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Coherent population trapping at low light levels
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A three-level lambda (A) system driven by two coherent fields at the Raman resonance condition
evolves to a nonabsorbing eigenstate of the Hamiltonian called the coherent population trapping (CPT)
state. We study the various factors dictating the dynamical evolution of the coherences and the popula-
tions to the CPT state. We demonstrate the formation of the CPT state even at low intensities, though it
takes much longer to form such a state. For the case of unequal decay rates we demonstrate an interest-
ing sharp dip in the steady-state response of the medium at the Raman resonance condition.

PACS number{s): 42.50.Gy, 42.50.Hz

I. INTRODUCTION

A three-level system with two closely spaced ground
levels optically coupled to a common excited level by two
coherent fields gives rise to trapping of population in a
coherent superposition of the ground levels. The
coherent superposition state is termed the coherent popu-
lation trapping (CPT) state. This occurs under the condi-
tion that the frequency difference between the two fields
is equal to the separation between the two ground levels.

Alzetta et al. [1] first observed nonabsorption reso-
nances when the Auorescent light of sodium vapor il-
luminated by a multimode laser field was analyzed as a
function of applied magnetic field. It was found that a
steady decrease in fluorescence intensity occurs when
some hyperfine transitions of the ground state matched
the frequency difference of the two laser modes. Gray,
Whitley, and Stroud, and Murnick et al. also reported
similar experimental results [2]. Orriols [3] gave a
theoretical explanation of the phenomenon using the non-
linear effects of coherence and interference due to simul-
taneous excitation pathways. The CPT state has been ex-
tensively studied using classical fields [3—5] and the con-
ditions for population trapping have been explicitly de-
rived. The effect of the various relaxation mechanisms,
strength of the laser driving fields [4], bandwidths of the
fields [5], etc., have been analyzed thoroughly. Recently,
CPT has been dealt with in the context of quantized fields
and some novel properties were discovered [6]. The CPT
concept has been utilized in different situations. Some of
the most prominent applications were the demonstration
of lasing without inversion [7] and efficient transfer of
population from one state to the other [8].

In a A system it is well known that the trapping state
has the structure (cf. Fig. 1)

ly& = —Gil2&+G213&,

where Gi and G2 are the Rabi frequencies of the fields
acting on the transitions l1)~l3) and

l
1)~l2). Clearly

if G, =G2 then pz2=p33 2
irrespective of the values of

Gi and Gz. Thus G, and G2 can be arbitrarily small and
yet the trapping state will be formed. This is somewhat
against one's intuition based on the perturbation theory
which would imply that only a small amount of popula-
tion can be transferred for weak fields. It is clearly im-
portant to understand the dynamics of the system leading
to the formation of trapping states at low intensities.

In this paper we address some of the dynamical ques-
tions. In particular we study how the CPT state is
formed and how the evolution depends on different pa-
rameters. An important point which emerges from this
study is that the CPT state is produced irrespective of the
strength of the applied fields. Another feature observed
is that with decreasing fields it takes longer and longer to
form the CPT state. Thus the CPT state can only be ob-
tained from a nonperturbative analysis. The organization
of the paper is as follows.

In Sec. II we introduce the model and use the density-
matrix formalism to study the dynamical evolution to the
CPT state. We predict interesting effects of laser field
strength and spontaneous decay rate on the time scales of
evolution. In Sec. III we exhibit an unusually sharp dip
for A systems with two unequal decay rates. Note that in
most A systems such as in Cs and Rb one will encounter
unequal decay rates. Note further that unequal decays
play an important role in the context of lasing without in-
version [9]. In Sec. IV we summarize the main con-
clusions of the paper and point out the possibility of the
effect of a dense medium [10] on the dynamics of the sys-
tern.
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FIG. 1. Schematic representation of a three-level A system.
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II. THE M(ODEL AND DYNAMICAL EVOLUTION
TG THE CPT STATE

H=A'cooA 11+Ac@it Azz —di3 E, A13exp( —i0it)
—4 12.E2 A izexP( —IQ zt ) +H. c. , (2)

where A„are the atomic transition operators ~x ) (y ~.

Here d, 3 (d, z ) is the atomic dipole interaction term be-
tween the states

~
1 ) and

~
3 ) ( ~2 ) ) and E, and Ez are the

electric-field amplitudes. Defining G, =d, 3.E, /fi and
Gz =d, z Ez /Ijl the Hamiltonian in (2) is rewritten as

H = Ijtcoc A „+jII'co~ A 22
—IjlG, exp( i Q, t )

—A, 3

—jjlGzexp( i flzt) A—,z+H. c. (3)

The system is studied using the density-matrix formal-
ism. The evolution of the reduced density matrix p for
the atomic system alone is described by the Liouville
equation, modified to include damping elfects [12], which
is given by

Bp [IIP ] y 1( A 13 A 31p 2A 31P A 13 +P A 13 A 3, )

Consider a three-level system consisting of a single res-
onant excited state

~
1 ) optically coupled with two closely

spaced ground sublevels ~2) and ~3). States ~1) and ~2)
have energies Ijitoo and Ijlcoz with respect to the state ~3 ).
Two classical monochromatic fields of frequencies 0, and
Az couple the transitions

~
1 )~ ~

3 ) and 1 )~ ~
2 ), respec-

tively. The states
~
2 ) and

~
3 ) are not coupled directly

due to parity constraints. Let 2y 1 (2yz) be the spontane-
ous emission rate from state ~1) to state ~3) (~2)) (Fig.
1).

The total Hamiltonian of the system [11]is written as

external fields are exactly on resonance with the respec-
tive atomic transitions, we study the dynamical evolution
to the CPT state for various field strengths and spontane-
ous decay rates. We specifically present the evolution of
the absorption characteristic of one of the fields (say Gz ),
i.e., Im(p, z), and the population of the level ~2), pzz. For
symmetric fields, i.e. , Gi =Gz, the steady state (relative
to the decays involved) will correspond to the trapping
condition if Im(p, z) =0 and pzz= —,'. The time is scaled as

y it.
We first study the dynamics for the strong-fields situa-

tion, i.e., G, , G2 &)y, , y2. For a typical case,
6, =G2=10, y, =y2=1.0, Rabi oscillations are exhibit-
ed in the evolution of the coherence Im(p, z) and the pop-
ulation pzz (solid curves in Fig. 2 and its inset). To get an
idea about the time scales involved we numerically per-
form an eigenvalue analysis of the 8 X 8 matrix in Eq. (5).
For strong fields complex eigenvalues are obtained. The
complete set of eigenvalues is listed here. There are two
real eigenvalues —1.0 and —2.0. The complex ones are—2. 5+28. 2i, —1.0+ 14. li, and —1.0+ 14. 1i (degenera-
cy) and their complex conjugates. These predict the oc-
currence of Rabi oscillations [13]. The real part of the
complex eigenvalues is negative, indicating that the sys-
tem will approach steady state.

As the field strength is lowered the eigenvalues become
completely real. For the case G, =62 =0. 1,
y&=ye=1. 0, the eigenvalues are —3.96, —2.02, —2.0,—1.98, —1.98, —0.01, —0.01 (degeneracy), and—0.0099. It is also observed that the lowest eigenvalue,

0.4

l 2( A 12 A 21P A 21P A 12 +P A 12 A 21 ) (4)

p» = —2(y, +yz)p»+IG, P»+IGzp»+c. c. ,

P12= —[)'1+)'2— 2]Pi2+ 1P32+ 2(P22
—

Pi 1),
P13 [ vi+F2 11]P13+IG2P23

+iGi(1 —2pii —pzz»

P22=2y2P» —iG2P2, +c.c. ,

P23 (~1 ~2)P23 IG1P21+IG2 P13

(5a)

(5c)

(5d)

The equations of motion for the components of the densi-
ty matrix p in the rotating frame can be written as

0.2

—0.2
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where 6& and 62 are the detunings defined as 6& =0&—coo
and 62 =Qz —

(o&o
—

uIII ).
Initially, at time t =0, it is assumed that the atom is in

the ground state and that there are no coherences, i.e.,
P33 1, P» =Pzz =0, and P J

=0, where i Wj. To study the
evolution of the system to the CPT state from the above
initial conditions the set of density-matrix equations in (5)
is numerically integrated using a fourth-order Runge-
Kutta method. We especially concentrate on the two-
photon resonance (Raman) condition 6,=b,z.

Considering the 6,=62 =0 situation where the two

I I I I I I

0

Time
FIG. 2. Dynamical evolution of the absorption characteristic

of the medium for the transition ~1)~~2) with respect to field
Gz, Im(p, z), and population of the level ~2), pzz (inset). The
time is scaled as y, t. Parameters are Gl = Gp = 10 5[=k2 =0.
The solid curves correspond to the decay rates y2=y& = 1.0 and
the dashed curves correspond to y2=2, y&=1.0. The dashed
curves in the main figure and the inset have been shifted by 0.1

units in the positive y direction for clarity.
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which dictates the time evolution to steady state, is of the
order of G, Gz. Thus the time scale at which steady state
is reached is —1/G i Gz. For instance, when

6, =Gz =0.1, the time scales as 100y, t. This is reflected
in the dynamical evolution of Im(p, z) and p~~ as depicted
in Fig. 3 and its inset (solid curves). (Rabi oscillations
have disappeared as the eigenvalues are real. ) The steady
state as observed is nothing but as given by Eq. (1). This
leads to the conclusion that the CPT state is formed even
at very low light levels. But, as predicted by the analysis
above, as the external field strength is reduced the atomic
system takes longer and longer times to reach the CPT
state.

The behavior of the A system is also sensitive to the
relative rates of spontaneous emission of the two transi-
tions. Therefore we study the influence of the spontane-
ous decay rates on the evolution. We again examine the
eigenvalues. For strong fields, as one of the decay rates
(say yz) is increased from unity it is observed that the
minimum eigenvalue becomes larger. In the strong-field
example studied above when yz is increased to 2.0 the
minimum eigenvalue increases to —1.48 from —1.0 for
the ye=1.0 case. In other words, the time taken to reach
steady state (the CPT state) is relatively less. This is
confirmed by the numerical integration result for the evo-
lution shown in Fig. 2 (dashed curves). But for low fields
an opposite effect occurs. As the decay rate is increased
the minimum eigenvalue becomes smaller. In the low-
field example studied above when yz is increased to 2.0
the minimum eigenvalue reduces to —0.0066 as com-
pared to —0.0099 for the ye=1.0 case. Hence it takes
longer to reach steady state as confirmed from the dashed
curves in Fig. 3. This is due to the buildup of a small
amount of coherence p&z, which then slowly decays to
zero.

20-

This term can easily be identified in the numerical listing
of the eigenvalues. The second term in Eq. (6) gives rise
to a quadratic equation A, +A,y+ 2g =0 whose solutions
are given by

)+—&)" Sg'—
2

(8)

For large g (strong fields), two complex conjugate roots
are obtained (as found in the numerical analysis). But if g
is small (low fields) two real roots occur. The roots in
both these cases are repeated due to the square in the
second term in Eq. (6).

The third term in Eq. (6) gives rise to a cubic equation
given by

A, +3yk +(8g +2y )A, +4g @=0 .

The cubic equation accounts for the remaining three
eigenvalues, one of which is the minimum. The expres-
sions for the three eigenvalues are quite involved (not
given here) and do not immediately give a clear function-
al dependence on the fields and the decay rates. To un-
derstand the behavior of the minimum eigenvalue in the
case of low fields, we perform a perturbation calculation.
Introducing the scaled parameters X = A, /y and g =g /y,
Eq. (9) is transformed to

To understand the functional dependence of the
minimum eigenvalue on the decay rates and the fields we
solve for the eigenvalues of the SXS matrix in Eq. (5)
analytically when the fields are symmetric and when
A, =6&=0. If A, denotes the eigenvalue, then by setting
Det

~ p
—

A,I
~

=0 when I is an identity matrix, an eighth-
order equation in A, is obtained whose roots are the eight
eigenvalues. The eigenvalue equation is given as

(A, +y)(A, +Ay+2g )

[k +3@k, +(8g +2y )A, +4g y]=0, (6)

where y=y&+yz and g =G& =Gz. The first term in Eq.
(6) gives

+3X +(Sg +2)A, +4g =0 . (10)

0
l.
CD

20 I I I I I I I I I 1 I I I I

0 P.OO

0.8 :
04:

O.i:
iI"""RO"'"i%i ""ibii"'"ibii ""MOO

TlRRe

400 600 800 1000

From the numerical calculation the minimum eigenval-
ue is found to be of O(g ). So, we let X=I3g where/3 is
an unknown parameter which is found approximately
from the perturbation calculation. In Eq. (10) the quad-
ratic and cubic terms in X are —O(g ) and O(g ), re-
spectively. The term (8g +2)X is —80(g )+20(g ).
As g is quite small, retaining only the first-order terms in

g in Eq. (10), we get P= —2. Hence X= —2g ~ or

A, = —2
y

TlIX1e
FICx. 3. Same as in Fig. 2 with parameters G& =6&=0.1,

Az= 6& =0. Solid and dashed curves correspond to y&= y&
= 1.0

and y&=2. 0, y&
= 1.0 cases, respectively.

Thus for low fields the minimum eigenvalue approxi-
mately decreases as 2/y with the increase in one of the
decay rates. In other words the system takes a longer
time to reach a steady state as was discovered in the nu-
merical calculation above.
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III. STEADY--STATE CHAARACTERISTICS
ECAY RATESWITH UNEQUAL DK

——'+C)+Cz,Pzz (12)
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FIG. 6. Same as in Fig. 4 but with parameters G& =Gp =1~ 0,
6,=0, y, = 1.0. The dotted curve represents y2 = 1.5, the
dashed curve y2 =2.5, and the solid curve y2 =3.5.

Hence any decrease in h2 results in a decrease of the
numerator of C2 without affecting the denominator D
much. This gives rise to the dip in Fig. 5(b). The order
of magnitude of the term C2 is larger than C, in the re-
gion ~b.2 (Gi and this explains the behavior of p22 for
) 2+ Yl (»g 4).

Physically, as the spontaneous decay rate from state
~1) to state ~2) increases more than the spontaneous de-
cay rate from state

~
1 ) to state 3 ), more and more of the

population gets settled in state
~
2 ) . Only at the condition

h, =b, z does the population get distributed equally (be-
cause of the condition G, =Gz) between the states ~2)
and ~3). This leads to the increase in sharpness of the
dip with the increase in y2. If y2 (y, , a peak is observed
instead of a dip which is predicted from the Eq. (14).

For fields as low as 0.001 (scaled with respect to y i ) the
term with the second power of G, in Eq. (13) becomes
negligible and hence the peak in C& disappears. Howev-
er, for strong fields of the order of y, this term becomes
important and is responsible for the deep furrows on ei-
ther side of the two-photon resonance condition as de-
picted in Fig. 6. But if the intensities of the fields are in-

creased then the dip occurs only for very large y2 (Fig. 6).
This is because the spontaneous emission from state

~
1 )

to state ~2) has to be more effective than the field G2 on
the same transition to accumulate population on the level
~2). The sharpness of the dip at b, , =52=0, indicating a
fall in the population in level ~2), is manifested only
when more population is there on level ~2) for detunings
other than 6,. For smaller y2 the decrease in p22 at
b, =62 gets smoothed out due to the overall low popula-
tion level for the values of detuning, A2 not equal to zero.
This dip in the population of the level ~2) can be ob-
served by studying the absorption out of the level ~2) us-
ing a weak probe field as, for example, has been done in a
difFerent context in Ref. [8].

IV. CONCLUSIONS

In conclusion we have demonstrated that the
phenomenon of CPT persists even at low light levels [14].
Futher, using a simple eigenvalue calculation and corro-
borating its prediction of the time scales involved by nu-
merical integration of the atomic density-matrix equa-
tions for a A system, we have demonstrated how the evo-
lution to the CPT state is dependent on the relative
strengths of the fields and the spontaneous decays in-
volved. We have shown that strong fields lead to the
CPT state faster. Increasing the decay rates in the case
of strong fields leads to CPT faster while in the case of
weak fields it leads to a relatively slow evolution to CPT.

We have also demonstrated a sharp dip in the steady-
state response of the A system when unequal spontaneous
decay rates are assumed. The origin of the dip in the
behavior of the population of the ground state is due to
the trapping conditions at 6& =62.

Finally we mention that we have treated only a dilute
medium. For a dense medium we have to account for the
effect of the neighboring atoms, i.e., we have to include
local-field corrections. This concept has been used in las-
ing without inversion to demonstrate enhancement of
gain and enhancement of the index of refraction [10]. In
a further publication we plan to study the dynamics of
the atomic system in a dense medium where the near
dipole-dipole effects become effective in the evolution to
the CPT state.
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