 out of
phase such that there is an initial interference null on the
diagonal axis. Since the linear resolvability of these two sig-
nal solitons is \/5 there is only one fringe with the beam
profile. As would be expected, the pump is dragged by both
signals along the diagonal. Although the operation of the

Contrast
100
80
60

FIG. 13. Contrast of two-input single-stage NOR as a function
of gate length and relative phase of the two signals. The labels show
the positions of the frames rendered in the preceding figure.
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gate is degraded by the signals being out of phase, it operates
successfully at all relative phases. This degradation can be
overcome by using a slightly longer gate length, as is shown
in Fig. 13. Thus this arrangement forms a phase-independent,
single-stage, two-input NOR gate; if one or both titled sig-
nals are present, the pump is dragged to the side in x, in y, or
diagonally in xy so that almost no power passes through the
aperture at the output of the nonlinear material. If none of the
signals is present, the undragged pump passes through the
output aperture and is available as a signal to switch subse-
quent stages.

A two-input, single-stage NOR implemented by soliton
dragging in a one-dimensional temporal interaction has been
reported [38]. However, the linear interference between the
two copolarized and copropagating signals is much more se-
rious in this case, making the operation of the gate strongly
phase sensitive.

The design of the multiple-input light-bullet dragging
logic gate can be extended to larger numbers of inputs by
arranging a number of tilted inputs to be on a cone extending
over 90° between x and y (so that no signal drags in a di-
rection that opposes another). We have simulated a four-
input NOR gate like the two-input gate above with similar
results. This flexibility in the fan in strongly relaxes the con-
straints on a digital systems designer using these gates.

The astute reader will note that the signal energy which
escapes in the simulation results (e.g., Fig. 10) does not fall
behind due to what should be its decreased group velocity in
the Z direction. This is because the development of the NLSE
assumed a single group velocity, independent of direction of
propagation and thus the soliton propagating at a 6° angle
does not fall behind the pump as it should [55]. This inaccu-
racy can be minimized if one considers the solitons to be
propagating symmetrically around the 7 axis (i.e., at +3°
and —3°), which is just as valid. However, it has been sug-
gested that this lack of variation of the group velocity away
from the propagation axis invalidates the entire NLSE ap-
proach to space-time self-focusing [65]. Note that the varia-
tion of phase velocity with direction is correctly handled by
the NLSE.

VIII. DISCUSSION AND SUMMARY

Light bullets are an exciting physical phenomenon that
offer great promise as computing and logic elements. To mo-
tivate their use in a digital optical computing system, we
have reviewed the types of optical solitons including spatial,
temporal, and spatiotemporal solitons confined in one, two,
or three dimensions, as well as bright, dark, and combined
bright-dark envelopes. Since there are a limited number of
ways in which any two of these solitons can interact, a uni-
fied description of the possible two-soliton interactions in
one, two, or three dimensions and the properties of each were
introduced.

The types of solitons and the properties of the possible
soliton interactions were then compared to the requirements
for all-optical digital logic, in particular the need for a three-
terminal, cascadable device with gain and phase insensitivity.
On the basis of this comparison, it was shown that light
bullets — three-dimensional self-contained optical solitons
in homogeneous media — support highly parallel, fast, low-



52 (3+1)-DIMENSIONAL OPTICAL SOLITON DRAGGING LOGIC

energy switching. The soliton-dragging interaction, in which
two solitons collide at the beginning of the nonlinear mate-
rial and form a bound pair, was shown to fit the requirements
for three-terminal, phase-insensitive logic with gain. Thus
light-bullet dragging logic gates appear to have almost all the
requisite features to implement large-scale digital optical
logic.

Starting first with the scalar wave equation, we derived
the field profiles of the fundamental and higher-order light
bullets. From the eigenequation for these solitary waves, the
amplitude scaling relation was derived and used to show that
light bullets must be unstable to propagation in a purely Kerr
medium. To verify this prediction, we developed a simple,
efficient beam-propagation method based on the eigenfunc-
tion expansion of the nonlinear wave equation in any coor-
dinate system. This was specialized to the case of 3D, spheri-
cally symmetric envelopes, and used to construct an efficient
BPM algorithm which uses only 1D FFTs — this algorithm
confirmed the radial instability of light bullets in a Kerr ma-
terial.

To stabilize the propagation of light bullets, we investi-
gated two non-Kerr media: a material with an instantaneous
saturation of the nonlinear index and a medium with both
positive second-order and negative fourth-order dependence
of the index on electric field, both of which tend to decrease
the nonlinear index for high optical intensities near the center
of the light bullet. In both cases, a modified nonlinear Schro-
dinger equation was derived and used to find the shape of the
soliton envelopes as a function of the strength of the non-
Kerr perturbation. These results revealed the ranges for
stable soliton propagation via Kolokolov’s stability formula
which was found to be in excellent agreement with our
spherical BPM simulations. In both cases, it was found that
the light bullets have to be sufficiently intense that the non-
linearly induced index at the center is roughly half of what it
would have been in a purely Kerr material. These stable
solitons were shown to be attractors in phase space by simu-
lating soliton formation from arbitrary 3D envelopes. The
existence and value of a threshold energy for soliton forma-
tion, derived directly from the modified NLSE, was also
verified numerically.

In order to simulate the dragging interaction of these ro-
bust light bullets, we then developed a beam-propagation
method from the fully vector wave equation for vector fields
in anisotropic materials with up to sixth-order tensor-
mediated nonlinearities. To use realistic nonlinear tensors,
this was specialized to the case of isotropic crystals where
the large number of symmetries was used to reduce the y
tensors to a single independent value. To find the form of the
higher-order x tensor, we introduced a simple formalism to
find such tensors of any order in an isotropic crystal. With
these tensor forms, it was shown that, with proper choice of
soliton polarizations, phase-independent interactions can be
arranged in both saturating and negative x‘°) materials and in
both isotropic and anisotropic media.

These techniques were used to simulate the operation of
light-bullet dragging logic in four different materials classes.
Utilizing n, values from currently available nonlinear mate-
rials, we demonstrated the possibility of NOT, two-input
NOR, and four-input NOR logic gates in a volume of
roughly 40 um X 40 um X 880 um. The gates have a gain
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of 4, contrast of 32, switching energy of 25 pJ, and clock rate
of 5 THz. These power levels must be decreased through
enhanced x> for practical applications [66)].

A number of questions remain to be answered about this
device. Additional theoretical investigation of the light-bullet
phenomenon via the inclusion of higher-order dispersion,
diffraction, and nonlinear terms should refine the predictions
made in this work. Also not considered in this work is the
vector nature of guided e.m. fields which imposes restric-
tions on the electric field mode shape and polarization. These
effects have been examined for 2D filaments [67] and need
to be extended to the case of 3D light bullets. These refine-
ments should not change the basic asymmetry of the drag-
ging interaction in which the weak signal bullet drags the
strong pump to one side and it is reasonable to assume that
the form and properties of the gates will remain essentially
unchanged.

Experimental verifications of the light-bullet phenomenon
need to be performed; the simulations used in this paper
indicate that this should be possible if a material with a
strongly negative n, and anomalous GVD can be fabricated.
Recent measurements of PTS [53] at 1.06 um have revealed
an n, of 107! (m/V)? with a very large, negative n, of
2.5X 1073 (m/V)* [53]. This value of n, was the one used in
the simulations, thus 25 pJ fundamental solitons should be
possible. Enhanced nonlinear materials may provide an
order-of-magnitude increase of n, with only a slight increase
of absorption and nonlinear response time, allowing pJ-scale
light bullets, approaching practical energies for optical
switching applications.

Unfortunately, PTS, like most transparent bulk materials,
exhibits normal GVD. The most promising technique to
overcome this problem is to periodically layer the media
with alternating linear indices in the propagation direction to
create a “photonic band gap” [68]. By operating near but not
in the forbidden band, AGVD can be created. Theoretical
investigation of the interaction of material and grating GVD
as well as the 3D, vector nature of the problem are still in
progress. Other approaches to achieving AGVD include us-
ing bulk form birefringence due to transmission grating
structures, pumping the medium to turn absorption bands
into gain, and NGVD into AGVD [54] and parametric gain
[11].

To make good use of these gates, systolic arrays or a
similar three-dimensional data-flow technique need to be de-
veloped to take advantage of this highly parallel logic de-
vice. For example, a folded architecture has been designed
that, rather than absorbing the solitons after they interact,
allows them to propagate out of the device to be dissipated
remotely. This “optical cooling” separates the logical deci-
sion from the energy dissipation required to make the deci-
sion, significantly simplifying the cooling problem. The pos-
sibility of constructing all-optical, light-bullet dragging logic
circuits with millions of gates operating at THz clock speeds
is strong motivation for the continued materials, theoretical,
and systems research necessary to realize these devices.
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FIG. 10. Light-bullet deflection with an initial 6° intersection
angle, all other parameters being the same as the preceding figure.
In this case the majority of the signal energy escapes, however, it
still manages to impart some transverse momentum to the pump,
which propagates at an angle resulting in a contrast of 9.3 after
further propagation to the the aperture located at 0.88 mm. In (c) the
signal energy has collided with the reflective boundary condition of
the simulation space and the reflected energy is interfering with the
incident signal; this does not affect the simulation results.
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FIG. 11. Contrast equal to energy of fundamental over pump energy leaked through 10 wm square aperture versus initial interaction angle
and propagation distance for two different linear isotropic nonlinear media and two different polarization basis sets (note that the angle and
distance scales vary between plots). For the saturating media [(a) and (c)] U,,, = 1: for the y**) media [(b) and (d)] ¢= —0.5. The soliton
scaling relation is used to yield an actual peak field, in the normalized units, of U/(0)=0.15 in both cases, which was chosen to yield a
fundamental soliton with the size described in the text. The cross- to self-phase modulation ratio for circular polarizations in an isotropic
medium [(a) and (b)] was derived in the text; this choice was shown to result in phase-independent interactions. Linear polarizations in
isotropic media [(c) and (d)] are phase dependent, and thus an anisotropic crystal is required. However, the cross-phase modulation strengths
in this case depend on the particular anisotropic crystal, its orientation, and the frequency of the optical carrier. As an illustrative example,
(c) and (d) show the contrast for a phase-independent interaction utilizing the nonlinear index ratios for an isotropic material. No linear
anisotropic behaviors (such as walk off) were included. The labels on (a) indicate the frames rendered in the previous two figures.
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FIG. 12. Simulation of a single-stage NOR gate with a fan in of
2. The signals, in the same polarization, are 5/6 7 out of phase and
produce an initial interference null. Some energy is radiated, but the
majority forms a complex, bound vector soliton which propagates
out along the diagonal between X and y.
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FIG. 13. Contrast of two-input single-stage NOR as a function
of gate length and relative phase of the two signals. The labels show
the positions of the frames rendered in the preceding figure.
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FIG. 9. Light-bullet dragging with a gain of 4 resulting in a
contrast of 32 in 880 wm. The three frames shown the 100 pJ pump
light bullet, rendered as a grid isosurface at 1/10 its total intensity,
interacting with the 25 pJ signal light bullet, rendered as a solid
isosurface at the same intensity. The energy of both the pump and
the signal are projected onto the three back faces of the box and
rendered as contour plots (with contours at —3, — 10, and —20 dB
of peak) and density maps, respectively. The position of the 10
pm square aperture is indicated and can be used (by comparison
with the projected pump intensity contours) to estimate the success
of the dragging operation.



