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Both stationary and time-dependent regimes of operation, instabilities, and phase squeezing are inves-
tigated in the off-resonant two-photon correlated-spontaneous-emission laser by numerical calculation.
Initial atomic coherence plays an essential role in lasing without population inversion, phase locking,
and phase noise squeezing in the system. Under certain conditions, in the inverted and noninverted re-
gimes alike, the output intensity exhibits bistable behaviors against the initial atomic coherence. De-
pending on the parameters, the whole or a portion of the upper or lower branch gives stable operations.
In the inverted regime, even tristable behavior can be found in a narrow range of parameters. The field
evolution and dynamics are studied. Furthermore, phase noise reduction near bistable areas is also in-
vestigated. In addition to the lower branch, where from previous studies, it has been known to exist,
phase squeezing is also found on the upper branch both with and without population inversion, thus gen-

erating a bright source of phase noise squeezed light.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.65.Pc

I. INTRODUCTION

Recently much attention has been paid to the laser
with injected atomic coherence as an attractive candidate
to achieve phase and frequency locking as well as noise
suppression [1]. In a previous paper [2], we analyzed the
influence of the injected atomic coherence on ordinary
single-photon laser operation and noise quenching. Both
steady-state and time-dependent regimes were investigat-
ed. We gave a detailed discussion of regimes with and
without phase locking. The purpose of the present paper
is to provide a similar analysis for the two-photon laser
with injected atomic coherence.

Since the beginning of the theoretical research on
squeezing in the laser, the problem of squeezed-state gen-
eration in two-photon systems has attracted much atten-
tion. An early work by Yuen [3] suggested the two-
photon laser as a potential candidate for generating
squeezed states of the radiation field. Later, it was shown
[4] that due to the spontaneous-emission noise any possi-
ble squeezing at steady state would be destroyed and only
transient squeezing becomes possible [5]. Recent work,
including both linear [6-9] and nonlinear [10,11] theory,
has extended the investigations to coherent initial condi-
tions in this two-photon system: if the atoms are pumped
into an appropriate superposition of the lasing states,
quenching of spontaneous-emission noise may occur. In
this way, it has been shown that the generation of
squeezed light is compatible with gain [6,7] and even with
atomic inversion by adding an additional lower level [8]
or by choosing a fast decaying intermediate relay level
[9], thus providing bright sources of squeezed light.

In the present paper, we study the field dynamics, in-
stability, and phase noise fluctuations of the two-photon
correlated-emission laser (CEL) as functions of the vari-
ous detunings (cavity field, atom field) and atomic coher-
ence numerically. We consider the simple off-resonant
two-photon CEL scheme [6,7] with the middle level un-
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populated. Nonlinear theory is adopted in the calcula-
tion. It is shown that, similar to the case of the one-
photon CEL, the steady-state solution exhibits bistability
of intensity against initial atomic coherence, population
inversion is no longer necessary to maintain lasing, and
initial atomic coherence provides phase locking. The
essential difference between this system and the one-
photon CEL is that there exists a threshold, below which
the lower branch of the bistable intensity is always zero.
In addition, tristable behavior can be found in the two-
photon CEL. We study the field dynamics and instabili-
ties with limit cycle behavior. We then investigate the
effect of initial atomic coherence on noise. Besides show-
ing that phase noise can be squeezed on the lower branch,
we find that the phase noise squeezing persists on the
upper branch for the noninverted regime and, more im-
portantly, even for the inverted regime. We therefore ob-
tain a bright source of squeezed light in the simple two-
photon CEL scheme without the need of additional lower
level or the fast decaying intermediate relay level.

This paper is organized in the following way. In Sec.
I1 we start with the Fokker-Planck equation developed in
Refs. [10] and [11] to derive a set of nonlinear differential
equations and discuss the steady-state operation and sta-
bility. In Sec. III, we study the time evolution and the
field dynamics. In Sec. IV, using moments of Q distribu-
tion, we calculate numerical solutions for the steady-state
noise. Finally, Sec. V summarizes the findings of the pa-
per.

II. FOKKER-PLANCK EQUATION

We consider a system of three-level atoms, as shown in
Fig. 1, interacting with a single-mode field of frequency v.
The Hamiltonian for the system, in the rotating-wave ap-
proximation, is given by

H=H,+H.+H,, , @.1)
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a>

Here a and a' are the field annihilation and creation
operators, respectively; € is the cavity-mode frequency;
#iw is the energy of level i and |i ) are the atomic states
(i =a,b,c); g, and g, are the coupling constants for the
T4 transitions |a)—|b) and |b)—|c), respectively (for
simplicity, from now on we consider g,, =g,. =g). We
v have assumed that only the |a)—|b) and |b)—|c)
transitions are allowed. We consider the case that the
atoms are injected into the laser cavity with initial popu-
lations p(¢;,)=p,, and pl.(1;)=p, (=1—p,,) and initial
FIG. 1. Atomic levels relevant to the two-photon CEL coherence, bet:vv cen the top and b~0 rom leve!s
Atoms are injected in a coherent superposition of levels |a ) and ﬁj:;g;ulzﬁ]cea; tj—)rhe Z:(E)::il::( 1n12ei:::é31 r’:‘t};eisrrilddle level b is
. o ey . . . a*
le, with no initial population in level [b ). In Q representation this system can be described with a
Fokker-Planck equation (Ref. [11]). If we introduce the
scaled intensity and phase variables, n and ¢, the
Fokker-Planck equation becomes

c>

where H,,, Hy, and H,, are, respectively, the atom, field,

and interaction terms with 3Q (n,9) _ -——a-d ——a—d N 32 b+ 3?2 o
H,= 70,7 1 22 or an T 3pte Mgp2 T T M2 T ee
at 2 Cl)j J Js (2.2) t P n [
j=a,b,c
2
Hp=#Qa'a+1), (2.3) +29 anaan D,,|Q(n,e), 2.5)
H, =g, (ala){b| +aT|b Y al)
+#g,.(alb){c|+atlc)(b]) . (2.4)  with
J
d,= n [G(1+n)—228C2s1n2<p] —n, (2.6)
(1+n)"+6
d,=p—dlat2Ccosle] 2.7
2(1+4n +6)
— : ~ 2§27 :
D, =n (1+p)(2a G)2+282C sin2p  &+2C cos2p + nG[(1+n)"—56°]—4nd(1+n)C sin2¢ +n, 2.8)
2[(14+n)2+58?] 2[1+4n +8%] [(14+n)2+82)?
_ | —(14+n)G +28Csin2¢ |, (2C cos2e+a)(1+4n)—456C sin2g 1
P9 2 2 + 2 +—, (2.9)
8[(1+n)"+6°] 8[1+4n +87] 4n
D _1|8G+28Ccos2¢+2Csin2gp _ 48n(@+2Ccos2p) _ 28(1+n)nG +4n8*Csin2p 8G 2.10)
"4 (1+n)*+8? [1+4n +8%]? [(14+n)2+82]? 1+4n +8% |’ '
[
where and
G =a_(/_2£—_pc_c) , f=ty,
Y
_BI @=(a/y) (with I equal to the photon number). Here
=’ a=[(2r,g?)/(I'*)] is a linear-gain coefficient,
_ B=[(8r,g*)/(I'*)] saturation parameter, I is the atomic
Cc= a|Pacl decay rate (for simplicity assumed to be the same for all
y levels, I'y =T, =I'.=T"), and y is the cavity-loss rate.
_v—Q We have introduced ¢ =¢—16,., where ¢ is the phase of
D= y the laser field and 6,. is the phase of atomic coherence.
A Furthermore, D is the cavity-field detuning, & is the
8=F R atom-field detuning [A=a,, —v=—(0, —V), ie.,
overall two-photon resonance is assumed].
B In a steady state we obtain the following set of coupled

2a ’ nonlinear equations for the intensity n, and phase ¢,
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nolG(1+ny)—28C sin2¢,])

d = no=0,
" (1+ng)2+82 0
8[a+2C cos2
d —D— & cos2¢p] _
¢ 2(1+4n,+8?)

After eliminating the phase ¢, we can find a fifth-order equation for ng,

no{né+(4—2G)n3+[64D2+28+G2—6G +6]n} +[(4—2G)(1+8°—G)

where one solution is always

ne=0. (2.13b)

3185
@2.11)
(2.12)
—16D(8a&—2D —2D8%)|ny+[(1+82—G)?+(da—2D —2D8*)?—48°C?]}=0, (2.13a)
[
ad ad ad ad
. £l - =2 =1 20. (2.15)
an o | 9¢ Jo an Jo | 9¢ o

From Egs. (2.13a) and (2.13b) the steady-state curve of in-
tensity n, as a function of the atomic coherence C is mul-
tivalued for some set of parameters. This multistable
behavior is different from that of the one-photon
correlated-spontaneous-emission laser. One of the obvi-
ous differences is that the lower branch is always ny=0.
Another significant difference is that the first derivative
at the threshold point C,;, is not continuous.

Using linear-stability analysis, we can find the stability
conditions for the steady state (for details see Ref. [2]):

od, ad,,
on op

<o, (2.14)

0
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FIG. 2. Steady-state scaled intensity n, as a function of ini-
tial atomic coherence C with G =0, D =1, 6§=2, and a=10.
The solid line corresponds to the stable steady state and the
dashed line corresponds to the unstable steady state.

The subscript 0 means that the derivatives have to be
evaluated in the steady state. We find that for the lower
branch, n, =0, condition (2.14) reads

G=<1+8?, (2.16)
and condition (2.15) yields
G —28C sin2 26C sin2
G=Csindgy | BCsindgy o oy py)
1+82 1+8

We can also find the phase locking condition from Eq.
(2.12) (following the standard analysis of Ref. [12]):

[2C8| > 2D (1+8%) —8a] , (2.18)

)
7
L

15 20 25 3.0 35 4.0

FIG. 3. Steady-state phase @, as a function of C with the
same parameters as in Fig. 2.
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and the threshold point from Eq. (2.13a) assuming n,=0

(1+8>—G)’+(8a—2D —2D8)*—48°CL =0.  (2.19)

In Fig. 2, we plot the bistability curve of the intensity n,
as a function of the atomic coherence C with G = —2.0,
D =1.0, 5=2.0, and @=10. The phase ¢, as a function

2n3+3(2—G)n3+(64D2+28*+G*—6G +6)ny+(2—G)(1+8*—G)—8D (8 —2D —2D8*)=0 .

For the particular set of parameters of Figs. 2 and 3 we
find the phase-locking point C, =2.5, upper turning
point Cr=2.0, and threshold point Cy =2.8. In the
subregion 0=C =2.0 there is only one steady state,
no=0, and it is stable, but the phase @, is unlocked. In
the subregion 2.0=C <2.5, there are three curves: the
upper branch with positive slope, the middle branch with
negative slope, and the lower branch, n,=0. We know
that the part with negative slope is unstable and the other
two branches are stable. The time evolution n (7) exhibits
different behavior for different initial regions, separated
by the middle section. Starting from a value below mid-
dle section, n (7) will reach n,=0. If the initial value is
above the middle section, n(7) will finally reach the
upper branch. The phase ¢, for the upper branch is
locked and the phase @, for the lower branch n,=0 is un-
locked. For 2.5<C <2.8, intensity versus time behavior

25 T T T T

20 +

0.5 - ~

00 ———— — — — >~

FIG. 4. Steady-state scaled intensity nq as a function of ini-
tial atomic coherence C with G =3.5, D =1, §=1, and &=10.
The solid line corresponds to the stable steady state and the

dashed line corresponds to the unstable steady state.
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of C is presented in Fig. 3 with parameters being the
same as in Fig. 2. The physically accessible region is
given by 0= C <@V p,.0.., which, for the given parame-
ters, is 0= C =5. For nonzero solutions [the steady state
satisfies Eq. (2.13a)] condition (2.15) leads to (dn /3C)=>0.
This means that the parts of the curve with negative
slope are unstable (in the n-C plane). The upper turning
point (Cr,n(7) of the multivalued steady state satisfies

(2.20)

f

is similar to that in previous region, but the phase for
no=0 is locked to a particular value. Above C,, only
the upper branch is stable. This dynamical feature is
similar to that in a system of an optical parametric oscil-
lator coupled to N two-level atoms [13] and detuned de-
generate four-wave mixing [14].

In Fig. 4, we present n, as a function of C for another
situation. In this case, the whole physics region is given
by 0=C <4.68. Under C =2.4, there is no stable curve.
In this unstable region, the time-dependent behavior is
similar to that in the unstable region of the one-photon
correlated-spontaneous-emission laser [2]: n () oscillates
around a value which is very close to the critical intensity
n.=1.3 after the initial transients have decayed. For the
phase @(7), superimposed on a straight line which is
represented by the average slope of the phase versus time
curve, there is a small oscillation very similar to the oscil-
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FIG. 5. Steady-state scaled intensity n, as a function of ini-
tial atomic coherence C with G =10, D =0.78, §=0.72, and
a=38. The solid line corresponds to the stable steady state and
the dashed line corresponds to the unstable steady state.
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lation of the average intensity.

Since Eq. (2.11) is a quintic equation, one naturally ex-
pects to obtain the tristable behavior by properly choos-
ing the parameters. Indeed, Fig. 5 shows such situation
where the physical region is given by 0=C <18.33. For
C < 16.65, there is only one solution n,=0 which is un-
stable. In the region 16.70=<C <17.00, there are five
positive solutions, i.e., we have a possibility of tristable
operation in this regime. Among them only the top
branch is stable. In the region 17.0=C < 18.33, there are
three positive solutions, and still only the top level is
stable.

III. DYNAMICAL EVOLUTION

So far, we have dealt with the steady states of the sys-
tem. Let us now consider time-dependent scenarios by
keeping the full time dependence in the equations. In this
section we will investigate time evolution from a given in-
itial condition. We will first study how the system ap-
proaches steady state in those regions of the external con-
trol parameters where they exist. Then we will investi-
gate the states that evolve from a given initial state in the
unstable regions.

For the time-dependent case, the equations of motion
are

dn
—=d (3.1)
d? n

and
iﬂ=d¢ . (3.2)
dr

The nonlinear dynamics of the system is completely
determined by Egs. (3.1) and (3.2).

Before studying the transients around stable steady
states, let us first get some analytical insight into the re-
laxation dynamics by studying the trajectories in the n-¢
plane. By transforming equations (3.1) and (3.2) to the
form

§1=§1 (3.3)

? ®

we can obtain the governing equation. Since the time 7
does not appear explicitly in this equation, we can exhibit
the integral curves in the n-@ plane. Each point (n,@) in
this plane represents a possible set of initial conditions.
A trajectory going through this particular point then
determines the time evolution of the system, starting
from this initial condition. In Figs. 6—8 we plot the in-
tensity n versus phase @ for several cases. The steady
states now correspond to attractive singular points. In
Fig. 6, we plot n versus ¢ with G =0, D =1, §=2, a=10,
and C =2.6. Points a and b correspond to the stable
upper branch and stable lower branch (ny,=0), respec-
tively. Depending on the initial conditions, the point
[n(7),p(T)] moves, with the increase of the time 7, along
the integral curve and converges to the stable point a or
b.

3187
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FIG. 6. n-@ trajectories for G =0, D =1.0, §=2, &=10, and
C =2.6.

Now we discuss time evolution from a given initial
condition in those regions of the external control parame-
ters where the steady state becomes unstable, i.e., beyond
the critical point. We find that n (7) oscillates around a
value which is very close to the critical intensity, n, after
the initial transients have decayed. The period of oscilla-
tions 7 can be found from

2r do 27
= = 3.4
d o a—bcosp (a2—b2)172"° B4
4 T T T
3+ .

[

1+ _
Stable
Point

0r J

1 1 |
1 2 3 4 5
¢

FIG. 7. n-@ trajectories for G =3.5, D =1.0, §6=1, a=10,
and C =4.5.
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14 T T T T

Stable
6 Point -

FIG. 8. n-¢ trajectories for G=10, D =0.78, 6=0.72,
@=238,and C =18.

where
fep___ &
2(1+n,+8%)
and
b =_—8C—_ .
1-!—nc+82

The phase @(7) versus 7 is depicted in Fig. 9 with

15 o T —
10 .
=S
5+ |
1 |
0 10 20 30
t
FIG. 9. Time evolution of the phase ¢ with G =3.5, D =1.0,
8=1.0,a=10,and C =2.5.
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FIG. 10. Integral curves in the phase plane of quadratures, X
and Y, with G =3.5, D =1.0,8=1.0, &=10, and C =2.0.

G =3.5, D=1, 6=1, a=10, and C=2.5. The time
dependence has two ingredients. First, there is a con-
stant shift of the operating frequency which results in a
steady increase of the phase, strictly proportional with
time. This is represented by the average slope of the
phase versus time curve. Second, superimposed on this
straight line evolution, there is a small oscillation very
similar to the oscillation of the average intensity. In par-
ticular, the frequency of these phase oscillations is the
same as that of the intensity oscillations, given by Eq.
(3.4).

We next display this oscillatory behavior from another
point of view. Namely, we again discuss the integral
curves, resulting from Eq. (3.3). This time, however, in-
stead of displaying the trajectories in the n —¢ plane, we
will plot them in the X-Y phase plane of quadratures,
where X =1/ ngcosp, and ¥ =1/ngsing, are the usual
quadrature component variables. Figure 10 shows the
trajectories in the X-Y plane with G =3.5, D =1, §=1,
@=10, and C =2.0. Each trajectory approaches a stable
limit cycle. The point [X (7), Y (7)] starting from any ini-
tial condition, after the initial transients, i.e., after the ap-
proach to the limit cycle, moves along the limit cycle as
increases. The period required for the point to complete
one cycle is given by (3.4).

IV. NOISE SQUEEZING IN THE LOCKED REGION

In this section, we will use the Fokker-Planck equa-
tions (2.5)-(2.10) to study intensity noise {(An)*) and
phase noise {(A@)?) in the phase-locked region. From
the Fokker-Planck equation, we can get an infinite set of
coupled ordinary differential equations for the moments
of the distribution. If we assume the noise to be weak,
7 << 1, we can truncate these equations into a finite set of
nonlinear equations. In this paper we assume that only
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the first- and second-order moments are nonzero. These
nonzero moments obey the following equations:

d

—Anr=4{d, ), 4.1
dT<n) (d,) 4.1
L (p)y=(d,), 4.2)
dr (4

%((8n)2)=2(d,,8n Y+29(D,,) , @.3)
d

E((8¢)2)=2(d¢,8<p)+21;(DW) , (4.4)
%((8n)(5¢))=(dn8¢>)+(d¢,8n)+217(D,,,P) . @9

Here we introduced the notations &z =n—(n),
d¢p=¢—{@). In the following we discuss the steady-
state variances of the intensity and phase. In the Q repre-
sentation, the intensity variance is

(An*)=<®Bn*)—(1) , (4.6)
and the phase variance is
1
A 2y — 2y __
(A@)?)=((8¢)*) T 4.7
where (8...) corresponds to the aniinormally ordered

partof (A...).

Expanding d,,, dq,, D,,, D,, and D,, around the
steady state, no and @, up to the first order in n and 8¢,
we get

%((5n)2>%2 [—;;d,, (Gon)
+2 :Z%d,, ((Bn)(59)) 21D )y
4.8)

%((5@2):2 j’;dq) (g
+2|-Lq, {(Bn)og)) +21(Dyy )y

(4.9)

((AI)Z) — Dz(DzDzz—D4Dll_‘2D3D12)+D3(D1+D3)D11 _

3189
4 smyse)y=11%a | +|-La | Lon)s0))
dr dn |, |de %, ¢
4a 2 4a
+ [dnd,p]o((Sn) )+ [d‘pd,, i
X ((8¢))+2n(Dng), . (4.10)

For the lower branch the steady state is no=0, and we
obtain the following expressions for the diffusion
coefficients from Egs. (2.8)-(2.10):

0.58(1—G)—C cos2p+8C sin2g

Dnn(n0=0)=n0 +n0 N

1+8°
@.11)
Doy (ng=0)= - [ —FH2E 0025(2;17+—8§I)SC sin2g+a
+ l ’ 4.12)
D, o(ny=0)= 8C cos2g+ C sin2p @13

2(1+68%)

At threshold, C =C,;,, the phase diffusion coefficient be-
comes

D, (ny=0)=—— [ 4.14)

—G 3 . D
4n0[1+52 2 8|’

where we have used the threshold condition (2.19). In
view of Eq. (4.14), it is obvious that the field-cavity detun-
ing D will increase phase noise. Recall that in the phase-
locking equation (2.18), D can play the role of a locking
term in some cases. For example, if we choose G = —2,
8=2, a@=1, and increase D, from (4.14) we find DW, in-
creasing, but at the same time, from Eq. (2.18), the
phase-locked region increases.

By setting d /dt =0 in equations (4.8), (4.9), and (4.10)
and solving for {(8n)?) and {(8¢)?), then inserting these
into (4.6) and (4.7), we can get

I n(D1+D3)(D2D4—-D1D3)

and

{((A@))I=n

Dy(DyDy; —DyDy—2D, D)+ Dy(D1+D3)Dy

(4.15)

(D1 +D3 )(D2D4_'D1D3)

i (4.16)
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FIG. 11. Steady-state scaled intensity n as a function of ini-
tial atomic coherence C with G=—1, D=0.2, §=4, and
a@=12. The solid line corresponds to the stable steady state, and
the dashed line corresponds to the unstable steady state.

Here we introduced the notation D,=(dd, /dn),,
D,=(dd, /9¢)y, D3;=(3d,/d¢)y, D4=(3dd,/dn), and
Dy =(du)os D1,=(Dygp)es Dy =(Dgg), (all quantities
are supposed to be taken at the steady state).

We choose three typical sets of parameters to explore
the phase squeezing of quantum noise in the two-photon
CEL. The steady-state operation and the corresponding
phase noise with these two sets of parameters are plotted

1.00
0.75
N
. 050
S
d
e
\
0.25
000 1 1 1 1
5.2 5.4 5.6 5.8
Cc

FIG. 12. (a) Steady-state phase noise {(Ag)?)I as a function
of C from the lower branch in Fig. 11. (b) Steady-state phase
noise ((A¢)?)I as a function of C for the upper branch in Fig.
11. The dashed line corresponds to the shot-noise limit.

FIG. 13. Steady-state scaled intensity n, as a function of ini-
tial atomic coherence C with G=—1, D =0.2, §=6.0, and
a@=12. The solid lines corresponds to the stable steady state
and the dashed line corresponds to the unstable steady state.

in Figs. 11-16.

A particular bistable curve related to steady-state equa-
tion (2.13) with G =—1.0, D =0.2, §=4.0, and a=12.0
is given in Fig. 11. Below the threshold point, C,;, =5.62,
the lower branch (I) n,=0 is stable and phase locking
occurs at C; =5.15. The middle branch (II) is unstable.
The whole upper branch (III) is stable and phase is

1.00
0.75
i
PN
S 050
3
N-—r
\%
0.25
0.00 L :
5.0 55 6.0
Cc

FIG. 14. (a) Steady-state phase noise {(Ag)?)I as a function
of C for the lower branch in Fig. 13. (b) Steady-state phase
noise {(A@)*)I as a function of C for the upper branch in Fig.
13. The dashed line corresponds to the shot-noise limit.
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FIG. 15. Steady-state scaled intensity n, as a function of ini-
tial atomic coherence C with G =1, D =0.2, §=7, and a=12.
The solid line corresponds to the stable steady state and the
dashed line corresponds to the unstable steady state.

locked. We plot the scaled phase noise {(A@)?)I for the
lower branch (I) and upper branch (III) of Fig. 11 versus
initial atomic coherence C in Fig. 12. First we see that
there is 40% phase squeezing in the lower branch. More
importantly, we find nearly 15% phase squeezing for al-
most the whole physical region of the upper branch ex-
cept the large noise at.the threshold point. Since this
squeezing occurs at the upper branch with finite intensi-
ty, we therefore have obtained a bright squeezing.

In Fig. 13, we display the intensity n, as a function of
C with G =—1.0, D =0.2, 6=6.0, and @a=12. In this
case, there are still two stable branches under stationary
operating conditions even though the S-shaped bistable
hysteresis no longer exists. The stable and phase-locked
region for the lower branch (I) starts from C; =4.77 to
C,, =5.72. The plots of the phase noise as a function of
C for the lower branch (I) and the upper branch (II) are
plotted in Fig. 14. We see that up to 30% phase squeez-
ing can be obtained in some regions of the upper branch.
It again corresponds to bright squeezing.

In Fig. 15, another kind of bistable behavior is exhibit-
ed with G =1.0, D =0.2, 6=7.0, and @=12. The stable
and phase-locked region for the lower branch(I) starts
from C; =4.57 to Cy =5.32. Unlike the previous two
cases, now there is population inversion. In Fig. 16, the
corresponding phase noises are plotted for the lower and
upper branch, respectively. As we can see, close to 25%
phase squeezing has been obtained in the upper branch
with the population inversion. This is in contrast to Ref.
[8] where the bright squeezing with the population inver-
sion is achieved by introducing an additional lower level
and to Ref. [9] where one makes use of a fast intermedi-
ate relay level. Here we only need to adjust the cavity de-
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FIG. 16. (a) Steady-state phase noise {(A@)?)I as a function
of C for the lower branch in Fig. 15. (b) Steady-state phase
noise ((A@)?)I as a function of C for the upper branch in Fig.
15. The dashed line corresponds to the shot-noise limit.

tuning, atomic detuning, and other parameters to meet
the requirement.

V. CONCLUSIONS

We have studied the nonlinear theory of the two-
photon laser with initial atomic coherence from a set of
nonlinear equations for the moments derived from the
Fokker-Planck equation. First, we analyzed the steady-
state operation and bistable behavior of the system. Simi-
lar to the one-photon laser with initial atomic coherence,
our results showed that, below threshold, the system can
exhibit the following features: bistability (hysteresis cy-
cle) and lasing without population inversion occurs and
phase can be locked to a particular value. We also
showed that in certain cases, a Hopf bifurcation takes
place. Below the Hopf bifurcation point, the system is
unstable. The time-dependent behavior of the intensity
and phase in the unstable region consists of periodic os-
cillations. Furthermore, we have shown that, for certain
parameters, even the tristability can be found. We have
also studied the field dynamics. We find that the time-
dependent behavior of laser intensity in the unstable re-
gimes is oscillatory (quasiperiodic), and show that there is
a stable limit cycle in the phase plane of the quadratures.

Next, we investigated the noise quenching and squeez-
ing in the bistability region. Besides showing that phase
noise can be squeezed on the lower branch, we find that
the phase squeezing persists for the upper branch even
with the population inversion. We thus obtain a bright
squeezing source which is compatible with population in-
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version in a simple two-photon CEL. This is, perhaps,
the most interesting finding of the paper. Processes that
are commonly used to generate squeezed states usually
permit the generation of the squeezed vacuum state, i.e.,
the mean of the amplitude is zero. Here we have a pro-
cess which, in principle, can lead to the generation of a
squeezed coherent state, i.e., a state with nonvanishing
mean for the amplitude. It should be emphasized that
this feature persists on a finite portion of the upper

J. BERGOU, J. ZHANG, AND C. SU 52

branch above threshold with the magnitude of phase
squeezing up to 30%.
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