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The role of atomic phase coherence in various correlated-emisson laser (CEL) schemes is investigated.
A CEL scheme is introduced in which coherence is generated by a Raman-type two-photon process.
Ideal CEL action, that is, vanishing phase diffusion in the difference phase of two modes, is predicted
even in the presence of nonradiative transverse decay in this scheme and in a previously suggested
configuration. The results are applicable to the analysis of dephasing collisions between atoms in a gase-
ous CEL medium.
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I. INTRODUCTION

The correlated-emission laser (CEL) has been the sub-
ject of theoretical [1—19] and experimental [20,21] atten-
tion. Nevertheless, certain aspects of CEL action remain
unexplained. The aim of the present paper is to point out
and analyze the various ways in which atomic coherence
leads to the suppression of phase-diffusion noise in the
CEL. In particular, we show that even in the presence of
certain coherence-depleting processes such as atomic col-
lisions, it is still possible to completely suppress diffusion
in the difference phase of two CEL modes.

First of all, we introduce a CEL scheme in which the
atomic coherence is generated by a Raman-type two-
photon process (see Fig. 1). This atomic configuration
has experimental advantages over existing schem. :or
example, it avoids the problem of driving a c 'e-

forbidden transition (which is necessary in a microv
driven CEL; see Fig. 2), and ideal CEL action is possi' '~

without the need for strong driving fields. CEL action in
this configuration is compared to a previously analyzed
scheme (see Fig. 2}, where the atomic coherence is gen-
erated by directly driving the two levels in question [2].

In order to set the stage for the discussion of the role of
atomic coherence in the CEL, let us first consider the
conceptually simplest CEL configuration that incorpo-
rates the basic ingredients of the problem. At the heart
of the matter, CEL action in the atomic level schemes of
Figs. 1 and 2 is the suppression of phase diffusion be-
tween the two lasing modes a& and a2 due to coherence
between the upper atomic levels ~ai ) and ~a2). In the
simplest case this coherence is provided by preparing
atoms with the level scheme of Figs. 1 or 2 (without auxi-
liary level ~c ) and in the absence of the driving fields and
transverse decay) in a coherent superposition before they
are injected into the interaction region. The injected
coherence is chosen to be lower than maximum, i.e., we
set the initial atomic density matrix for each atom at the
injection time t, to be p, , (t =t, )=p, , (t =t; }=—,

' and.

p, , (t = t, ) =(1—e)/2 (e & 0).
If 8; denotes the phase of the field in mode i (i =1,2),

then the linear gain and cross-coupling coefFicients—
obtained in analogy to Appendixes A and B—yield for
the phase. -diffusion coefficient of the difference phase
4 =8, —Oz with the help of Eq. (24),

D+ = [1—(1—e)cos%],
2p

where a is the linear gain coefFicient and p is the mean
number of photons. Therefore, one may at best achieve
D+ =e'a/2p (with 4=0). In other words, if we define

the degree of coherence d „z=
~ p, , ~ /(p, , p, , )

'

then maximum initial coherence corresponding to
d„„=1 (i.e., @=0)leads to complete suppression of phase
diffusion. However, any submaximum ratio d„h=1 —e
(e &0) results in a nonvanishing phase-diffusion constant.
Thus we are led to conclude that coherence-depleting
processes, such as collisions of the lasing atoms, result in
incomplete CEL action.

Consider now the Raman-driven quantum beat CEL as
per Fig. 1. Here, coherence is generated by two external
resonant driving fields with Rabi frequencies Qi and Q2
coupling the two upper levels ~a i ) and ~az ) to an auxili-

ary level
~
c ) . In the absence of transverse decay

(I =I" =0) and for Qi ——Qz the degree of coherence for

p, , is easily calculated to be d„„=l in steady state.
1 2

Thus we expect ideal CEL action in this scheme. Not
surprisingly, this is indeed the case, as shown later in the
present paper. If we now include some r"'-;~.nishing
transverse decay (I &%0), then the degr~ ~t' conerence
between the upper two leve~a decreases,
d, h= I /(I +I ) & 1 (independently of Qi =02), but
contrary to the above arguments, we nevertheless obtain
complete suppression of phase diffusion, i.e., ideal CEL
action.
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al

FIG. 2. Atomic level scheme for directly driven quantum
beat CEL action.

FIG. 1. Atomic level scheme for Raman-driven quantum
beat CEL action.

Note in particular that the transverse decay decreases
the degree of coherence irrespective of the strength of the
driving fields. Thus it is not possible to wipe out the de-
pletion of the coherences due to the transverse decay by
simply turning up the driving field. Indeed, as the results
of the present paper show, the transverse decay rates sur-
vive in the linear gain and cross-coupling constant, even
in the strongly driven limit, i.e., the transverse decay does
infiuence the laser properties (but not the possibility for
complete suppression of phase diffusion).

In the directly driven (microwave-driven) quantum
beat CEL depicted in Fig. 2, coherence between the two
upper levels ~a& ) and ~az) is generated by an external
resonant driving field with Rabi frequency A. In this
scheme the degree of coherence generated by the driving
field is not maximum, even in the absence of transverse
decay (I =0), but instead given by d„h = I'/(21
+0 )' &1. Therefore, we may have at best d„h= 1/
~2. This is somewhat surprising, since it has been shown
[2] that this configuration allows for ideal CEL action.

In technical terms this apparent paradox is easily
resolved if one realizes that it is the relative size of the
linear gain and cross-coupling coefBcients that decides
over CEL action, as per Eq. (24). These coefficients a;
(i,j=1,2) are not always simply proportional to the
respective atomic population and coherences p;J. . In-
stead, they contain contributions from populations and
coherences in the externally driven schemes. Therefore,
the phase-diffusion constant given by Eq. (24) depends on
the steady-state atomic density matrix in a more subtle
manner, and the logic cannot be simply transplanted

II. LINEAR GAIN AND CROSS-COUPLING
COEFFICIENTS

Correlated-spontaneous-emission lasing was originally
predicted using a general two-mode field master equation,
in which the two oscillator modes are coupled according
to [2],

pf =+A; p/, (2)

where the operator JR is given by

from the CEL with injected coherence (where indeed

a;J ~p;J) to the driven schemes. In other words, ideal
coherence in the sense d„&= 1 is not a necessary condi-
tion for ideal CEL action.

Nevertheless, if an atomic scheme like the directly
driven quantum beam CEL displays ideal CEL action in
the absence of nonradiative transverse decay, then the in-
clusion of such transverse decay may be expected to lead
to residual phase difFusion. After all, the transverse de-
cay decreases the coherences in the system below the lev-
els at which ideal CEL is initially predicted. However, as
is shown in the present paper, ideal CEL action is still
possible also in the directly driven quantum beat CEL in
the presence of nonradiative transverse decay.

Apart from gaining theoretical insight into the role of
atomic coherence in different CEL schemes, the con-
siderations presented here are of relevance to the experi-
mental implementation of CEL schemes. Although ex-
perimental results demonstrating CEL action were ob-
tained in gas lasers [20,21] without detailed theoretical
investigations of the effect of atomic collisions, the
present results show that such collisions are not the limit-
ing factor and that the improvement of these experiments
therefore does not depend on the suppression of atomic
collisions.
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1JM;;pf = —
—,[a;;pfa;a, +a;;a;a,.pf

—(a,, +a,*,. )a,tpfa;] (i =1,2),

~izpf [a12Pf 1 2+a21 1 2Pf
1

( + e
) t a ]ei@(t)

~zlpf [ 21Pf 1 2 +a12 1 2Pf
1

—(a„+a*„)a,'pf a, ]e
-' '"

(3)

(4)

Here, the a; (i,j =1,2) are the linear gain and cross-
coupling coefficients and @(t) is a phase that is deter-
mined by the details of the laser medium and is as yet un-
known. We have neglected cavity losses and mode pul-
ling terms because they do not inAuence the noise proper-
ties of the CEL.

In the case of the directly driven quantum beat CEL
(see Fig. 2), the coefficients a;. have been derived in Ref.
[2] without taking into account coherence-destroying col-
lisions. In this system two lasing transitions couple two
closely spaced upper levels la, ) and laz) to a common
lower level lb ). The coherence between lai ) and laz) is
generated by an external field with Rabi frequency n.
The system is pumped by injecting atoms in state la) )
into the interaction region with a constant rate r, and all
states decay with a common rate I to some other atomic
levels.

We show in the present paper how an additional phase
decay I dephasing the upper two levels influences the
CEL properties of the system. In Appendix A we calcu-
late linear gain and cross-coupling coefficients, including
such additional phase decay starting from the interaction
picture Hamiltonian

M=()zg(a, e '
la) )(bl+aze ' laz)(bl)

fsQe
la, &(a, l+ H. a. , (6)

where we have made the following assumptions: First,
the coupling constants between the two transitions
la, )~lb) and laz)~lb) and the modes with annihila-
tion operators a, and a2, respectively, are equal and
called g. Second, the coherence-inducing driving field
with Rabi frequency n and phase P is resonant with the
transition la()~laz). The detunings b, i and hz are
defined by b, ; =co, (,

—v; (i = 1,2) with the atomic transi-
I

tion frequencies co & and the mode oscillation frequencies
v;. We obtain

p 2

[(r+r, )[n'+2r(2r+ r, )]2ID,
+2ib. ,[n +2r(r+r, )]],

where we used

D,. =[n'+r(r+r, )]
2I +I '+i a+—

2 ' 2

2r+r,'+i a ——
2 ' 2

(j=1,2) .

H=fig(a(e ' lai )(b l+aze '
laz )(b l)

fgQ1 AQ2
lc &(a, l

— lc &(a, l+ H. a. , (12)

where again the driving fields are assumed to be resonant.
For the calculation of the linear gain and cross-coupling
coefficients, we refer to Appendix B. There we obtain in
the simplified case when 01=02=Q and 61=62=6,

+11 +22
r, g n (2I I „+n )

z, (2z, z, +n )

r.. 2r..
X n —1 + (I +2Z(„)Z,(,

&12 &21
r,g n (21 I „+n )

Z,b(2Z, bZb, +n )

(13)

X —n —1 +2(I „+2Z„,)Z,b

As in Ref. [2], C&( t ) is given by N( t) = (vi —vz—co, , )t —P.
In addition to the directly driven quantum beat CEL,

we investigate a different kind of coherence-inducing
mechanism in the present paper. The atomic level
scheme for this case is depicted in Fig. 1. Again, two
upper levels

l
a 1 ) and

l
a z ) are coupled to a common

lower level lb ) via two lasing transitions. But now the
coherence between la( ) and laz) is generated by cou-
pling these upper levels to an auxiliary level lc ) by fields

01 and Q2, respectively, in a Raman-like interaction.
The system is pumped by injecting atoms in state lc ) at a
rate r„and all levels decay at the same rate I to some
other atomic levels outside the system of interest. In ad-
dition to this longitudinal decay, we include additional
transverse decay between levels la, ) and laz ) at rate I
and between lc) and la;) (i =1,2) at a rate I „'. This
transverse decay may be due to collisions between lasing
atoms or other dephasing processes.

For this Raman-driven quantum beat CEL, we start
with the interaction picture Hamiltonian

&22 = 2

[n (3I"+ I ~ +2ihz) ], (8)
2

2

[ 1n[r(2r+—r., ) n'+2i s,r—]], (9.)
2

2

[ 'n[I (4I +31" )+n +2ih, r]], (10)
1

with

Z p=r p+ih,
r..=I.+I;,
l,b

=I +I ~/2,

(14)

(15)

(16)
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(18)

r„=r+(r,' —r, /2),
D =4r'r..r'., +2rr.,Q'(r+4r. .)+n'(r+ 3r..),

(19)

(20)

and @(t)=(vi—v2 —co, , )t F. or the derivation of Eqs.
(16)—(19), see Appendix C. (Note that I and I ' are not
independent quantities and that we always haveI' —I /2&0. )

III. CEL ACTION

%'e now show the possibility for CEL action in several
cases. Let us first consider the directly driven quantum
beat scheme. As a particularly simple case, we set the
two detunings equal, b, i=h2=Q/2, and assume Q» I
[cf. Ref. [2], Eq. (28)]. Then Eqs. (7)—(10) reduce to

r 2

2I (I +I /2)
(21)

—1
—i tII P~ i%O'= —, Im o')) —a22+a)2 e —a2) e

Pi P2
(22)

4= —e sin+,
where we have set the mean photon numbers equal,
p, =pz. From Eq. (23), we see that the difference phase
locks to zero. On the other hand, the phase-difFusion
coefficient for the beat signal (a,a2 ) is given by [2]

~11 +22 ( 12++21)
D =—'R +

p& P2 Pipz ]
(24)

D+ = (1—cos%),
2p

(25)

such that we have vanishing phase difFusion in the
difFerence phase, even for collisional relaxation of the
upper two levels. This result holds in the limit of strong
driving, A &)I, and it may be argued that stronger and
stronger driving simply compensates the coherence-
destroying mechanisms. However, we can also generalize
the case of Eq. (27) of Ref. [2] to

r+I,
[Q +21"(2I +I ~)], (26)

The presence of I in the denominator of u shows that
the CEL medium is indeed seeing the inhuence of the col-
lisions, even in the limit of strong. driving, as mentioned
in the Introduction. This behavior is related to results in
the two-photon CEL with phase Auctuations in the inject-
ed coherence [22].

The locking equation for the difFerence phase
4=ei —82+ / of the respective field mode phases 8; then
reads [2]

Q, that indeed Re(a»+a@2 —a, z
—az, )=0, as required

for D+~+ O=O. This somewhat surprising result means
that we can compensate for collisional and other phase-
destroying mechanisms by adjusting the detunings rather
than driving the system harder.

We now switch to the Raman-driven quantum beat
CEL. After inserting our result for the linear gain and
cross-coupling coefficients Eqs. (13) and (14), D~ reads

rg 0 2II +0
2p Dr.b 2r.bI b, +0

X 2I „I,„(1 —cos+ ) +4I,„I', ~aa

I
—cos%

+Q —1 (1+cos%') (28)

4= —
a&2 sin% . (30)

This relation tells us that 0' locks to 0.
Note that this mode of ideal CEL action was derived

without assumptions about the strength of the driving
fields. In this sense the present Raman-driven CEL may
be advantageous to implement in an experimental situa-
tion. Another aspect of the usefulness of this atomic level
scheme is the fact that only dipole-allowed transitions are
to be driven, in contrast to the directly driven CEL.

In the more general case of nonvanishing I and I ',
Eq. (30) is still valid, and the phase-diffusion coefficient
given by Eq. (28) simplifies with 4=0 to.,g'n'(2rr. , +n')(r../r —1)

4~%=0 2DrP ab

(31)

Here we clearly see the inhuence of collisional phase de-
cay: The term (I'„/I"—1)=I" /I is responsible for the
residual phase difFusion due to additional transverse de-
cay and vanishes for I ~=0 such that D~~~ O=O, corre-
sponding to ideal CEL action.

However, the Raman-driven quantum beat CEL also
allows for ideal CEL action in the presence of collisional
phase decay: In the case of non vanishing detuning,
b, =n/&2, we obtain in the limit of strong driving,
Q»I,

where the simplification 6=0 has been made. In the case
of vanishing additional transverse decay, i.e., I =I" =0,
this result simplifies to

r,g Q (1—cos%)
D@=

2p (2I +Q )(I +2Q )

For 4 locked to 0, we therefore have ideal CEL action,
D+ =0. This mode of operation is indeed possible, as can
be seen from the equation of motion for the phase
difFerence 4 in the present case,

3I + I Q.
2I (27)

r,g (I'+I „)
r(r+3r..)(r.,+r„) (32)

For these detunings, we find, after a somewhat lengthy
calculation without assumptions about the magnitude of

fhus, from Eqs. (22) and (24) we again have ideal CEL
action, D+ ~~ O=0, irrespective of the phase decay.
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IV. DISCUSSION

In the present paper we have shown that ideal CEL ac-
tion is possible, even in the presence of nonradiative
phase decay induced, for example, by atomic collisions.
Ideal CEL action can be achieved by strong driving at
certain detunings or, in the case of the directly driven
quantum beat CEL, by the choice of the detunings alone.
This result is noteworthy insofar as even for strong driv-
ing fields the dephasing rate between the upper two lasing
levels ~ai ) and ~az) does indeed infiuence the system
behavior described by the linear gain and cross-coupling
coefficients a; (i,j =1,2).
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i
pf = ——Tr„. [H,p]

+

+ &b()~H, P]~b &),
—ih)t

pf ='ge (p, bai aip, b)
—i 62t+ige (p, ba2 —a2p, b)+ H. a.

(A 1)

(A2)

Therefore, we have to find p, b (i =1,2). In order to ac-
I

complish this task, we apply a perturbative approach and
first calculate the subsequently needed density-matrix ele-
ments to zeroth order in the coupling constant g. Note
that we do not have a rotating frame for our system as in
general b )Ah2 and the driving field is assumed resonant.
Therefore, we have to solve for the time-dependent one-
atom density matrix first and integrate over the injection
times later. The equations of motion for the relevant
zeroth-order one-atom matrix elements are

~ (0) — I (0) + (e
—i$ (0) ei$ (0)

)
. Q

2 1 I 2

APPENDIX A: LINEAR GAIN AND CROSS-COUPLING
COEFFICIENTS FOR THE DIRECTLY

DRIVEN QUANTUM BEAT CKL
~ (0) — (I +I )

(0) +I e
(

(0) (0)
)

ne
P ala2 2 02a2 alai

(A4)

(AS)

With the Hamiltonian Eq. (6), the master equation for
the radiation field can be obtained from

The solution to this system subject to the initial condition

p.'". (0)= 1 is

(0) (I)—
—j."(t —t0) —I (t —t0)/21+e

I
cos [Q'(t t0 )]+,s—in[Q'( t t0 ) ] .pf—( t), (A6)

Pa2a,

—I"(t —t )0 —I (t —t )I2'1 —e 0
I

cos[Q'(t t0)]+, sin[Q'—(t t0)] p—f(t), (A7)

p2
(A8)

where O'= QQ —I /4. The equations of motion for the first-order density-matrix elements are
p

I'+ p, ,b+i P, +big( e'P, , ai+e.(]) p (~) . Qe (~) . iA&t (p) ib&t (p) (A9)

')

p, ,b= — I+ p, b+i p, b+ig(e 'p, , a, +e 'p, , a ).~ ($) ' p (~) . Qe (~) . i~&t (p) ih2t
(A 10)

These equations can be integrated and yield

r

( I'+ I' /2 )( t t' ) i b i
t'

p b t)=ig dt'e ~ e
0

cos (t t') p' ' —(t')+ie —'(' sin (t t') p', ', (t') a, — —
2

I

+e ' cos (t t') p' ' (t')+—ie '~ sin (—t t') p,' ', (t')—a~ . , —
2

(A11)
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(1) . t, —(I +I /2)(t —t') itt)t'
p, b t =ig dt'e ~ .e

0
cos (t——t') p, , (t )+ie'b sin (t——t') p',o', (t') a,

i62t'+e cos (t —t') —p,' ', (t')+ie'~ sin (t ——t') p', ', (t') a2 (A12)

Inserting the zeroth-order elements from Eqs. (A6) —(A8)
and integrating over the injection times according to

~ (o) (o) 1 (0) 1 (o)
Pa

1 a1 ~Pa1 a1 + Pca1 Pa
1
c (85)

t

P. b(t) =
. r dt, P."b(t, t, ),

leads, after a lengthy calculation, to

g ill t g i 52t —i/
Pa b( ) e +1lpfa1+ e +12pfa2

2g 2g

(A13)

(A14)

. (o) I- (o) + ; (0) ; (0)Q2 Q2
Pa, a, Pa, a, ' Pca, '

2 Pa, c

(0) I- (o) + , (0) ; (o) + ; (o)~
Q1 Q1 Q2

cc cc 2 a
1
c 2 ca1 2 a2c

(86)

g ih1t+i tt) g ib2t
P, b(t)=

2
e ' a2(pfa)+ e a22Pfa2

2 2g 2g
(A15)

APPENDIX 8: LINEAR GAIN
AND CROSS-COUPLING COEFFICIENTS

FOR THE RAMAN-DRIVEN
QUANTUM BEAT CEL

Using Eqs. (2) and (A2), we identify @(t ) = ( vi —v2—ai, , )t —p and the linear gain and cross-coupling

coefficients, as given in Eqs. (7)—(10).

2 (0)—i Pca +rP
2 2

(87)

~ (0) p (0) + (0) . (0)Q1 Q2
Pa

1 a2 aaPa
1 a2 2 Pca2 2 Pa1c (88)

'r, Q1
P,1,

=
2D G21Pf, (89)

where we have assumed real Rabi frequencies Q, and Q2.
Here, I „=I+I~ and I „=I+I (see Appendix C).
Applying the adiabatic approximation, the time deriva-
tives on the left-hand side are set to zero, and we obtain
for the subsequently needed matrix elements

The master equation for the radiation field can be ob-
tained from Eq. (Al). The trace of the atomic parts for
the Hamiltonian Eq. (12) is given by

ir, Q2
Pa&c 2D 12Pf (810)

Tr„, [H p]=&a, l[H, p]la, )+&a2l[H, p]la2)

+&bl[H p]lb&+&cl[H p]lc&

—i 61t
Tr,t, [H,p]= Age

' (p, ba—, —a, p

(81)

Q
(0) c 1

2ID
Q

(0) c 2
Pa2a2 2I D 12Pf

r, Q1Q2
Q

(811)

(812)

(813)

fige '(p, ba2 —a—2p, b) —H. a. (82)

Therefore, we have to find p, b (i =1,2). In order to ac-
t

complish this task, we could proceed along the lines of
Appendix A. However, in this larger atomic level
scheme, it is more convenient to first consider the case
b, i

= b,2= 6, (then we are able to transform to a rotating
frame), and subsequently generalize the result to arbitrary
detunings.

In zeroth order, the equations of motion for the
relevant population matrix elements are

where we have introduced the auxiliary quantities

Gi2=2I „(21I „+Q))+r(Q2—Qi),

G2i =G12l i-2

Q2=4rr +Q'+Q',

D =4r'r. .r'., +rr.,(r+4r..)(n', +n', )

+r(n4 n2n', +n4)+—3r..n', n', .

(814)

(815)

(816)

(817)
-(0) (o) - 1 (o) (o) . 2 (o)

pa c racpa c+1 (pcc pa a ) 1 pa a1 1 2 1 1 2 1 2

-(0) I (0) . 2 (0) (0) . 1 (0)
Q Q

P 2c acPa2c 2 Pcc Pa2a2 2 pa~a1

(83)

(84)

After changing into a rotating frame in which

p, b~p, be
' ' (i=1,2) and p ~bp eb' ', the relevant

t t

equations for the first-order matrix elements are
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(818)

p, b= —I,bp, b+i
2 p,b+ig(e 'p, , a,~ (1) (1) 1 (1) ~ '~1t (0)

(828)

P b= r bP b+t
2 P b+Eg(e 'P, ,a2(1) (1) - 2 (1) ~ '~ ' (0)

+e p, , a, ),Skit (0) (829)

+LgPca Q1+kgPca a2

1 2 2

(820)

-(1)
Pcb bcpeb + ~ Pa

1
b Pa&b

+ig(e p„a, +e p„a2) .~ I k)t (0) (830)

Pa b 2 (+llpfa I +ct[2Pfa2)
l

2g

(1) l
Pa b 2 (+21pfa 1 +ct2&f

2 2g

(821)

(822)

with the linear gain and cross-couphng coeKcients a,
(i,j=1,2)

r,g
~ G~) Q)[2(I +2Zb, )Z,b+Q2] —Q, Q~Q

where I,b
= (21 + I ) /2 and I b, = I + ( I z

—1 ~ /2) (see
Appendix C). Upon applying the adiabatic approxima-
tion once more, we obtain

We see that the time dependences always come in as
id .t

e ' a (j=1,2), just as in Eqs. (A9) and (A10) for the
directly driven quantum CEL. Therefore, we can obtain
the general result for arbitrary detunings by substituting
b,~b, in Eqs. (823) and (826), and likewise b, ~b, 2 in

Eqs. (824) and (825).

APPENDIX C: TRANSVERSE DECAY RATES IN
THE RAMAN-DRIVEN QUANTUM BEAT CEL

If we just consider the time dependence of the atomic
coherence p & (a,P=a &, az, b, c; aAP) due to collisions or
similar phase-destroying mechanisms, we may write

p &(t)= ice t—p tt(t)

(823)
i [ro p+5co—(t) 5a)tt(t)]p tt—(t) . (Cl)

r ga, =, —G, Q, Q [2I Z, b
—Q2]

+(4Z,bZb, +Q2)QiQ20

+21 12 1 2

with Z; =I; +iA and

(824)

(825)

(826) p tt(t)=e

i j dt—'e s [5' (t') —5cop(t')]p p(t') .
0

(C2)

Here, co & is the transition frequency in the absence of
perturbations. We treated the collisions by introducing
5-function-correlated independent fluctuations of the
atomic energy levels 5' (t) and 5rotJ(t), fulfilling
&5';(t)5cof(t')&„&&=5,f2y;5(t —t') (i,j =a or p). The
subscript coll denotes an average over the stochastic pro-
cess. Formal integration yields

ICJ t
sp (0)

D'=Z, b(4Z, bZb, +Q, +Q2) . (827)

For the simplified case Q, =02=0, this results in the
linear gain and cross-coupling coeKcients Eqs. (13) and
(14)

Note that we can generalize our results to arbitrary de-
tunings if we write out the first-order equations Eqs.
(818)—(820), but this time not in a rotating frame,

We insert this result back into Eq. (C 1) and carry out the
integration. This leads to

& p.t, &,.„= (t ~'.t,+y.+yt,
—) & p.t, &,.„. (C3)

We now assume y, =y, and yb=o, define I =2y,
and I" =y, +y„and obtain the decay rates given in
Eqs. (16)—(19).
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