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Lasing without inversion in the absence of a coherent coupling field
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We analyze the inversionless gain in a three-level ladder system by replacing the usual coherent coupling
field with an incoherent field. Surprisingly, it is found that one can obtain inversionless amplification of a weak
probe even in the absence of a coherent field in the model. We conclude that gain is determined by the
ensemble average of the product of the two-photon coherence and the “‘effective Rabi frequency” of the field.
Thus, even though the incoherent pump reduces the two-photon coherence, gain can be restored by choosing

sufficiently high strengths of the incoherent field.
PACS number(s): 42.50.—p, 42.65.Dr

Most models of lasing without inversion (LWI) utilize a
coherent pump to prepare the atom-field system, such that a
weak probe can be amplified on one of the transitions, even
in the absence of population inversion on that transition
[1-5]. The gain mechanism is explained on the basis of co-
herence induced between two atomic levels by the coherent
field, such that the inversionless gain is predominantly deter-
mined by the two-photon coherence [6]. The noise properties
of various laser fields in a LWI configuration have not re-
ceived much attention, except for a few recent works which
suggested that replacing the incoherent pump in traditional
LWI schemes by a spectrally colored pump can provide sig-
nificant gain enhancements [7]. Scully and co-workers [8]
investigated the consequences of relative phase fluctuations
between two coupling fields in a double-lambda LWI model
and concluded that any phase fluctuations in the coupling
fields will reduce the available gain. Gong and Xu [9] re-
ported a study where the coherent coupling field was re-
placed by a phase-diffusing field and their conclusion was
similar to that of Scully and co-workers. A phase-diffusing
field can be viewed as a partially coherent field, especially if
its bandwidth is comparable to the atomic widths. It is there-
fore not surprising that these authors found gain even when
the coherent field was replaced by a stochastic field.

In this paper we show that the coherence effects that lead
to LWI are preserved even in the absence of any coherent
coupling field in the model. Specifically, we show that inver-
sionless amplification can be obtained even if the coherent
coupling field is replaced by a chaotic field, and elucidate the
mechanism behind this unexpected result. To be specific,
consider the three-level ladder system of Fig. 1, with ground
state |3) and two excited states |1) and |2). The |1)«|3)
transition is dipole forbidden, while the |1)«|2) transition
is the lasing transition. This upper transition, at frequency
w1, , has a radiative decay rate of 2y, and the lower transi-
tion, at frequency w,3 has a width of 2vy,. In most models,
the |2)«|3) transition is coupled by a coherent pump (at
frequency w,), an incoherent pump is used to transfer popu-
lation from |2) to |1), and a weak probe (at frequency ;) is
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scanned across this upper transition and its absorption or
gain monitored. The strong coherent field leads to Stark split-
ting of the lower atomic levels, creating dressed states, which
are linear combinations of the bare states |2) and |3). The
Stark split levels have an energy separation equal to the Rabi
frequency of the coherent pump, and when the probe is tuned
to one of these dressed levels it experiences gain.

In most reports on LWI to date, the coherent field has
been considered an essential component for obtaining gain.
If this coherent pump is replaced by a phase-diffusing field,
there would be a concomittant reduction in gain, which can
be easily understood in terms of reduction in the two-photon
coherence [8,9]. However, one expects a dramatically differ-
ent result if a chaotic field replaces the coherent pump. It is
well known that in the presence of a chaotic field, coherence
(or Rabi) effects are not visible, e.g., the sidebands in the
Mollow triplet vanish for a chaotic field because the Rabi
frequency itself is fluctuating and on average its effects are
not revealed in the observable [10]. One might thus conclude
that there should be no gain for chaotic coupling fields, since
LWI is based on coherence phenomena.

In this paper, we address the consequences of utilizing an
incoherent coupling field in LWI, by comparing the gain
when the coherent field is replaced by either a phase-
diffusing field or a chaotic field. The former is known to
accurately reproduce the behavior of intensity stabilized,
single-mode lasers operating well above threshold, while the
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FIG. 1. Schematic representation of a three-level ladder system
with ground state |3) and two excited states |1) and |2). The spon-
taneous decay rates from |1) to |2) and |2) to |3) are 27, and
21, , respectively. w, is the probe frequency, w, is the central fre-
quency of the coupling field, and A is the incoherent pump rate.
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latter can be used to describe the output of multimode or
pulsed lasers. The most striking result we find is that it is
possible to realize gain in LWI configurations, even without
any coherent pump in the model. Further, if the incoherent
field has a bandwidth of the order of the atomic radiative
width, the gain one obtains is comparable to that with a
coherent pump. This is important from an experimental point
of view, since it is much easier to produce a spectrally col-
ored pump than a purely coherent pump.

The semiclassical Hamiltonian for the atomic system of
Fig. 1, with a coherent coupling field, can be used to derive
the time evolution of the relevant density matrix equations,
which are

pu=—2yipntigpu—ig*pn—2A(p11—pw) . (1a)

pr2=—(vi+vatiA)pptig(prn—pi)—iG3p;s
_2Ap12, (lb)

pi3=—(y1+id +ily)pi3tigp—iGypn—Apiz,  (lc)

P2=2Y1P11—2YV2Pp0n—i8P2t+ig*p1+iG,p3—iG3 py

+2A(p11—p2) » (1d)
p23=—(¥2TiBy)prtig*pi3+iGy(p3z—p2)—Apx,

(le)

p33=2%202—iGrp3+iG5 pa3, (11)

where G, is the Rabi frequency of the coherent pump, A,
(= wy3— w,) is its detuning from the lower transition, A,
(= w,— w;) is detuning of probe from upper transition, A is
the incoherent pump rate, and g is the Rabi frequency of the
probe.

The gain G is given by calculation of the density matrix
element p;,, and explicitly is

P1271
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G=—Im
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where G is in units of the weak-field resonant absorptivity.
We use the same parameters as in Ref. [7], which are
G,=143y,, A,=251v,, y,=5.45y;, A=17v;, and
g=0.27y,, and for which the maximum gain one obtains is
approximately 0.0042.

We now apply a stochastic coupling field on the lower
transition, and so replace G, by G.(1)e'#®, where the time-
dependent amplitude or phase is a Gaussian-Markovian ran-
dom process. For chaotic fields [ ¢(#)=0], G.(¢) has zero
mean and an autocorrelation function of the form

(G (t)G*(t")y=DTe M=, (3)

In Eq. (3), D is the strength of the noise, I" is its bandwidth,
and the product DI' can be identified physically with the
intensity of the field. A chaotic field as defined here has a
Lorentzian spectral profile with a full width at half maximum
(FWHM) of 2T". If the coupling field is taken to be a phase
diffusing field, then we define Q) [=G_.(#)] as its Rabi fre-
quency [11], and w(t) as the frequency fluctuations
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FIG. 2. Inversionless gain as a function of the coupling field
bandwidth. For chaotic fields, DF=(14.371)2, and for phase dif-
fusing fields, 8=100+y,. Other parameters as in text.

[dp/dt= u(t)], where the ensemble average (u(7))=0 and
(1) has an autocorrelation function of the form

(u(D)p(t")y=bBe Pl (4)

Here b is the strength of the frequency noise, B is the band-
width of the noise, and for 8>b, Eq. (4) reduces to a
o-correlated function, with the resulting field having a
Lorentzian spectral profile with a FWHM of 2b.

Equation (1), modified to include a fluctuating coupling
field, is solved using Monte Carlo methods [12], and we
compare the gain for two situations—when the driving field
has chaotic fluctuations and when it has phase fluctuations.
In order to make a fair comparison, it is necessary that the
fields in both models have identical Rabi frequencies, band-
widths, and band shapes. The chaotic field, as defined in Eq.
(3), always has a Lorentzian line shape with a bandwidth
equal to 2T, and the “effective Rabi frequency” is given by
JDT . For the phase diffusion field, if we choose 8>b, we
ensure a Lorentzian field line shape with a bandwidth equal
to 2b, while the Rabi frequency is simply given by (). Thus,
if we choose I' equal to b, B much larger than b, and
JDT equal to (), the chaotic and phase-diffusing fields
would have identical excitation strengths, bandwidths, and
line shapes.

Figure 2 depicts the main result of this work, the maxi-
mum inversionless gain as a function of the coupling field
bandwidth for chaotic and phase-diffusing fields. The gain
shown is the ensemble average over several hundred inde-
pendent iterations, each with a different set of random num-
bers, to reduce the errors due to small number statistics. It is
quite clear that there are dramatic differences in the two
cases, which become less pronounced as one gets to larger
bandwidths. For a purely incoherent pump, the probe re-
sponse is identical for the two models, and as expected, there
is no gain. The most interesting regime is where the field
bandwidth is comparable to the atom relaxation rate. This is
the regime where most lasers operate, and such bandwidths
are easy to achieve. When the coupling field bandwidth is
equal to 1 (in units of vy,), the gain due to a phase diffusion
field (G~0.0035) is not significantly different from that
with a coherent pump (G ~0.0042). For the same field band-
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width, though the gain due to a chaotic field is less than that
from a phase-diffusing field by a factor of 2 (G~0.002), itis
surprising that there is any gain at all. Since a chaotic field is
expected to erase all coherence effects, the fact that one can
realize gain even in the presence of a chaotic field is unex-
pected.

Figure 2 shows results for values of coupling field band-
widths starting at 1 (in units of ;). The Monte Carlo tech-
nique does not permit calculation of gain for zero-field band-
widths due to the nature of the numerical algorithm [12].
However, one can easily determine this gain analytically. For
the phase-diffusion model, the limit of zero bandwidth is the
coherent field, for which the gain is 0.0042. However, for the
chaotic field, zero bandwidth does not correspond to a coher-
ent field. Instead, the intensity of the field / has a probability
distribution P(/) that is given by

P(I)= Z% e 11D 5

where (I) is the mean intensity. The gain is obtained by
averaging p, over the intensity distribution of Eq. (5), and
we determine the gain, from such an averaging, to be ap-
proximately 0.0025. We emphasize here that while the gain
for nonzero bandwidths has been calculated via the Monte
Carlo method, the gain for zero bandwidths has been calcu-
lated by solving for p;, analytically (to first order in g) and
then averaging it over the chaotic field probability distribu-
tion. We mention this to point out that the unexpected gain
for chaotic fields is not a numerical artifact of the Monte
Carlo procedure.

We now analyze the density-matrix equations to elucidate
the source of this gain with chaotic fields. If we accept the
notion that the two-photon coherence p;; determines gain,
then we find that even for moderate bandwidths, this coher-
ence is almost zero and hence cannot give rise to gain. How-
ever, a closer inspection of Eq. (1) [Eq. (1b) in particular]
indicates that the dominant term in the density-matrix equa-
tions that produces gain is the (G*(¢)p;3) term, and not
{p3) by itself (angular brackets denote ensemble averages).
If a coherent coupling field is applied, this product can be
separated into the product of the Rabi frequency and the
two-photon coherence. However, if an incoherent field is ap-
plied, it is the ensemble average of the above product which
must be examined. Thus, even though (p;3) itself is very
small when the field is incoherent, if G, is chosen large
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FIG. 3. Real and imaginary part of (G*(z)p;3) as a function of
coupling field bandwidth. The noise parameters are the same as in
Fig. 2, and other parameters as in text.

enough such that the product (G*(z)p;3) is large, one can
still realize gain. In Fig. 3 we show the real and imaginary
parts of (G*(1)p,3), which have significant nonzero values,
even though (p,3) by itself is almost zero. Clearly then, it is
not p;3 which is the important term, but rather the product
GX¥(t)p3 which provides gain.

In summary, we have shown that it is possible to preserve
atomic coherence effects even in the absence of a coherent
coupling field. This point has been demonstrated by showing
that one can realize inversionless gain by using incoherent
coupling fields. The origin of this coherence preservation has
been traced to the fact that it is not just the two-photon co-
herence which is responsible for gain in LWI, but rather the
ensemble average of the product of the two-photon coher-
ence and effective Rabi frequency of the incoherent coupling
field. This implies that one can use a stochastic field to real-
ize LWI, as long as reduction in the two-photon coherence is
compensated by an increase in strength of the field. As ex-
pected, we do find that for a given field bandwidth, band
shape, and Rabi frequency, the phase-diffusing field is more
effective in producing gain than the chaotic field. The pre-
dictions of this work can be experimentally tested via laser
noise engineering techniques developed by Elliott and co-
workers [11,13].
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