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Two-photon spectroscopy: A technique for characterizing diode-laser noise
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Using Doppler-free Rb two-photon excitation measurements, we present support for the hypothesis
that semiconductor-laser noise is characterized by pure phase-diffusion noise. We measured near-
Lorentzian shapes for both the laser and the two-photon excitation spectra and a slope of 3.7+0.3 for the
dependence of the two-photon excitation width on the laser width. These represent measurements of the
second-order field statistics of a naturally operating laser where the noise is dominated by spontaneous
emission. The measured spectral shape and slope are in excellent agreement with the Mollow model,
which predicts a Lorentzian spectral shape and a slope of 4 for weak-field, two-photon excitation with a
pure phase-diffusion field (Lorentzian spectral density). The dominance of phase-diffusion noise is fur-
ther corroborated by an analytically solvable microscopic noise model that includes phase and amplitude
noise.

PACS number(s): 42.55.Px, 32.80.—t, 32.70.Jz, 42.50.Lc

I. INTRODUCTION

Most modern experiments in quantum and nonlinear
optics use lasers as light sources. Thus it is desirable to
understand the effects of laser noise on these phenomena
since such effects depend strongly on the statistical prop-
erties of the radiation field [1,2]. In this paper we invert
this point of view and exploit a nonlinear optical effect as
a tool for characterizing the stochastic processes inherent
in a particular laser source [3].

A simple but fairly realistic noise model for a stable,
single-mode cw laser operating well above threshold
maintains that the amplitude of the laser field is constant
and that the optical phase exhibits a random walk caused
by spontaneous emission. The motivation for this model
is based on the following observations. Above threshold,
the field amplitude is stabilized by gain saturation and is
thus relatively constant about some operating value [l].
The phase of the laser field, however, has no natural sta-
bilizing mechanism. Such noise is referred to as phase-
diffusion noise, and its phasor diagram is shown in Fig. 1.
Since the magnitude of the field fluctuates very little and
the phase can change by any value, the phasor diagram is
approximately a circle. Also shown in Fig. 1 is the pha-
sor diagram of a chaotic field, which might result from
the output of a lamp, a multimode laser, or a single-mode
laser emitting light below threshold. Since a chaotic field
does not possess any intensity stabilization mechanism,
the field can take on any value in a two-dimensional re-
gion of the complex plane centered about the origin [4].
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FICz. 1. Phasor diagram of a phase-diffusion field (left) and a
chaotic field (right).

It is important to note that these two types of fields can
have the same spectral density and thus the same first-
order correlation function. The fundamental differences
in the statistics of these fields are manifest only in the
higher-order correlation functions. The term "higher or-
der, " here and throughout this paper, refers to all orders
larger than the first. A linear system will not be able to
distinguish between fields with the same spectral density
even if the higher-order correlation functions differ.
Differences in the observables occur only in the excitation
of nonlinear systems. This requirement motivates the use
of a nonlinear optical transition for the characterization
of laser noise.

Two-photon excitation provides the simplest tool for
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FIG. 2. Predicted behavior of the transition widths for
Lorentzian excitation spectral densities for both chaotic and
phase-diffusion fields for one- and two-photon processes.

observing the effects of the second-order statistical prop-
erties of light. The simplicity arises because the weak-
field two-photon excitation can be approximately de-
scribed by second-order perturbation theory involving
only the second-order field correlation function [5]. In
addition, two-photon spectroscopy, implemented in its
Doppler-free form, is a powerful technique because it al-
lows the study of atoms and molecules in a simple cell in
the gas phase without the need of atomic beams for the
reduction of Doppler broadening. It is important to
eliminate the Doppler broadening to avoid masking the
statistical properties of the optical field.

The theory for weak-Geld two-photon excitation by a
fiuctuating field was developed by Mollow [5]. For a sta-
tionary field with Gaussian statistics, he showed that the
weak-field two-photon absorption spectrum is the Fourier
transform of the second-order correlation function of the
electric field. Furthermore, he calculated the two-photon
excitation rates with both phase-diffusion and chaotic
fields that have a Lorentzian spectral density and found
that in both cases the two-photon transition width is
directly proportional to the laser width. The propor-
tionality factor (slope), however, depends crucially on the
statistical nature of the exciting laser field: It is 4 for a
phase-diffusion field and 2 for a chaotic field (see Fig. 2).
(A slope of unity is expected for a linear process. )
Higher-order correlation functions can be studied with
higher-order photon processes [6].

A short note on our usage of "absorption signal" and
"Auorescence signal" in this paper is in order now. It is
mell known that the photon statistics of the exciting light

beam and the photon statistics of the fluorescence signal
can be vastly different (see, e.g., [7]). Therefore, in gen-
eral, there is a problem in inferring statistical properties
of the absorbed light from the statistical properties of the
fiuorescence light. In the work reported in this paper,
however, we infer statistical properties indirectly from
the respective widths of the incident Hght and the Auores-
cence signal which involves time averages over a vast
number of absorption and emission events. Therefore,
for the purposes of this paper, we are only concerned
with the macroscopic energy Auxes of absorbed and emit-
ted light. Consequently, within the framework of our ex-
periments reported here, we are justified in using the
working hypothesis "absorption signal = luminescence
signal. "

In order to test some of the stochastic excitation mod-
els, several groups have used sources of technically gen-
erated laser noise with known statistical properties to
drive nonlinear atomic transitions [8,9]. These sources
included controlled phase, frequency, and amplitude
noise of several varieties. At the Joint Institute for Labo-
ratory Astrophysics (JILA), a host of phenomena ranging
from saturated fluorescence to two-photon spectroscopy
has been studied with such an artificially broadened laser
source consisting of a highly stabilized cw dye laser
whose light was modulated externally by filtered noise
sources of known statistics. The electronic filters and the
modulation amplitude were adjusted so that the resulting
laser field simulated a phase-diffusion field [8]. The most
extensive two-photon absorption experiments were con-
ducted using the Na 3S-SS transition with this source
[10]. These experiments showed that Lorentzian phase-
diffusion fields produce a slope of 4 as a function of the
laser width for two-photon transitions, in agreement with
the Mollow theory [10]. In addition, two-photon transi-
tions excited with Gaussian spectral density phase-
diffusion fields were investigated both experimentally and
theoretically [11]. Unlike the Lorentzian case, phase-
diffusing Gaussian spectral densities produced Gaussian
two-photon spectral shapes with a slope of 2.

Although the investigations reported in Refs. [10] and
[11] were conducted using technical noise which is not
necessarily characteristic of naturally operating lasers, in-
dications for the relevance of some of the subtleties re-
ported in Refs. [10] and [11]can be found in the litera-
ture. For example, experiments were reported where cw
dye lasers were used to drive two-photon transitions in
Na (3S-5S) and Rb (5S-mS, 5S-mD) [12]. The resulting
width of the two-photon transition turned out to be ap-
proximately twice the laser width [12]. No explanation
was offered for this observation other than attributing the
enhanced line-broadening effects to laser jitter. However,
for many lasers such as dye lasers that are technically
phase-noise limited, Gaussian spectral densities arise [13].
Therefore we point out here that the broadening mea-
sured in Ref. [12] is consistent with the results reported
in Refs. [10] and [11]assuming that the technical noise of
the lasers used in Ref. [12] had the expected Gaussian
spectral density.

In this paper we report our study of the noise proper-
ties of semiconductor lasers, chosen because they are
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becoming ever more important in laser spectroscopy and
atomic and molecular physics. We use nonlinear optical
processes for the characterization of laser noise, and we
employ atoms as detectors for the second-order field
correlation function. We do this by studying the effects
of semiconductor diode laser noise in Doppler-free two-
photon spectroscopy in Rb. The experimental investiga-
tion reported here uses Mollow's predictions to study the
statistics of a naturally operating laser.

Semiconductor lasers are also one of the few types
whose noise properties approximate a phase-diffusion
field, with fundamental limits imposed by quantum
mechanics and not by technical noise. The dominance of
the fundamental quantum noise in semiconductor lasers
makes them useful for the study of fundamental stochas-
tic excitation. In addition, they serve as a unique light
source for the experimental verification of the quantum
theory of lasers. Diode lasers, for example, provide a ma-
jor testing ground for the modified Schawlow-Townes
formula [13]. In practice, however, the sensitivity of
semiconductor lasers to optical feedback can cause severe
problems. These effects are covered in detail in a previ-
ous paper [14].

Doppler-free two-photon spectroscopy is a valuable
tool for studying narrow resonances. It has been used by
atomic spectroscopists to measure hyperfine structure,
isotope shifts, Stark shifts, Zeeman splittings, Lamb
shifts, and the Rydberg constant of many different atoms
and molecules [15]. Two-photon transitions can be quite
narrow; Rydberg states can be excited by two-photon
transitions of width 1 kHz or less [16]. Many other tran-
sitions have widths of tens of kHz. A two-photon transi-
tion of fundamental importance is the 1S-2S transition in
hydrogen that has a natural width of —1 Hz, making it
suitable for use in atomic clocks and frequency standards
of unprecedented accuracy and precision. To study these
narrow transitions requires extremely narrow lasers so
that the effects of finite laser bandwidth need not be con-
sidered. At present, however, most tunable lasers are
wider than such narrow transitions and the finite band-
width of the laser must be taken into account.

of technical noise is current fluctuations in the power
supply of the laser. Diode lasers are one of the few types
of lasers that show an increased linewidth directly related
to pump noise [26]. Current fiuctuations, arising from
Johnson noise, shot noise, or electromagnetic noise pick-
up, can produce fluctuations in the laser frequency,
power, and line width. Using current to tune
Al Ga, As lasers by less than 1 MHz results in a tun-
ing coefficient of approximately —3 GHz/mA. For shifts
larger than 1 MHz, the tuning coefficient is on the order
of —300 MHz/mA. It increases near the relaxation os-
cillation to 1 GHz/mA [27]. Thus, for a laser operating
far above threshold with a linewidth of approximately 10
MHz, the rms current noise should not exceed 300 nA if
its contribution to the laser's spectral width is to be
smaller than 10%%uo. This condition is easily fulfilled with a
simple battery power supply.

A less fundamental but no less important effect on the
noise is the inhuence of optical feedback on diode lasers.
Since optical feedback can dominate both the static and
dynamic properties of the diode's output (even with 60
dB or more of optical isolation [14]), we invested a great
deal of effort (see Sec. IV) to minimize its effects
[14,28,29]. Our results indicate that, even in the presence
of a small amount of residual optical feedback, phase-
diffusion noise dominates.

At present, semiconductor lasers are the only lasers
that require a quantum-mechanical description of their
noise characteristics for all regions above threshold.
Quantum effects are not important for the noise proper-
ties of most other lasers operated well above threshold as
the quantum effects are masked by extrinsic or technical
noise. Figure 3 compares the behavior of predominantly
technical and quantum-limited lasers. The fundamental
linewidth of most cw lasers is inversely proportional to
the laser power. This is indicated in Fig. 3 as the solid
lines sloping upward. The horizontal line in Fig. 3 illus-
trates a power-independent technical noise source that
dominates when the quantum-limited laser noise is less

II. CHARACTERISTICS
OF SEMICONDUCTOR-LASER NOISE

QUantum-Limited Laser

In this section we review some of the noise characteris-
tics of single-mode continuous wave (cw) semiconductor
lasers. We emphasize phase-diffusion noise caused by
spontaneous emission, since this was demonstrated to be
the dominant noise mechanism in semiconductor lasers
[17—22]. It is also a fundamental source of noise in other
cw lasers [23,24]. Other fundamental noise sources such
as amplitude fiuctuation due to partition noise [25] are
relatively small above threshold [17,18]. Although inten-
sity noise can be important in some atom-field interac-
tions, the stabilizing feature of gain saturation minimizes
the effects in cw lasers to typically less than 1%.

In order to assure that the noise effects we observe are
caused only by spontaneous emission in the semiconduc-
tor medium, we must first ensure that all other sources of
technical noise are under control. One important source

I
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FIG. 3. Behavior of linewidth as a function of inverse laser
power for quantum-limited lasers, predominantly quantum-
limited (diode) lasers, and predominantly technical-noise-
limited (gas) lasers.
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(2.1)

where coo is the angular frequency of the laser mode, c is
the speed of light, Ap is the change in index of refraction,
and hg is the change in gain. Besides the enhancement
factor a that describes a coupling of amplitude and phase
noise, incomplete population inversion from Fermi-Dirac
statistics at finite temperature is important [17,18].

Gain changes caused by spontaneous emission also re-
sult in a variation of the index of refraction and result in
additional phase fluctuations. These additional Quctua-
tions result from intensity relaxation oscillations that
manifest themselves as small sidelobes or satellites in the
laser frequency spectrum. The amplitudes of sidelobes
are typically 1% or less compared with the main
Lorentzian [30,31]. Vahala, Harder, and Yariv have
measured an asymmetry in these satellites of about 20%.
This result can be deduced if intensity Auctuations are in-
cluded in the analysis of the line shape [31].

At very high power, the semiconductor-laser linewidth
is not necessarily inversely proportional to power but can
be independent of power over some range. Welford and
Mooradian saw power-independent line broadening in
Al„Ga, As diode lasers, especially at lower tempera-
tures [21]. The origin of the linewidth fioor is not well
understood, and several theories have been suggested:
carrier-density fluctuations, light scattering, current
noise, 1/f noise, spatial and spectral hole burning
[32—35]. However, over the power ranges employed in

than the technically induced linewidth. For example, al-
though a standard He-Ne laser has a measured linewidth
greater than tens of kHz, its fundamental linewidth
would be less than 1 Hz. In contrast, the fundamental
noise in semiconductor lasers is generally several orders
of magnitude larger than its solid-state or gas-laser coun-
terparts, and is typically larger than the technical noise.
In this case, the laser noise is quantum limited over a
wide range of power. The large linewidth derives from
the small cavity length of semiconductor lasers (only a
few hundred micrometers), and low-refiectivity mirrors,
each of which contributes to low energy storage in the
laser cavity. Also, there is a linewidth enhancement fac-
tor a to be explained below.

Because of their large fundamental linewidth, semicon-
ductor lasers are ideal light sources for the investigation
of quantum noise. The first systematic measurements of
the linewidth and line shape of semiconductor lasers were
conducted by Fleming and Mooradian with a Fabry-
Perot interferometer [19]. They showed that the spectral
shapes of Al Ga& As semiconductor lasers were
predominantly Lorentzian and that the linewidth de-
creased in inverse proportion to the laser power. Their
measurements showed that the linewidths were 30 times
greater than expected on the basis of the modified
Schawlow- Townes formula. Henry parametrized the
Fleming and Moor adian results by introducing the
linewidth enhancement factor a that increases the
linewidth by a factor (I+a ). This factor is defined as
[18]

our experiments using the Sharp LT021 semiconductor
laser, we did not observe any evidence for this effect.

III. THEORY

A. Brief review of Mollow's theory

Consider a weak-field one-photon process where first-
order perturbation theory holds (linear process) with a
natural full width at half maximum (FWHM) of ~f,
where the excitation field has a Lorentzian spectral densi-
ty with a FWHM of 2b. Then, the one-photon transition
rate JY, is proportional to a Lorentzian according to

b+Irf /2
Wi -I 2 2(b+Kf /2) +(F00 cof )

(3.1)

where I is the intensity of the exciting light field. More-
over, for xf &&2b, the FWHM of 8'& is 2b which is the
same as the linewidth of the exciting light. Therefore the
slope in this case is 1. This result is illustrated in Fig. 2.

The two-photon theory presented in this section rests
on the work of Mollow [5]. For weak fields where
second-order perturbation theory holds, he showed that
the two-photon transition rate Wz(co) is the Fourier
transform of the second-order field correlation function

according to

Wz(co) —f G„''(t)exp(2icoft —af ~t~)dt, (3.2)

where co is the frequency of the light exciting the two-
photon transition, mf is the resonance frequency of the
transition, and ~f is its natural width. The spectral dis-
tribution function S(to) of the exciting light field E(t)
with carrier frequency coo is related to the first-order field
correlation function G'„"(t)= (E'(0)E(t) ) (first-order

Unlike linear spectroscopy, where the width of an
atomic transition is determined by the convolution of the
laser and atomic spectral shapes, the width and shape of
a multiphoton transition are not simply related to the
laser and the natural atomic line shape. Thus nonlinear
spectroscopy is a sensitive measure of the higher-order
statistics of light. In this section we discuss several sim-
ple and analytically solvable noise models that provide
the basis for the discussion of the experimental results
presented in Sec. IV. In Sec. IIIA we briefly review
Mollow's theory for the one- and two-photon absorption
widths. For the sake of completeness this theory is then
applied to chaotic light fields (Sec. III A), light fields with
pure frequency noise (Sec. IIIB), and light fields with
pure phase noise (Sec. III C). The main focus will be on
Sec. IIID where we present a microscopic noise model
that incorporates both amplitude and phase noise, and al-
lows for various degrees of correlation between them.
The results of this model provide our principal argument
for attributing the observed slope in our experiments to
the prevalence of phase noise in the exciting
semiconductor-laser light.
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temporal coherence) according to [36]

S(co)-f G"'(t)exp(icot)dt . (3.3)

For a chaotic light source, the correlation functions 6"'
0

and 6' ' are worked out explicitly in Ref. [36]. The re-
sult is

of the underlying noise processes and thus provide a spec-
troscopic tool for identifying the statistical nature of the
noise.

Consider the following noise process where the phase P
changes randomly at equidistant time intervals At ac-
cording to

6„"'(t)-exp( ico—ot I—~t
~ ),

6~~~( t, t—;t, t—)-exp( 4ic—ot 41 ~t~—),
(3.4) where g. is a Gaussian random variable with

&g, &=0 and &g,g„&=5,„. (3.1 1)

(3.12)
where I is the damping constant that summarizes the
effects of all linewidth-broadening mechanisms such as
radiative and collisional broadening. Using (3.4) in (3.3)
and (3.2) yields

The recurrence equation (3.11) can be solved explicitly:

(3.13)

and

(3.5) With (3.12) and (3.13) it can be shown that the phase un-
dergoes a diffusion process according to

W2(co)-(icf /2+21 )/[(cof —2co) +(icf /2+2r) ], (P, ) =0, (((t,') =PO2+Dt, D =cr'/b, t . (3.14)

(3 6) A model for a phase-diff'using light field is given by

respectively. For xf ((r, W2(co) is a Lorentzian with
width 2t, whereas S(co) is a Lorentzian with width I .
Therefore, for chaotic light, the linewidth of the two-
photon signal is twice the bandwidth of the exciting light
and the slope is 2. This result is also illustrated in Fig. 2.

E =E exp[ i(coot+—P) )], (3.15)

where E is a constant field amplitude. The first-order
field correlation function for this model is given by

G'"(tk ) = (E'(tO)E(tk ) )

B. Two-photon line shapes for pure frequency noise =E exp( icotk)(exp—[ —i(Pk —Po)])

(3.16)=E exp( icootk —Dtk/2) .—In the case of pure frequency noise well modeled by a
Gaussian random process, the line shape of the exciting
light as well as the two-photon signal are both Gaussian.
This is easily demonstrated in the following way. Sup-
pose that g is a Cxaussian random variable with (g ) =0
and (g ) =1, and Q is the amplitude of the frequency
noise of a light field with carrier frequency coo according
to E(t) =exp( i [coo+ Qg ]t )—. The first-order field corre-
lation function for this type of light field is given by

6'"(t)=E exp[ icoot D~t ~/2—] . —

With this result the spectral distribution function S is
given by

G'"(t)=exp( icoot)exp( Q—t l2—)

and the second-order field correlation function is

G' '(t) =exp( 4i coot )exp( —8Q —t ) .

The spectral distribution function is

S-exp[ —(co —coo) /2Q ]

and the two-photon transition rate is

W2-exp[ —(cof —2co) /8Q ] .

(3.7)
S(co)=E D/[(co coo) +(D/2) —] . (3.17)

In the same way the second-order field correlation func-
tion 6„'' is calculated and yields the result(3.8)

6„''(t)=Eexp( 4icot)exp( 4—D~t~) . —

(3 9) Therefore, the two-photon transition rate is

(3.18)

8'2(co) —(4D+icf ) l[(cof —2co) +(2D+lcf /2) ] . (3.19)

Both (3.17) and (3.19) are Lorentzians with widths D/2
and 2D, respectively, if ~f «D. Thus the slope for a
two-photon transition with a pure phase-diffusion field is
4 (see Fig. 2).

(3.10)

Both have a Gaussian shape. The width of 8'2 is twice
the width of S. This means that the slope in this case is 2.

In this expression we used (3.12), (3.13), and the identity
(exp(pg)) =exp( —p /2), which holds for arbitrary real
p. Since (3.16) does not depend on the time step b.t it can
be generalized to

C. Two-photon line shapes for pure phase noise

So far we have discussed two examples of noise pro-
cesses that lead to a slope of 2 in two-photon excitation
experiments. Next, we discuss pure phase noise that re-
sults in a slope of 4. The different slopes are a signature

D. Two-photon line shapes for combined amplitude
and phase noise

Finally, we introduce here a noise model which is
closer to the physics of a semiconductor laser and in-

cludes phase noise, amplitude noise, and relaxation
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EJ =E~exp[i(coo+/~ )],
E +,=E, +e,g'"+Ezg,' ' K(—E E—),

(&)0, +i —4, +og,

(3.20)

Here, g'" and g' ' are Gaussian random variables with

effects. The light field of the semiconductor laser is
modeled by a stochastic process resembling the pure
phase-noise field discussed above and given by

(gJI"') =0 and (gJI"'gz") =5JI,5„„respectively, and

K(EJ E—) is gain clamping to be discussed below. The
noise term proportional to ez in (3.20} describes ampli-
tude noise which is correlated with the phase noise [g' '

also appears in the P equation in (3.20)] whereas the noise
term proportional to e& describes uncorrelated amplitude
noise [g'" does not appear in the P equation in (3.20}].
Using the techniques outlined in Sec. IIIC above and
Di 2 =Ei 2/b, t, we derive the spectral density S and the
two-photon transition rate Wz for the field (3.20) and ob-
tain

D)+D2 D/2
S(co ) — z

+
2KE [(co—coo) +(K+D/2) ] (co coo) +—(D/2)

(co coo)(—D+K )(DD~ )'i

E[(K+D/2) +(co coo) ][—(D/2) +(co—coo) ]

(3.21)

2D+vf /2+2K+i (cof —2')
W2(co) -Re

(2D+zf /2+2K) +(cof —2')
2D+af /2+K+i(cof —2'}+B

(2D+~f /2+K) +(cof —2')
2D+sf/2+i '(cof —2')

+C
2 2(2D+af /2) +(cof —2')

where

A=Go —B —C

(Di+D2)
Go=E +3(D, +D2) 4E +

)
1/2

B =4 E+2i
K

E(D1+D2 } Fo(DD2 )
X

2K X

(3.22)

(3.23)

semiconductor-laser field back to its average value E after
a spontaneous emission event. According to Ref. [17]
this relaxation occurs on a time scale of 1 ns, which im-
pliesE —10 s

Next, we determine the phase-diffusion constant D.
According to (3.14), (P ) -Dt which can be equated to
Henry's expression for the phase-diff'usion constant [17]
and yields

D =R(1+a )/2I . (3.24)

Here, R is the spontaneous emission rate for the semicon-
ductor laser (R =8X10" s '), I is the laser intensity
(normalized such that it also equals the number of pho-
tons in the laser cavity [17,37]), and a is the linewidth
enhancement factor which was taken to be 5 [17].

The diffusion constant Dz that describes the correlated
amplitude and phase noise can also be related to Henry' s
model. There, the amplitude-noise process is given by
E +,=E +cos(8 },where E =(I )' is the electr. ic-field
amplitude of the laser at the time the jth emission takes
place and 0. is the phase angle of the spontaneous emis-
sion photon. The phase-noise process is (neglecting the
constant term}

(D, +D2)Fo=E +
2K

r

Fo (DDz )'
C= '2E E+2i

K +(Di+D~) ' .

It turns out that the shape of the laser's spectral density S
as well as the shape of the two-photon signal 8'2 are
more complicated than just a single Lorentzian. There-
fore, the widths of S and 8'2 are not known without a
more detailed knowledge of the magnitudes of the param-
eters in (3.21) and (3.22). Therefore we will now estimate
these parameters for an Al Ga& „Asdiode laser.

The constant K in (3.20} describes the relaxation of the

P +,=P +[sin(8~) —a cos(81 )]/E
=P +(1+a )'~ sin[8 +P(a )]/E, (3.25)

where f(a) is a constant phase angle that depends only
on a. In our model we take sin[8~+/(a) ] to be a Cxauss-
ian random variable. This may seem like a crude approx-
imation, but for the case of many spontaneous emissions
and because of the central-limit theorem, both models be-
come equivalent. In order to determine ez we demand

&e g' '2exp[icrg' '])
=(cos(8)exp[i[sin(8) —acos(8)]/E] ) . (3.26)
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The parameter o in (3.26) can be calculated using (3.14),
(3.24), and b t =1/R. We obtain

o =
I ( 1+a ) /2I l

' (3.27)

Since o. « 1, the exponent on the left-hand side of (3.26)
can be expanded to first order in cr. Using (g' ') =0 and
(g' 'g' ') =1, we obtain

( ezg
' 'exp(iog' ') ) =i e2o . (3.28)

Likewise, since ~E ~

=I '~ )) 1 the right-hand side of
(3.26) can be expanded to first order in 1/E and yields

(cos(8)exp I i[sin(8) —a cos(8) j/E J ) = ia/—2E .

Sharp
LT021
diode
laser

lBM pc

150 MHz FSR
Fabry-Perotm(

J
PMT

collimating
lens

optical AOM

isolator (~S0db)
(37db)

200 mm
fl

I

Rb cell

cooled
PMT

filter

r
200 mm

fl

oven

D2=ez/b, t =Ra /2(1+a ) . (3.30)

Inspection of the result for 6'& shows that it is advanta-
geous to define

12=D2/I=Ra /2I(1+a ) . (3.31)

This allows direct comparison between D and d2
shows that d2-D/a2.

Close to the center of the laser line the third term in
(3.21) does not contribute, and the width of the line is
determined by the first two terms. The width of the laser
line measured in our experiments (see Sec. IV) is on the
order of 15 MHz. Since the width of the first term in
(3.21) is on the order of 1 GHz, the width of the laser line
is clearly determined by the phase-diffusion constant D in
the second term.

The two-photon line shape can be discussed in similar
ways. In this case the third term in (3.22) is dominant.
For af «D, the width of the third term in (3.22) is four
times the width of the second term in (3.21) and thus the
slope predicted by the model defined in (3.20) is 4. Since
this model incorporates the major elements of semicon-
ductor noise, a slope of 4 is the expected result for the
two-photon experiments on Rb which will be described in
the following section. Thus the theoretical model sup-
ports our intuition that phase-diffusion noise dominates
in our experiments.

IV. EXPERIMENT

In this section we describe our experiments for measur-
ing two-photon excitation spectra of Rb using diode-laser
light. The experimental setup is presented in Sec. IV A.
The two-photon measurements are described in Sec.
IVB. Use of temperature tuning to obtain quantum-
limited stochastic excitation is described in Sec. IV C and
our measurements directly addressing the nature of the
diode-laser noise are reported in Sec. IV D.

A. Description of the setup

A block diagram of the experimental setup is shown in
Fig. 4. The light from a 10-mW Sharp I.T021 MD diode

(3.29)

We used (cos(8)sin(8) ) =0 and (cos(8) ) =
—,'. Equating

(3.28) and (3.29) we can solve for ez. Using the result
(3.27) for cr and E =I we obtain

FIG. 4. Two-photon spectroscopy apparatus.

laser is focused into and then retroreflected back through
a Rb cell. The laser was operated in a dry-air-purged
plastic cylindrical container that kept the laser from
frosting when cooled, minimized ambient temperature
fluctuations, and reduced acoustic vibrations. Purging
was chosen over a desiccant so that a window would not
be needed, since windows can be a source of feedback.
The laser was tuned to 778.1 nm (twice the 5S,&z-5D5&2
Rb vacuum wavelength) by both temperature and current
tuning.

The temperature was controlled to better than 0.5 mK
by a circuit consisting of a thermistor in a Wheatstone
bridge and an analog proportional controller to adjust the
current of a Peltier cooler in thermal contact with the
laser. Flowing tap water through the copper heat sink of
the Peltier cooler minimizes long-term drifts in the tem-
perature controller. (The temperature of the tap water
used does not fluctuate by more than 1'C over the time
span of a year. )

Battery supplies were chosen to minimize noise from
current fluctuations. A 6-V, 20—Ah gel cell battery
powered the laser through a resistive network. A 10-Q
resistor in series with the laser was used to monitor the
laser current with a Fluke 77 rnultimeter. Current tuning
was performed with a filtered Hewlett Packard 3415
function generator. The current filtering was a single
pole RC network placed across the current-measuring
resistor and diode laser in the laser power supply.

The Rb oven shown in Fig. 4 consisted of an insulated
aluminum box painted black to reduce stray scattered
light. The oven was heated with four soldering irons,
whose temperature was controlled by a Variac, to typical-
ly 125'C. The oven contained a Rb Opthos Instruments
cell 100 mm long and 25 mm in diameter equipped with
optical-quality windows to minimize scattering and aber-
ration of the beam. The irons were placed to heat prefer-
entially the cell windows in order to prevent rubidium
from condensing on them. The cell was supported by a
black anodized aluminum structure and a b1ack-painted
aluminum tube that acted as both support and baNing.
The baNing was designed to hide the detector from the
oven heaters, thereby reducing the background from the
heating elements by at least three orders of magnitude.
The temperature was measured with a K-type thermo-
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couple placed near the coldest part of the cell.
Since our main goal is to study the laser noise using

two-photon spectroscopy, we have chosen to use a
Fabry-Perot interferometer as both a frequency marker
and laser characterization system [38]. High-quality
Fabry-Perot interferometers operating close to the
theoretical performance limit also allow relatively easy
deconvolution of the instrumental response from the
measured spectral shapes, as long as the laser spectral
shapes are Lorentzian or Voigt profiles. This ease of
deconvolution arises from (l) the nearly l.orentzian in-
strumental shape of a single transmission peak of high-
quality interferometers, and (2) the fact that the convolu-
tion of two Lorentzians is another Lorentzian with a
width equal to the sum of the widths of the input
Lorentzians. Fabry-Perot interferometers, however, can
introduce artifacts because of insufhcient resolution and
free spectral range. To overcome these difhculties, we
found that it is essential to know the instrumental
response and, wherever possible, use Fabry-Perot inter-
ferometers of appropriate free spectral ranges and resolu-
tion.

Although high-resolution Fabry-Perot interferometers
are superb instruments for determining the spectral shape
and width of diode lasers, they are extremely sensitive to
mirror spacing and alignment. A convenient way to get a
scanning confocal Fabry-Perot interferometer (CFPI)
operating near its theoretical performance limit is to use
a light source significantly narrower than the instrumen-
tal response of the CFPI and to adjust the mirror spacing
and alignment while observing the response. However, at
typical Al Ga, As semiconductor-laser wavelengths
operating around 800 nm, few readily available inexpen-
sive narrow-band laser sources exist. The wavelengths of
HeNe- and argon-laser lines are too different to be of any
use, since very-high-reflectance coatings used for the
Fabry-Perot interferometer mirrors typically have spec-
tral width less than 100 nm. Even if a narrow laser
source is available, such as an external cavity laser or dye
laser, it needs to be coaligned with the diode laser [39].

We found that using light rejected from one etalon
was an excellent method for obtaining a narrowed source
for characterizing another etalon. We had a removable
beam splitter before the first isolator (see Fig. 4) that was
used in conjunction with an additional CFPI [Burleigh 2
6Hz free spectral range (FSR) and finesse of 200] to
characterize the laser characterization CFPI. This beam
splitter was removed in the two-photon absorption exper-
iments. The instrumental response of the 150 MHz FSR
measurement CFPI showed slight deviations from the
ideal Lorentzian, but the measured width of the response
function of 1.6 MHz is very close to the theoretical 1.5
MHz value calculated from the mirror reAectivity.

The measurement CFPI and spectroscopy parts of our
experiment were optically isolated with an Optics for
Research IO-5-NIR optical isolator (that had about 350-
dB isolation) and a tilted neutral-density filter of density
unity to reduce the feedback from the measurement
CFPI. A Burleigh CFPI 150 MHz free spectral range
and a finesse of 100 was used for the measurement etalon.
The isolation involved cascading two IO-5-NIR isolators

and a quarter wave plate together. This combination
produced sufhcient isolation to obtain data. The choice
of isolation technique and the amount of isolation re-
quired are discussed in more detail in Sec. IVB below.
We measured the effective isolation by measuring the
power rejected back through the isolator. The combined
isolation of optics, isolators, and neutral-density filters
was on the order of 100 da or more between the laser and
CFPI.

B. Two-photon spectroscopy with semiconductor diode lasers

In this section we describe the theoretical and experi-
mental features of two-photon spectroscopy with semi-
conductor diode lasers. Its first part deals with the exper-
imental details necessary to obtain a high-quality, two-
photon absorption signal, and its second part deals with
using atoms as detectors of the second-order statistical
properties of the field. Using the Mollow results and the
results obtained in Sec. III, we compare the predictions
of different laser-noise models with the results of our
measurements.

Although our major emphasis is on the measurement
of a two-photon transition s linewidth as a function of the
laser width, we also describe the difhculties and unique
features of performing high-resolution, two-photon spec-
troscopy with diode lasers. The low power and high sen-
sitivity to optical feedback of diode lasers require precau-
tions that are unnecessary for other laser systems.
Doppler-free, two-photon absorption experiments are
typically performed with solid-state or dye lasers with a
minimum of 50—100 mW of laser power available at the
sample. For semiconductor lasers, with only a few mW
of available power at the atomic vapor cell, the two-
photon signal is reduced by several orders of magnitude
because the signal is proportional to the square of the in-
tensity.

There were four requirements for choosing a transition
for these experiments: first, the transition has to be at a
wavelength accessible to inexpensive diode lasers; second,
the transition needs to be strong because of the low laser
power; third, the detection wavelength should be far
enough away from the excitation wavelength so that sim-
ple laser scatter rejection can be used; fourth, the detec-
tion scheme should be very e%cient. The likely candidate
atoms are Rb and Cs because they have two-photon tran-
sitions accessible to high-quality oF-the-shelf commercial
diode lasers. The Rb 5S-5D transition is an excellent
choice, since the intermediate 5P states lie almost exactly
halfway between the ground state (5S,&z) and the excited
5D states (see Fig. 5). This resonant enhancement makes
this two-photon transition approximately 100 times
stronger than a typical strength transition such as a 5S-
7S in Rb, and is essential to help offset the low laser
power. The excitation wavelength at 778 nm also lies
where excellent Al„Ga& „Aslasers are available. The
420-nm fluorescence wavelength of the 6P-5S transition
has a branching ratio of nearly 40%, is far from the excit-
ing laser's wavelength, and lies in a spectral region where
excellent photodetectors are available [40].

Increasing the number density of the gas atoms in the
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FIG. 5. Gross Rb structure. Note the small energy defect for
the intermediate P state in the 5S-5D transition.

absorption cell should result in a proportional increase in
the two-photon signal, but self-absorption and pressure
broadening tend to reduce this advantage. Consequently,
it is important to determine the optimal number density„
which increases by two orders of magnitude for a 100'C
increase above room temperature since self-absorption of
the 420-nm fluorescence signal can become significant.
We estimated this e6'ect by calculating the temperature
dependence of the absorption for a 1-cm path at the
center of the Doppler-broadened 420-nm 5S-6P reso-
nance line. Near 130 C, where the vapor density is
—10' atoms/cm, the absorption length for this transi-
tion is about 1 cm. These calculations show that at high

vapor pressures focusing of the primary laser beams
should take place near the cell wall to minimize the ab-
sorption path.

In addition to the self-absorption problem, there is also
significant self-pressure broadening at higher number
densities. Stoiche6' and Weinberger measured the self-
pressure broadening in Rb to be on the order of a few
hundred kHz/mTorr for principal quantum numbers less
than 10 [41]. For temperatures near 130'C, the pressure
broadening from Rb itself is less than 1 MHz. In prac-
tice, the residual foreign gas in the cell is the dominant
source of broadening [41].

Since the rate of two-photon processes is proportional
to the square of the intensity, focusing is important in
maximizing the signal. Focusing, however, increases the
transit-time broadening. In our experiments, the long fo-
cal lengths of our lenses combined with our small beams
generally result in a beam waist of 40 pm or more. Thus
we expect transit-time broadening to be less than a few
MHz. Unfortunately, tight focusing of the laser beam re-
quires critical alignment between the counterpropagating
beams. This critical alignment also maximizes the cou-
pling efficiency of the retroreflected beam back into the
diode laser, and thus increases the optical isolation re-
quired.

In our experiment the broadening mechanisms dis-
cussed above are the most significant ones, but it is in-
structive to discuss other residual line-broadening mecha-
nisms. A calculation for the effect of wall collisions [42]
shows that for typical cell diameters of a few centimeters
the natural linewidth dominates for most transitions.

TABLE I. Sources of line broadening in two-photon spectroscopy of the Rb 5S-5D transition

(modified from [42]).

Type Origin Line width Range of
values

Doppler broadening Doppler effect

due to thermal
molecular motion

&o
Vp

C

vp= center frequency
of transition
vp =average speed
c=speed of light

—1.2 GHz

Natural broadening Spontaneous

decay of an
excited state ~=natural lifetime

-60 kHz

Lorentz (collision)

broadening

Wall-collision
broadening

Transit-time
broadening

Interparticle

collisions

Particle
collisions with
the walls of
sample cell

Transit of
particles
through
light beam

~+co»
z„»=mean time
between
collisions

v p /2~I.

vp =average speed
I.=cell diameter

v p/2na
vp=average speed
a =beam diameter

&1 MHz

&2 MHz
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Misalignment of the counterpropagating beams results in
a residual Doppler broadening that, however, can be
practically eliminated by careful alignment. Additional
broadening mechanisms that need to be addressed are
power broadening and ac Stark shifts [42], but at our
power levels these are negligible. For completeness we
have summarized all the above-listed mechanisms togeth-
er with order-of-magnitude estimates for the Rb 5S-5D
transition in Table I, and show that all the line-
broadening mechanisms discussed above are negligible
compared to the laser widths used in our experiments.

The light beam was focused into the heated Rb cell,
collimated, and refiected back onto itself to produce the
counterpropagating beams necessary for Doppler-free
two-photon excitation. Part of the beam was sent to the
150-MHz FSR CFPI (see Fig. 4) that served as a frequen-
cy marker and laser characterization system. The popu-
lation excited into the 5D5/z state can cascade back to
the 5S&/2 ground state via either the 5P, /2 or the 5P3/2
state with a branching ratio of about 3:2 in favor of the
5P3/2 branch. We chose to detect the Auorescence of the
5P3/2 to 5S]/2 transition at 420.2 nm which is far from
that of the incident laser light and is thus straightforward
to filter. The 5P3/2 to-5S &/2 fluorescence light was
detected with a photomultiplier tube (PMT) (see Fig. 4).

In Fig. 6, we show a typical fluorescence spectrum
from two-photon excitation of both the 85Rb and Rb
isotopes. The hyperfine structure is very well resolved.
The two peaks marked C and 8 correspond to the
6P3/2 5S,/2 F=2 and F=3 fluorescence signal of the

Rb isotope, respectively. Peaks D and 3 correspond to
the 6P3/2-5S

& /2 F= 1 and F=2 transitions of Rb, re-
spectively. The hyperfine splitting of the upper level is
not resolved since the laser linewidth is about 15 MHz
and the hyperfine splitting is only a few MHz. Evalua-
tion of the data of several scans resulted in a measured
hyperfine splitting of the ground state of 3050+5 MHz
and 6849+5 MHz for the Rb isotope and Rb isotope,

700;-

6OO

respectively. These values are within 1% of other mea-
surements [43].

C. Quantum-limited stochastic excitation

Although current tuning of semiconductor lasers is the
most common and easiest method for rapid repeatable
constant-rate tuning of a laser across an atomic transi-
tion, it suffers from possible undesirable effects. The
same mechanisms that allow tuning by current also pro-
vide avenues for increased bandwidth induced by current
noise and pickup from the power supply. Therefore, we
have used repeatable, constant-rate temperature tuning to
bypass possible problems with technical noise introduced
by active power supplies. The result is a quantum-limited
laser-noise source with tuning rates exceeding 1

GHz/sec.
The usual difficulties with temperature tuning are non-

constant tuning rates, lack of repeatability, and lack of
control of scan length and rate. We have overcome these
problems by using a semiempirically derived, digitally
generated wave form that drives the Peltier cooler in
thermal contact with the aluminum laser mount. We
treat the laser mount as a thermal integrator and apply
small modifications to the wave form, adjusting for any
deviations from ideal behavior. We modified the digitally
generated wave form empirically by measuring the fre-
quency tuning rate and adjusting for slight deviations
from the ideal rate. The tuning rate was measured with a
Burleigh 150-MHz FSR CFPI with finesse of approxi-
mately 100. The basic processing involved differentiating
the etalon output and locating the peaks of the etalon
scans through a zero-crossing technique. The difference
in time between the individual peaks was measured and
used to determine the rate from the known free spectral
range. Figure 7 shows that the tuning rate in our experi-
ments over a period of several seconds is indeed very con-
stant.
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FIG. 6. Two-photon signal showing Rb hyperfine splitting of
ground state. Peaks 2 and D correspond to the 6P3/2 5Sl/2
F=2 and F=1 transitions in Rb, respectively and peaks B
and C correspond to 6P3/2 5S&/2 F=3 and F=2 in Rb, re-
spectively.
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FICx. 7. Measured laser tuning rate over a frequency scan of
several seconds. Solid line is a least-squares fit to data.
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D. I.aser statistics measurements

We measured the two-photon absorption width at four
laser powers thus varying the laser width over a range of
7—21 MHz. The two-photon absorption width was found
by fitting the Doppler-free component of the Rb F=2
ground-state transition (see peak C in Fig. 6) to a
Lorentzian profile after subtracting the Doppler-
broadened component. This transition was chosen since
it had the highest signal-to-noise ratio with the simplest
Doppler-broadened background of the four detected.
The laser width was estimated by fitting the etalon peak
closest to the Rb F=2 ground-state transition to a
Lorentzian. Figure 8 shows typical two-photon scans
and etalon scans for low (58.0 mA), medium (63.5 mA),
and high (79.8 mA) laser currents. The frequency scale in
Figs. 8(d), 8(e), and 8(f) was determined by performing
direct frequency measurements on the luminescence spec-
tra using an etalon with known free spectral range. Al-
though measurements were made over a factor of 3 in
laser power, the intensity of the focused laser in the in-
teraction region was always less than a few hundred
mW/cm . The atomic density in the Rb cell was 3 X 10'
cm . Judging from our signal levels and collection
eKciency, we detect 1.5 X 10' photons/sec. This means
that at our intensities each Rb atom cycles only a few
times per second. Laser powers of the order of 10 times
ours would be necessary to saturate the studied transi-
tion. This justifies using the second-order perturbation-
theory assumption in our modeling.

Both the etalon and two-photon signals are fitted to a
Lorentzian. The etalon widths were then corrected for
the 1.6-MHz etalon instrumental function. The
Doppler-broadened two-photon signal in the background
was fitted by a Gaussian and subtracted from the original
data leaving only the Doppler-free signal. The Doppler-
free signal was then fitted with a Lorentzian. The
Lorentzian fits are excellent for both laser and two-
photon spectra. Several measurements were made at
each power level. The laser width varied less than a few
percent during a transition scan of a few seconds, but
varied approximately 20%%uo scan to scan. We believe this
effect is residual optical feedback changing the laser
width slightly from scan to scan.

In Fig. 9, we plotted the signal widths determined this
way against the laser widths, and fitted a straight line to
the results. The resulting slope is 3.7+0.3, which is in
excellent agreement with the theoretical slope of 4 for a
phase-difFusion field [5]. The intercept is 10.1+1.0 MHz.
This intercept is consistent with residual-gas-pressure
broadening in the cell caused by the relatively high
operating temperature of the cell. The error bars were
estimated by accounting for the statistical as well as pos-
sible systematic effects in the fitting procedures. We
found the statistical error to be on the order of +0. 1 for
the slope. We also found that the subtraction process of
the Doppler-broadened background produced an error in
the s1ope of approximately +0.2. Improvement in this
number will probably require better fitting procedures
and elimination of the Doppler-broadened background,
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possibly by using the 5S-7S transition and circular polar-
ization.

V. CONCLUSIONS

Our data corroborate the hypothesis that
semiconductor-laser noise is dominated by a pure phase-
diffusion process for both first- and second-order statis-
tics. We measured both Lorentzian laser shapes and
two-photon absorption shapes. We also measured a slope
of nearly 4.0 for the curve which results from plotting the

FIG. 9. Two-photon width vs laser width. Solid line: least-
squares fit. Dashed lines: Slopes of 1,2, and 4 to guide the eye.

two-photon width vs the laser width. This experimental
result combined with our model for amplitude and phase
fluctuations provides firm evidence that, in a process sen-
sitive to second-order light fluctuations, the Al Ga, As
laser acts essentially as a purely phase-difFusing source of
light.

In the process of making these measurements, we have
introduced a Doppler-free, two-photon absorption exper-
iment with a semiconductor laser. A method for generat-
ing quantum-noise-limited tunable sources based upon
temperature tuning the laser is also presented. This tech-
nique should be useful for future work involving the
study of semiconductor- and fundamental-laser noise in
nonlinear atomic processes.

Although our interest in using two-photon absorption
has been to study semiconductor-laser noise, such lasers
should also be useful for studying a wide range of non-
linear phenomena. It is also clear that Doppler-free two-
photon spectroscopy has a wide range of applications.
We have shown that diode lasers could serve as compact
frequency standards and inexpensive light sources for
high-selectivity separation of Rb, radioactive Cs isotopes,
and other elements.
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