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Probability distribution of photoelectric currents in photodetection processes
and its connection to the measurement of a quantum state
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Various probability distributions are calculated for photocurrent fluctuations for photoelectric detection and
are expressed in terms of quantum averages of field operators. The calculation is based on an extended theory
of Kelley and Kleiner for photoelectric counting [Phys. Rev. 136, A316 (1963)],which allows us to obtain the
counting distributions for multiple time intervals and multiple detectors, The finite duration of the detector's
response function is also considered in our formalism, as is the possibility of fluctuations in the response
function itself. This generalized theory is applied to homodyne and heterodyne detection processes. We find
that with ideal conditions (perfectly balanced detectors with unit quantum efficiency), the characteristic func-
tion of the photocurrent fluctuations from homodyne detection is connected to the Fourier transformation of the
Wigner function of a single-mode field, while that from heterodyne detection is linked to the antinormally
ordered characteristic function of the field. More specifically, if the two orthogonal quadratures of the photo-
current are recorded in the heterodyne detection, the joint probability distribution for the two quadratures is
simply the Q function of the field without the need for optical tomography. Our formalism is applied to the
multimode case and allows one to draw important conclusions about the possibility of measurements of the
complete quantum state of a multimode field. In particular, the complete characterization of fields with inter-

mode correlations is a nontrivial undertaking, as we demonstrate with our general formalism as well as by
specific examples.

PACS number(s): 42.50.Ar, 03.65.Bz, 02.50.—r

I. INTRODUCTION

It is common knowledge in optics that the photocurent
from a photoelectric detector is a good representative of the
intensity of the illuminating field. Indeed, this is why photo-
detectors are ubiquitous for monitoring the dynamics of a
light field and for gaining knowledge about the nature of the
light field with few exceptions. It seems that photodetectors
are the only direct means for the measurement of an optical
field. In the classical theory, the electric field is described by
an analytic function V(x, t) (we are only interested in a sca-
lar field), which satisfies the Maxwell wave equation [1].The
classical theory for photodetection is extremely simple: the

electric current i, from an ideal photodetector located at x at
time t is directly proportional to the intensity of the light
field at that point:

i,(t) ~ V*(x,t) V(x, t) =—I(x, t),

the detector required in order for Eq. (1) to be true. Other-
wise a convolution with the response function of the detector
has to be done to obtain the output electric current of the
detector

i,(t)~ dr I(x, r)Q(t r) = dr I—(x, t r)Q(r), —
J-- '

Jo
(2)

where Q(r) is the response function of the detector and

Q(r) =0 for r(0.
In quantum theory [2], the light field is described by a

quantum state and the electric field and intensity are associ-
ated with Hilbert-space operators. In general, the density-
matrix operator p [3] can be used for the description of the
state of a quantum system. On the other hand, the density
matrix is connected to the characteristic functions that are
defined for a single-mode field by [4]

where V(x, t) is a complex function. Because of the stochas-

tic nature of light sources, V(x, t) is normally a random vari-
able. Thus, by monitoring the electric current, we can di-
rectly observe the fluctuations of the light field. In this case,
the fIuctuations of photoelectric current truly represent the
fluctuations of the intensity and hence of the field. In prac-
tice, detectors are nonideal and have a finite response band-
width. Therefore, depending on the bandwidth of the light
field to be monitored, one needs to select photodetectors of a
different response time. The wider the bandwidth, the faster

c( )(g) —
(

t'*" jC~) =T "
(3a)

C(' (j)= (e &'e & 't) = Trpejl'e & ', (3b)

C()v)(g) —(ej(t'*~"+ L~)) —TrpeJ(t'*~ + t~) (3c)

where a~, a are the creation and annihilation operators for the
field mode, respectively. All other field operators can be ex-
pressed in terms of a",a. g is a complex variable and the
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labels n, a, lV denote normal, antinormal, and symmetric or-
dering, respectively. The three functions are connected to
each other by

(4)

Equation (3a) can be inverted and we then have the density
matrix

Therefore, given any of the three characteristic functions, we
should be able to derive the density matrix and hence the
state of the system. Another way to characterize the state of
the system is the Wigner function [5], which is connected to
the characteristic function in symmetric ordering

f
W(x, y) = dp, dv C~ ~(p„, v)exp( jxp j—y v), —(6)

where p„v are real variables and j=—p, +j v.
The theory of photodetection, by which one attempts to

measure properties of the state of the field as specified above,
is based on the photoelectric effect and has been worked out
by a number of people [6—9].These treatments associate the
statistics of photoelectrons (the probability of ejection of
electrons due to the illumination of light) with the ensemble
average either of the fiuctuations (semiclassical theory [6,7])
or of the quantum state (quantum theory [8,9]) of the field.
On the one hand, these treatments are well suited for photon-
counting measurement where one can isolate individual pho-
toelectric events to study their statistics and for the illustra-
tion of the particle behavior or quantum nature of light
because of the emphasis on the photon concept (indeed, it
has resulted in the discovery of some remarkable quantum
phenomena of light [10—13]). On the other hand, when the
light intensity is large, as usually happens, and single-photon
events cannot be resolved, the randomness of the photoelec-
tric events causes the photoelectric current to fluctuate, with
the fluctuations again depending on the statistics of the pho-
toelectrons and hence on the state of the field.

However, with the exception of photon-counting measure-
ments on low-intensity quantum fields, where actual tempo-
ral history of "clicks" can be recorded, almost all measure-
ments performed on optical fields have involved
measurements of certain averages (e.g., mean and variance)
of photocurrents, such as in the measurements of squeezed
states [14,15], photon-number squeezed states [16], and
other correlated quantum states [17,18], as well as in some
recent experiments related to quantum nondemolition mea-
surement [19—21]. This is because it is most convenient ex-
perimentally to measure these quantities by spectral analysis.
The photodetection theories mentioned above are used to
calculate the average or the variances of the photocurrents
from the quantum state of the illuminating field [22—24].
Therefore, given the quantum state of the light field, one can
derive the properties of the photocurrents and compare them
with the experimental results in order to test the quantum
theory. However, one cannot uniquely determine the quan-
tum state of the field just by measuring a few moments of the

photocurrents because many different quantum states can
give rise to the same averages and variances of photocur-
rents. Although it is useful for the discovery of some inter-

esting quantum aspects of light, incomplete knowledge is
gained about the actual quantum state of the field from the
measurement.

We do know that in quantum theory, a system is com-
pletely described by its quantum (pure or mixed) state. Once
the state is given, the complete information about the system
is known. Therefore, the state of a system is fundamental in

quantum theory. Although by monitoring the averages and
variances of some field quantities we are able to observe
dynamical fluctuations of the field and gain some informa-
tion about the state from the measurement, the information is
complete and does not allow complete reconstruction of the
quantum state. Of course, one can measure the probability
distribution of the photocurrent and thus gain "complete"
information about the current. But the following questions
then arise: How are the fluctuations of the macroscopic pho-
toelectric current related to the microscopic quantum state of
the light? Can one go backward to derive the quantum state
of the field from the complete measurement of the photocur-
rent?

Yuen and Shapiro answered the first question in the last of
their classic trilogy [25] on squeezed states and quantum
communication. They calculated the characteristic function
of the photocurrent and related it to quantum state averages
of field operators, Based on the theory of Yuen and Shapiro,
Vogel and Risken [26] showed that one can derive the
Wigner function of the light field from the probability distri-
bution of the photocurrent. Recently, Smithey et al. [27]
demonstrated the feasibility of such a technique for the mea-
surement of the quantum state of light by optical tomogra-
phy. However, in the theory of Yuen and Shapiro, it was
assumed that the photodetector has a 6'-function response in
time so that it covers an infinite bandwidth. In practice, de-
tectors have a non-6'-function response and a finite band-
width. Because of the complexity involved in the quantum
averages of the theory of photoelectric detection, it is not so
straightforward to find the corrections due to a non-
8'-function response of the detector as in the classical theory.
Furthermore, the detection process very often involves post-
detection amplification to bring the photocurrent to a macro-
scopic level and filtering for spectral analysis after the pho-
tocurrent is generated. Because of noise in the electronic
circuits, some extra fluctuations may also be introduced
through amplification and a filtering process into the photo-
electric current measured at the final stage. More impor-
tantly, in the derivation of Wigner function of the field by
Vogel and Risken [26], only a single-mode field is consid-
ered. As we will show later, it can therefore only be applied
to fields with no correlation. Of course, in practice the mode
structure of the field can be very complicated with intricate
intermode correlations. In applying the technique of Vogel
and Risken, we must know before the measurement that
there is no intermode correlation in the light field in order to
extract the quantum state. A more general question then
arises: Is it possible to extract the quantum state of the light
field from measurements without any prior knowledge of the
illuminating field? (Of course, we must assume that there is a
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large number of identical quantum ensembles available for
us to make repeated measurements. A single measurement is
in general not enough. )

It is known that light field can be decomposed into modes
that are defined by (i) frequency (temporal dependence) [28],
(ii) spatial variation, and (iii) polarization. A complete de-
scription of the state of the light field must include informa-
tion about correlations of the modes characterized in those
three aspects. Therefore, the first task that we must perform
in making a complete measurement of the state of a light
field is to determine the mode structure of the field so as to
find which mode is excited (unexcited modes are not inter-
esting). In order to accomplish this, we must separate the
modes that make up the field and then simply measure the
intensity of each mode. Among the three aspects of a mode,
the spatial property of a mode is the most difficult one to
handle because without prior knowledge of the spatial de-
pendence, we simply do not know where to locate our detec-
tors to make measurements: there are too many degrees of
freedom. Fortunately, in most cases, the light field is gener-
ated in a we11-defined geometry in which the spatial distri-
bution of the field can be probed and therefore measured
before the light field is generated. Therefore, the spatial in-
formation of the field can be determined through indepen-
dent methods. For polarization modes, we can use a beam-
splitting polarizer to separate them. As for the temporal
modes or, in other words, the spectrum of the field, we know
that it is not necessary to physically separate them in order to
find the spectrum of the field because the photocurrent basi-
cally contains such information. But like the case of spatial
and polarization modes, we still need to make a spectral
analysis and find which mode is excited before we begin to
pursue our next task, which is to determine the intermode
correlations. In this paper, we will mostly concentrate on the
latter task. This is our motivation to study the photodetection
theory and extend it to include the multitime and multidetec-
tor cases as well as to treat a number of nonideal features.

In what follows, we start in Sec. II with a model of the
photodetection process used in Ref. [23], where the photo-
current is calculated from the contributions of the response
of each photoelectron. For each photoelectric event, we as-
sume a non-6-function response as well as fluctuations of the
size of the response function. In Sec. III we derive the char-
acteristic function for the photoelectric current (single ran-
dom variable) at one detector and at a certain time after
postdetection amplification and filtering. We base our deriva-
tion primarily on the photon-counting formula for the statis-
tics of photoelectrons derived by Kelley and Kleiner (KK)
[9].However, we need to extend the KK theory to cover the
case of multiple time intervals in order to consider the con-
tributions of photoelectrons from all different times. We also
consider the case for multiple detectors in the photon-
counting formula, which will be needed in Sec. IV to calcu-
late the characteristic function for the photoelectric currents
at different detectors and different times (multivariables).
With the general formula for the characteristic functions for
the photoelectric currents, we discuss in Secs. V and VI ho-
modyne and heterodyne detection and consider the probabil-
ity distributions of the photocurrent for various quantum
states. In Sec. VII we investigate the possibility of the deter-
mination of the quantum state for the illuminating field from

measurements of the probability distribution of photocur-
rents. Here we emphasize the multimode situation. Although
some of the conclusions in this paper have been obtained
before, we believe that our derivation is based on the well-
known photon-counting formula and the general formalism
developed here for the multimode and nonideal photodetec-
tion process is more practical and closer to an actual situa-
tion in experiments, which allows us to pursue the experi-
mental conditions for the recovery of the quantum state.

II. THE PROCESS OF PHOTODETECTION

The standard theory of photodetection [6,8,9] is based on
Einstein's photoelectric effect, where photoelectrons are ion-
ized from photosensitive material by an illuminating light
field to become free electrons. These photoelectrons form a
photocurrent that is later amplified to the macroscopic level
for measurement. When the light intensity is very low, the
rate of photoionization will also become low so that the am-
plified electric current corresponding to each photoelectron
will form a series of distinct, nonoverlapping electric pulses.
The shape of the pulses depends on the response of the de-
tector as well as on the gain and bandwidth of the postdetec-
tion amplification. By counting the electric pulses, one can
count the photoelectrons and thus in some approximate way
the photons of the light field [29].This is the basis for photon
counting. On the other hand, when the light level is relatively
stronger but still weak enough not to saturate the detector,
the electric pulses due to emissions of photoelectrons will
overlap and form a more nearly continuous electric current.
At a given time t, the photocurrent is the sum of contribu-
tions from all pulses generated before t as expressed in Eq.
(2). In the following, we will mostly discuss this situation
and calculate statistics of the photocurrent fluctuations.

Assume that a single photoelectron emitted at time t = 0
subsequently generates an electric pulse of the form of Q(t)
[Q(t) =0 for t(0] [23], which has the same normalized
shape q(t) [with foq(t)dt= 1] for all photoelectrons but
whose size is fluctuating from one photoemission event to
another. Hence take Q(t)=Qq(t), where Q is a random
variable that varies from one event to another and is de-
scribed by a probability distribution P&, where P& takes
into account the postdetection electronic amplifier's gain
fluctuations. This random variable is totally independent of
the photoemission processes. The characteristic function of
the random variable Q is defined as

f
Cg(r) = dQPg(Q) e'"~.

C&(r) =1 for r=0.
The electric current I, for a succession of photoelectric

events is a summation over all the electric pulses generated
by the photoelectrons and has the general form of [9,22 —24]

(8)

where ti, t2, ts, . . . (~t) are the emission times of the suc-
cessive photoelectrons before time t. Q; (i = 1,2,3, . . . ) are
identical but independent random variables as Q (Fig. 1).
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FIG. 1. Process of photoemission.

Our goal here is to find the connection between the probabil-
ity distribution for the current I,(t) at a given time t and the
quantum state of the detected light field. Usually it is easier
to first calculate the characteristic function C, (r) defined by

FIG. 2. Square response function of the detector.

n n . n( i tl+ i t2 2+T2 k k+ k)

C, (r) =(e'"'), (9a)
(12)

where the average is over all the possible emission time t;
(i= 1,2,3, . . . ) as well as over the fiuctuations of 0, . The
probability distribution for I, is given by the Fourier trans-
formation as

l
P, (I)= C, (r)e '"'dr.

2m)

The statistics of the emission of the photoelectrons was
calculated by a number of people [7,9]. Here we are particu-
larly interested in the quantum-mechanical derivation by
Kelley and Kleiner [9],who derived, for a narrow bandwidth
light field, the probability of emission of n photoelectrons
during the time interval [t, t+ T] as

III. CHARACTERISTIC FUNCTION Cl (r) FOR
PHOTOCURRENT I,

Equipped with the probability distributions given in Eq.
(12), we are ready to derive the general characteristic func-
tion Ct (r) via Eq. (9a). However, in order to demonstrate

e

the line of argument more clearly, we start first with a simple
probability distribution, namely, a Poisson distribution for
the photoelectrons.

A. Poisson distribution

W'
P„(t t+T)= W:, en! (10)

If the photoelectrons arrive totally at random at a constant
rate of X and are independent of each other, the probability
distribution is Poissonian and has the form

where W—=JI nI(w)dr, with I(w):E(7')E + (r) b—eing
the photon flux operator of the detected field and u the quan-
tum efficiency of the detector. .%~and:: denote the time and
normal ordering of all the operators (intensity operator). The
average is taken over the quantum state of the detected field.
The field operator E~+i(i.) has the form

des a(co)e '"'=[E~ l(~)]f, (11)

where a(co) is the photon annihilation operator satisfying
[a(co),af(co')]= 8(c0 —cu'). Note that here we do not con-
sider the spatial dependence (spatial mode) of the field. We
assume that the spatial dependence is well defined for the
field so that it is taken into consideration in the coefficient
u. However, in order to calculate Ct (r) in Eq. (9a), the

e

probability distribution in Eq. (10) is not enough. Because
the response of the photodetector is not instantaneous, con-
tributions to I,(t) can come from photoemissions at earlier
times. So we need to know the probability for emissions of
n, photoelectrons in the time interval [ti, ti+ Ti], n2 in

[t2, t2+ T2], . . . , and nk in [tk, tk+ Tk]. This can be calcu-
lated along the same line that leads to Eq. (10). We only
write down the result

()i.A r)'
P(k, hr, n) = en! (13)

P„, „(ti,ti+Ari it2, , t2+5'T2,'. . . ', tk, tk+5'Tk)

= Q P()Aiw;, n;) (14).
To further simplify the calculation, let us assume that q(t)

has the rectangular shape shown in Fig. 2 so that

1/r for O~t~r
q(t) =

0 for t(0 or t~r. (15)

where Ar is the time interval during which the electrons
arrive. Such a distribution can be generated when the light
field is from a laser, for instance. Since the arrivals of the
electrons are independent, the joint probability distribution
for photoemissions in multiple time intervals is simply the
product of each probability. Hence the joint probability for
emissions of n i photoelectrons in the time interval
[t, , t, +A~, ], n2 in [t2, t2+Ar2], . . . , and nq in

[t&, tt, + 5 r„] is given by
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Hence the contributions to I,(t) come only from those pho-
toemission events that start within the interval [t r—, t]. As-
sume that there are n events in this interval. The probability
for this to happen is given by Eq. (13) for a Poisson distri-
bution. Then for these n photoemissions, we have

n

I,=X Q;q(o)
l = 1 g q(r, )

where each photoemission gives rise to a current Qiq(0) at
time t with Q, fluctuating from one event to another. The
joint probability for the set of values (Q;) 0 Z) Z2

n

PQ(Q1 ~ ~, Q.) = ]l P,(Q, ) (17)

is simply the product of each distribution because they are
independent and identical.

The characteristic function in Eq. (9a) is thus the average
over the two probability distributions given in Eqs. (13) and

(17). Hence

=X
n=1

t X.r "
dQ dQ

—)er1'''
n

n

Cr (r) exp jr+ 0=;p(0)
l'= 1

time

FIG. 3. (a) Division of the response function into square func-
tions. (b) Division of the time axis.

n

xP&(Q, , . . . , Q„)exp Jr+ Q;q(0)
l=1

ni

P I,(t) =g q(iver) g Q, j
k=1

= exp(k r(C&[rq(0)] —1 j), (18) =P« „,(t, t+Ar;t), t)+Dr;. . . ;t;,t;+Sr;. . . )

n;

I,(t)=g q(iver)g Q;k, (19)

where the Q, k's are independent and identical random vari-
ables that have the same probability distribution as Q. The
joint probability density for I, in Eq. (19) can be found as

where the summations and integrations are over all possible
values. We have used Eq. (7) for the characteristic function
of the random variable Q and the fact that Q is independent
of photoemissions.

Next we consider the situation when q(r) takes any arbi-
trary shape. In order to follow the same line that leads to Eq.
(18), we divide q(r) into small equal intervals of size 5 r as
shown in Fig. 3(a) and approximate q(r) in the interval

[r; &, r;] (r;=7'; t+5r, tp=0) by a rectangle with height

q(r, ). The time axis before time t is also divided into equal
parts with each having a time interval of 67 as shown in Fig.
3(b) with t;=t; )

—b r (tp =—t). Assume that there are nt
events in the interval [t, , t], n2 in [t2, t&], . . . , and n; in

[t;,t;,], . . . . The n; events that fall in the interval

[t;,t;,] will contribute to I, by the amount

X„',Q;„q(t t;) =q(id, r) X—k', Q,„,as in Eq. (16).Then the

total current I,(t) is the sum of the contributions from all the
time intervals before time t and is given by

X ',

l

ni

. ... Pg(Q;j, )
k=1

(20)

n.

Cr(r) Iexp jr+ rj(tjer)g =pe
l k=1

n)=1 n = 1

~ ~ ~ e ~ ~

J

n;

X exp jr+ q(ib r) g Q,„
k=1

(gr)xII, 'II P (Q, )dQ, (» )
n;~ k=1

After some arrangement, Eq. (21a) becomes

where we have used Eqs. (13) and (14). Hence the charac-
teristic function CI can be calculated as

e
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oo

C, (r)=exp g )(.Ar(Cg[rq(ih~)] —I) '
i=1

number of photoelectrons in the duration of an electric pulse
is much larger than one so that electric pulses are overlap-
ping), the characteristic function Cz can be approximated by

e

=exp X dr(Cg[rq(v)] —It
Jo

(21b)
Ct (r)=exp j r(Q)k ——(Q )q21).

Here we have taken the limit of 6~~0. It can be easily
checked that when q(t) has the rectangular form as in Fig. 2,
Eq. (18) is recovered from Eq. (21).

When the light intensity is low and X. is small, the photo-
current I, is discrete in time and consists of a series of
pulses. In this case, it is not meaningful to discuss the prob-
ability distribution of I, . By contrast, when the light inten-
sity is high and P is large so that a practically continuous
stream of photocurrent is formed, PI becomes a sensible

e

distribution. Under this condition, we find the probability
distribution Pt from Eq. (9b) as

e

1 . (~
Pt (I)= dr e '"'exp k(C(i[rq(r)] —1 td7.

2'77' 30
(22a)

Next we use the method of steepest descent to obtain the
asymptotic form of PI for large X. It has the form

e

1
P, = exp( —(I—(Q)k) l2(Q )q2k),

2 vr(Q')q, Z

(22b)

which is a Gaussian distribution with mean (I,) =(Q))i. and
variance (t))I,)=(Q )q2k [qz=—foq (r)dr]. This result is
expected because it is well known that for a large average
number, a Poisson distribution approaches a Gaussian distri-
bution. Therefore, for high light intensity (klqz)&1, or the

where only terms up to order r are kept in the expansion of
C&(r). Notice that the Gaussian distribution is modified by
the response function and fluctuations of the detector and the
electronics in the form of an average over Q and a time
integral over q (v).

B. General distributions

For an arbitrary light field, the statistics of photoelectrons
can have diverse distributions that follow from the formulas
given in Eqs. (10) and (12). Notice that formulas in Eqs. (10)
and (12) have a form similar to a Poisson distribution except
that they involve quantum operators that are averaged over
the quantum state of the detected light. However, because of
the time and normal ordering of the operators, as long as the
action is taken before ordering (inside the colons), operators
can be exchanged just like c numbers. Thus the derivation
that leads to Eq. (21) can be directly applied to the distribu-
tions given in Eqs. (10) and (12).The only change is that the
constant XA~ is replaced by a time-dependent operator
Wk= f, ' uI(r)dr~nI(t;)I)), r as I) r—q0. Hence we can

t

obtain CI for an arbitrary light field simply by replacing in

Eq. (21) ))b, r with nI(t;)I) r= ctI(t ib, 7)kr, b—y taking
time and normal ordering and by averaging the resulting op-
erators over the quantum state of the light. Therefore, for
arbitrary light fields, we have, for the characteristic function
C& of the photoelectric current I, ,

oo

Cr (r) (e'"')= W:exp( g=ol(r Ce)r)k (CO(rq(rik )]——1)r
l=1

t
co

,X~:exp
Jo

ol(r r)(CO(rq(r)] —1)dr: I . — (24)

f oo

C (r) = .X~:exp nI(t 7)[ej"~«t —I ]dr—I

t
co

exp jr o.I t —v r dr
Jo

quantum

[Q(7') = Qoq(r)]

= Trp exp j r ctI(t 7')Q(r)dr, (2&—)
00

where we have assumed that the field is free [30] so that
[g'( ](t]),g(+](t2)]= 8(t] —t2) and hence we have dropped

From this formula, we see that the contributions to the fIuc-
tuations of the photoelectric current I,(t) arise only from
light fluctuations before time t, so that causality is preserved.
Equation (24) is a general relation that connects the photo-
current fiuctuations (classical random variables) to the quan-
tum state of the illuminating light field. The quantum-
mechanical behavior of the light field is reflected in the

quantum average over the field intensity operator I(t 7). —
Given any state of the field, one can use Eqs. (24) and (9b) to
find the probability distribution for the photocurrent I, at
time t If the pulse . height Q does not fluctuate, that is,

Pg(Q] = 8(Q Qo), then C&(r) = ei "~o and Eq. (24) be-
comes
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the time ordering. The quantum average of the normal order-
ing for the field operators is also changed to that without any
ordering [25]. The subscript "quantum" means the quantum
average of the field operators over the quantum state de-
scribed by the density matrix p. The last line of Eq. (25) is
the characteristic function for the operator

t2

N —1 intervals

~ ~ o 3

I',(t)= nI(t r)Q—(~)dr
30

(26)

(I",(t)) = ([i,(t)]"),„,„,„ = Trp[i, (t)]" (27)

for any integer n. In the photodetection process, we directly
measure the quantity I,(t) (its fluctuations) and therefore,
because of Eq. (27), the photodetection process provides a
faithful (but destructive) quantum measurement of the opera-
tor i,(t). In other words, we have identified the quantum
operator, as expressed by Eq. (26) in terms of the field op-
erators, that corresponds to the measurement of photoelectric

n

processes. When Q(i.) is a B-function, i,(t) is directly

I(t), as derived by Yuen and Shapiro [25]. Notice the simi-

larity between Eq. (26) for quantum theory and Eq. (2) for
classical theory. When the light intensity is high, similar ap-
proximations that lead to Eq. (23) can be applied to Eq. (24)
to find that

f oo

C, (r) = W~exp jr(Q) nI(t ~)q(7)d~-
e 00

Since an expansion of the characteristic functions as ex-
pressed by Eqs. (9a), (25), and (26) is term by term equal, we
deduce that the fluctuations of the classical random variable

I,(t) for the current is equivalent to the quantum fiuctuations

of the operator i,(t); more explicitly, there is equality of the
moments

FIG. 4. Division of the time axis for the two-time case.

(1) (2)) (
I'(~ I ( I))+~ I {I2)])

t)t2% (29)

for I,(t, ),I,(t2) with ti) t2, let us divide the time axis into
small sections as shown in Fig. 4, which is similar to Fig. 3.
The subsections are of size 5 v = (t, —t2) l(N 1) and —are
labeled as 1,2, . . . ,N, . . . with t& in subsection 1 and t2 in
subsection ¹ Then the-current I,(tz) results from the con-
tributions of those photoelectric events that fall in subsec-
tions with labels larger than N, that is [cf. Eq. (19)],

ni

I,(t2) = y q[(l N)d!, 7-]y—Q, „,
k=1i=N

(30a)

whereas photoelectric events in all subsections will contrib-
ute to I,(t, ), that is,

ni

detectors. Notice the difference in the two probability distri-
butions. Although both are for multiple times, one is for a
single detector whereas the other is for many detectors. As
seen below, they have completely different forms.

For simplicity, we present only the derivation for the case
of two different times t &, t2 or of two detectors and then

simply quote the final result for the general case. In order to
find the characteristic function

r'(Q')
aI(t r)q (x)d7.—

2 J 0
(28)

I.(ti)=X ql. (' 1)~r]X Qik (30b)

IV. CHARACTERISTIC FUNCTION OF PHOTOCURRENTS
FOR MULTITIME AND MULTIDETECTORS

The characteristic function CI (r) derived in the preced-
e

ing section is for the calculation of the probability distribu-
tion P, (I) of the photocurrent I, from one detector at a

e

single moment t. Very often we need more information about
the fluctuations of the photocurrent involving correlations
between fIuctuations at different times or different detectors.
In balanced homodyne detection, for example, the photocur-
rent difference between two detectors is measured. In other
cases, the photocurrent I,(t) is frequency analyzed by a
spectral analyzer that deals with the Fourier transformation
I,(A) =fdt I,(t) e' ' and thus involves photocurrents at dif-
ferent times. To calculate these quantities, we need to find
the joint probability distributions P«(I), I2, . . . ) of the

photocurrent I, having the value I
&
~I i +dI

&
at time t

&
and

I2~ I2+ dI2 at time t2, . . . from one detector or
Pil))i(2) (I, , I~, . . . ) of observing current I,' (ti) having

e e

the value I,~I, +dIi at detector 1 and I, (t2) having the
value I2 I2+d12 at detector 2, . . . from many different

n;

C, (r"'. "')= exp j "'X q[(i —N)«]X Q;
i=N k= 1

+ir'"2 ql:(I —1)~~]X Q, ~

(31)

Here the average is over the quantities Q;i and n, . Follow-
ing the same calculation that leads to Eqs. (21) and (24), we
find C, , (r ', r ) for two different times t, , t2 as

C (r('), r(2)) = W:exp ~I(ti r) &C{i[r(')q(~)]—

f
etI(t~ ~)jcc[r( )q(r)—

+ r(')q(r+ t, —t2)] —1jdr: (32)

where n, is the number of photoelectric events in subsection
i Therefore. , Eq. (29) becomes
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It is easy to see that Eq. (24) is recovered when we set either
v ') or vt = 0 in Eq. (32). Furthermore, before proceeding to
more general cases, we calculate the two-time correlation
(I,(t))I,(t2)) from C«(vt'), vt )) as another check for Eq.
(32). From the definition of the characteristic function, we
have

82
(I,(t, )I,(t2))= . &» . &» C«(v ', v )I j)), )')=p

ct(j v j))j v

(33)

After carrying out the partial differentiation of Eq. (32), we
find easily that

) co

(I,(t, )I,(t2)) = n(Q ) dr(I(t2 r—))q(r)q(r+ t&
—tz)

Jo

('oo (co
+ n2(g) dr dr'

o do

X (.W~:I(t, —r) I(t, r')—:)q( r) q( r'), (34)

which is same as Eq. (24) in Ref. [23] if we assume that
there is no fluctuation for g.

For the general case of M different times with
t&&t2& . . &tM, the characteristic function has the form of

M

C«, , (v ',v, . . . , vl )= exp jg vl'I, (t;)
1=1

M

~ :exp
(

nI(t; r) Cg—g vt"lq(r+tk t, ) —1—dr
0o

~

where tM+, —= —~. For continuous time in the interval [t T, t], we—simply set t;= t i TIM an—d M~cc and then replace the
summation over the discrete index i with an integration over a continuous index v . In doing so, we need to pay special
attention to the last term (i =M) in the summation of Eq. (35). It gives rise to an integral ranged from 0 to cc. The rest of the
summation changes to an integral with respect to ~'

ft
C~, rO[r(r))= exp j dr r(r)j, (r)

J ~-T

dr' nI(r'):exp
Jo

t
oo (
dr nI(t T r) Cg— —dr"v(r")q(r+ r" t+ T) —1 —+

J j T—
X Cg d r"v( r")q( r"—r') —1

t

.T:exp
0o

I
oo

I T
dr) nI(t rt) Cg —dr2v(t r2)q(rt —r2)——1

Jo (36)

Note that since v(r) is an arbitrary function of r, we can
choose

QV

Cj (v) =co(e "~ ) = M:exp nI(t r&)(C~[vq(r&)]—

v(r) = g vt'lB(r t;)— —1)dr, (38)

where

to pass from Eq. (36) to the discrete case in Eq. (35). As a
special case of Eq. (36), the characteristic function Cje (v)

e

for the time average

1 ft
I,"=—

~
I,(r)dr

Tbt —T
(37)

of the photocurrent I,(t) can be calculated by the selection
of v(r) = vlT and is given as

1
q(r, ) = —, q(r, —r2)dr2.

Tbo

Equation (38) is exactly in the form of Eq. (24) but with
response function q ( r) changed to the time average q( r) .
Note that q(r) =0 for r(0 and fpq(r)dr= 1.

When there is more than one detector involved in the
measurement (such as in balanced homodyne detection), the
joint probability distribution for the currents from all the
detectors must be used to describe the measurement process.
For simplicity and for the later discussion of balanced homo-
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dyne detection, let us consider only two detectors, each with

a response function Q
' (t) = Q ')q ' (t) (i = 1,2). The ran-

dom variables Q(') have probability distributions of P~&) and

characteristic functions C~&)(i = 1,2) depending on the prop-
erties of the specific detectors, with Q(') and Q( ) indepen-
dent of each other. The photocurrent I(')(t '

) at time t '

from either detector has a form similar to that in Eq. (8):

(39)

The joint probability distribution for I( ),I( ) is the Fourier
transformation of the characteristic function

,(t)+ T(t)
where W(')—=f (,.)

' n ' I ' (r)dr with I ' being thephoton
tt

flux operator at detector i, which has a quantum efficiency
u') (i= 1,2). Notice that the joint probability in Eq. (41) is
not the product of the probabilities for the two individual
detectors given in Eq. (12) because the light fields at the two
detectors might be correlated so that the photoemission
events at the two detectors are not independent.

With the joint probability from Eq. (41), we can follow
the same line that leads to Eq. (18) and derive
Ct())t(z)(r('), r( )). Because of the complexity of the deriva-

e e

tion, we only present the result that is given as

C ((),(2)(r"' r ")=(e'"~ (1) (1)+ . (2) (2)
(4o)

C,((),(2)(r"',r"')
In order to calculate this quantity along the same line that led
to Eq. (24) for arbitrary fields, we need to calculate the joint
probability distribution for n, photoelectrons in the time

interval [tI,t, ' +T, ], . . . , nz in [t), , t„' +Tk' ] at de-

tector 1 and n ( ) photoelectrons in the time interval

[t, , tI '+ T, ], . . . , n, in [t, , t, + T, ] at detector 2.
This joint probability distribution can be calculated in a way
similar to Eq. (12) and is given by

P„((), „()).„(2) „(2)((t ti ) t+ T), . . . , t), , t),
(&) (&) (&) . . (&) (&)

1 k '
1 l

+T( )).(t(2) t( )+ T( ) . . t(2) t( )+ T(2)))

()t()()t())

M~: exp
Jo

( i )I( ) )( t( )

+ ~ (2 )I(2 ) ( t (2 ) r) (C ( )[r (2 )
q

(2 ) ( r) ]
J 0

(42)

-( ) (1) ) -(2) ()

()~
B U

—w'".
v as might be expected from Eq. (24).

More generally for m detectors, we have for the charac-
teristic function

s=1

f oo

:exp g n ' I ' (t ' —r)ic& [r '
q

' (r)]—1)fdr
.,=) Jo

(43)

where all the quantities are as defined previously except that the superscript s designates the particular detector
(s = 1, . . . ,I). When the intensity at each detector becomes large, we can make an approximation similar to that in Eq. (28)
for the characteristic functions in Eqs. (42) and (43). Equation (43) then becomes

f
Cz(~). . (»)(r r( )= .A~:exp g jr ' (Q '

) u ' I ' (t ' r)q ' (r)dr—
Jo

f oo

2
J

~ [r(s)]2([Q(s)]2) ~(s)I(s)(t(s) r) [q(s)( r)]2dr (44)
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The extension of Eq. (43) to continuous distribution of
detectors is not straightforward because we did not consider
the spatial dependence of the field [Eq. (11)]as well as that
of the detector. When spatial dependence is considered, we
have instead of Eq. (11)

Local
Oscillator

Detector 1

F (x, r)= d k at, uk(x)e "'=[F- (x, r)],
v'(2~)'&

(45)
Detector 2

I (t)(Lwhere k is the wave vector of the spatial mode characterized

by ui(x) with ~k~
= co/c. Again, we do not consider polariza-

tion here. For the unidirectional field, it can be
shown [23] that the intensity operator in Eq. (10) is related to
~(+)(x, r) by

FIG. 5. Balanced homodyne (heterodyne) detection.

(47) is the most general form of the characteristic function.
For the point process discussed in Ref. [25] by Yuen and
Shapiro, the response function is Q(7) = 8(r) and therefore

q(r) = 8'(r) and C&(r) = e~". Assume further that the time

integration range [T ]= [t T, t] is —the same for all x in A.
Then Eq. (47) becomes

I(r) = d x I(x, r),
J ~

A

C„[r(x,r)]=:exp dx dr, n(x) I(x, r, )(e " '"
J -v.

(48)

which is identical to Eq. (3.27) of Ref. [25].
So far we have derived the characteristic function for a

general photocurrent distribution extending in both temporal
and spatial domains. The main difference from the previous
work of Ref. [25] is that our derivation has taken into con-
sideration the nonideal conditions such as the finite response
of the detector and the electronic noise in the post-detection
stage. The consideration of the finite response is crucial in
later sections, where we will apply the general form for the
characteristic function of photocurrents in Eq. (47) to the
special cases of homodyne and heterodyne detection for
which the high-intensity approximation as in Eqs. (28) and

(44) is appropriate.

Cz[r(x)]= exp j d x r(x)J, (x, t )
A

I' A

:exp d x dr a(x)I(x, t; r)—J. jo

XtC(i( )[r(x)q, (r)]—1)

where A is the area over which the detectors are distributed

and x is equivalent to s in Eq. (43) for labeling each detector.
By choosing a step function V. BALANCED HOMODYNE DETECTION

A A

with I(x,t)—:E( )(x, r)E(+)(x, r). The integration is over
the photosensitive area a of the detector (we assume a uni-
form sensitivity across the detector).

Now we are in a position to make the transition from the
discrete case to the continuous distribution, in which the

photocurrent density J,(x, r) with the photocurrent

I,(t) =f,d x J,(x, t) characterizes the photocurrent Auctua-

tions. We let the area a shrink to zero and the number m of
detectors to infinity. We then arrive at the characteristic func-
tion for continuous distribution of detectors

r(x) = r(') when x ~ a"),

C~r[r(x, 7)]

:exp
I

d2X
'

J —~
dr, n(x)I(x, r, )

CQ( ) d r r(x, r) q ( r r) ) —1:, (47—)

where the time range [T ] is for the detector located at x and

may be different for detectors at different locations. Equation

we can reproduce Eq. (43) for the discrete case (a(') is the
sensitive area for individual detectors).

Now we can combine Eqs. (37) and (46) to obtain the
characteristic function for multiple times and detectors as

Homodyne detection is widely used in the detection of
squeezed states of light, where most often the variances of
photocurrents are measured. In this section we will use the
formulas derived in the preceding section to deal with homo-
dyne detection with nonideal photodetectors. The most com-
monly used homodyne detection scheme is the so-called bal-
anced homodyne detector [14(b)] shown in Fig. 5, where the
difference of the photocurrents from two detectors is ana-
lyzed. An advantage of such a scheme is that it can suppress
excess classical noise on the strong local oscillator (LO)
beam when a proper balance between the two photodetectors
is achieved.

We start our analysis by assuming that the LO is a strong
quasimonochromatic coherent beam centered at frequency
co0 and as such can be represented by a c number
c~(t)e ~"o' as shown in Fig. 5. 8'(r) is a slowly changing
function of time [31].The incoming signal field to be mea-
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sured is described by E(+)(t) of the form of Eq. (11).Let the
beam splitter be 50%:50% and symmetric [32]. Then the

light field at each detector can be expressed as

(Q) '(q2("+q2("+2q"")/2
([Q(1)]2) (1) (1)+([Q(2)]2) (2) (2) (55)

E1(+)(t)=[8'(t)e "Q'+E + (t)]/+2,

E2+ (t) = [E + (t) —Ã(t)e " ']/+2.

(49)

I,—=E( )E("=[~&'+~&X,(t)]/2,

I =E,' )E(+)=[~&'—~&X„(t)]/2,

Because our formalism does not consider spatial depen-
dence, we assume here that a perfect spatial mode match is
achieved between the signal field and the LO field. Other-
wise, any mismatch can be equivalent to a linear loss or
nonunit quantum efficiency of the detector (u(1) [24]. The

intensity operators I& and I2 have the form of

is the effective homodyne efficiency with q
'

—=fodi. q(')(r)q( )(r). In using the operator relation, we
have assumed that the illuminating field is effectively free so
that we may use the relation [E + (t, ),E
x(t2)]=8(t, —t2) and drop the time ordering because

[X~(t(),X~(t2)]=0 for the free field [30]. When the two
detectors are identical and there is no fluctuation in the gain
so that ([Q(1)]2) ([Q(2)]2) (Q(1))2 (Q(2))2
u ' =n =(2., then p=n, the quantum efficiency of the
detector. Therefore any imperfection or in balance in the two
detectors will result in a degradation of P that is equivalent
to a nonunit quantum efficiency of the detectors. On the
other hand, for ideal and identical detectors for which

q(r) = 6(2) and n=P=1,

where we omit the small term F E + when F is large
compared to the field E(t) and

C,(-)(r) =(exp(jrQ~@X (t))). (56)

/t) —E( ) J Q(+J'I+ E(+) JtttQ( J(q
cpX

„,(~),(~)c,(-)(.) =(.J"(' -'. )), (52)

which can be calculated from the general expression in Eq.
(44) with r ' = —r —= r. Hence we have

is the quadrature-phase amplitude for the incoming field with

y as the phase of the LO field. For brevity, we will not write
explicitly the time dependence of K(t).

The characteristic function for the difference current
y(-) I(~) 1(2) '

e e e

Therefore, we can define a current operator
i( )(t) = Q~ QX„(t) corresponding to the different photocur-
rent I( ) such that the current operator i( )(t) is identified as
the operator upon which the measurement is performed in
homodyne detection. In the ideal case, the current operator

i, is directly related to the quadrature-phase amplitude

X„(t) of the incoming field. For a non-8'-function response
of the detector (but still with unit quantum efficiency and
perfectly balanced detectors such that P= 1), we find from
Eq. (54) that the current operator is simply a convolution of
the quadrature-phase amplitude with the response function of
the detector as in the classical theory of Eq. (2) [see also Eq.
(26)]

f oo

CJ(-1(r) = M~:exp jr(Q)n
e Jo

dred(X„(t —r)q(t):) 7 oo

i( )(t) =
Q~ g dr X„(t r)q(r), —

00
(57)

Xexp( — r'(([Q ' ] )o." q,"
+ ([Q (2 )]2

) ot (2 )q
( )) ~ g 2

) (53)

CJ(-1(r) = exp j rA
e Jo

drX (t —r)q(r) )e
(54)

where A —=(Q) n~ P,
+([Q' ']')n"'q'") and

where q2(') =—fQ[q
' (r)] dr (i=1,2), q(r)—= [q(' (r)

=q( )(r)]/2, and we drop the small
~
Ã]X contribution to the

term proportional to r . We have assumed that the two de-
tectors are balanced so that (Q

' )a ' =(Q )n =(Q)n, —
which can be achieved by adjusting the gains of the postde-
tection amplifiers. We have also assumed that F(t) changes
more slowly compared with q(')(t) and is taken outside the
time integral of q2' .

By using the relation e le 2=e I+ 2+ "~ I' 2~ for the
normally ordered operators in Eq. (53), we obtain

with q(r)—=q(')(r) =q( )(r). We have moved the slowly
varying function ~F(t)

~

outside the integral. Any other non-
ideal situation is equivalent to a reduction in the quantum
efficiency of the detectors.

Notice that the right-hand side of Eq. (56) is a character-
istic function of the form as given in Eq. (3c) for the Wigner
function. Since the characteristic function of the photocur-
rent can be derived from the probability distribution PJ (I)

e

of the photocurrent by Fourier transformation as in Eq. (9b),
it would seers that we should be able to reconstruct the
Wigner function of the field and thereby obtain the complete
quantum state of the field. However, the definitions in Eqs.
(3)—(6) are for a single-mode field. For the multimode case,
the situation is totally different. We return to this important
problem again later.

Next we consider spectral properties in the detection pro-
cess. This is of particular interest because the optical field is
usually described by excitation of some specific modes with
definite frequencies. In addition, any physical detector has a
finite response time and thus a finite bandwidth, which is
often limited to quite specific frequency intervals experimen-
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tally. With this point of view in mind, we rewrite Eq. (54) in

terms of the Fourier components of X(t) and q(' )(t) as
with a=A C2 and b=A C)+B(I—p)/2. In the ideal case
of P = 1 and C, = C2 —=C, a = b =A C and Eq. (64) becomes

Ct(-)(r) = exp jr A dA e 'X(A)q(Q) ( I'
P, ( )I -= —I /2A C

f2 ~A'C l 2A'C) (65)

where

~ -r a(~-p)i4
which is in the same form as the probability distribution
from the wave function of a single-photon Fock state (the
first excited state of a simple harmonic oscillator)

1 1'

X(A) = dr X( r) e' '= a( o)o+ 0)e

+ at(a)o —A)e'~, (59a)

2 2 xP, (x)=l+, (x)l = x e (66)

q(A) = dr e' '[q(')(r)+q( )(r)]/2=q*( —0).
(59b)

l P) = dA ()((Q)e' 'oat(o)0+A)l0)e'"&'0, (60)

where ()()(A) is centered around the carrier frequency a)o
with 0=0 and satisfies the normalization condition

(61)

Note that the field in this state is not stationary; the intensity

(I(t)) is peaked at time t= to. Substituting the state in Eq.
(60) into Eq. (58), we obtain

C,(-)(r)=(1—r A C )e "" (' e " ' P)' (62)

In order to explore further the probability distribution
PI(-)(I) for the photocurrent, let us consider an example for

e

which the detected field is in a multimode single-photon
state. Such a state can be obtained in a gated detection
scheme from spontaneous parametric down-conversion [33].
The quantum state in this case has the form

after a change of variable Il/2A C=x. Thus, in the ideal
case, a measurement of probability distribution of the photo-
current difference from a balanced homodyne detection
scheme corresponds to a measurement of the absolute value
of the wave function for the state of the detected field.

From an operational perspective, assume that we perform
homodyne detection on the state in Eq. (60) and obtain the
probability distribution for the photocurrent in Eq. (65). We
then perform an inverse Fourier transformation and obtain
the function C,( )(r, (t&) at all -values of (r, q&) in the form

C,(-)(r, q)) =(1 r'A'C)e —""c"=(1—g(*)e
(67)

where the complex variable g= re "P—A C From .Eqs. (3a)
and (56) we know that this characteristic function is simply
related to the Wigner function. Making a Fourier transforma-
tion of Eq. (67) with respect to the complex variable s, we
have

2
W(n, n*) = —(2nn* —1)e

m'

= —[2(x +y ) —1]e + (n=x+ jy),

q(A) = v'C, P*(A)e' (63)

which corresponds to exact overlapping of the spectrum of
the detected field and the spectral response of the detectors.
Here the phase factor e ' 'o can be obtained through a
delay in either optical path or postdetection electronics. Us-
ing Eq. (9b) for the probability distribution PI(-)(I), we

e

have

where C, = fdAlq(A) l
and C2= l(I)(t —to) l

with
(I)(r) = fdQ q(A) P(fl)e ~ '. Note that Ct(-)(r) does not

e

depend on y, the phase of the LO because the single-photon
state has a uniform phase distribution and thus does not favor
any specific phase. Due to Eq. (61), when the Schwartz in-

equality is applied to q(A) and @(A), we have C()C2,
with the equal sign standing if and only if

ai a
p= &

——~o) o + —
&)(&~~,b

(69)

which is exactly the Wigner function for a single-mode
single-photon Fock state. Note that W(x, y)(0 when
x +y ~ -„which is an indication for the nonclassical behav-
ior of the single-photon Fock state. Further note that in ho-

modyne detection, y is fixed when the photocurrent I, is
measured. Here, in order to obtain Ci( )(r, y) for all -values

e

of r and q&, we must scan the phase y of the LO field so that
we can measure PJ( )(I,y) for successive -values of y. This

e

is the so-called technique of optical tomography [27].
For the nonideal case with a(b, the probability distribu-

tion in Eq. (64) is equivalent to the ideal detection of the
state described by the density matrix

1 ( a aI
Pt(-)(I) = 1 ——+ 2 e

27rb( b b i
(64)

which results from a single-photon Fock state attenuated by a
beam splitter with transmissivity equal to alb. Equation (69)
is a specific illustration of the general principle that extra
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1 —a lb = 1 —b, /6 @=[1—I ~
(6(A)

~ f (A) dA]

FIG. 6. Comparison of the bandwidth of the detector and the
field.

vacuum noise arises due to imperfections and contaminates
the quantum measurement of the detected field. From Eqs.
(4) and (54), it is straightforward to understand how extra
noise comes from imperfections due to P(1.However, it is
not so obvious for the case of C2&CI[, which results from
the mismatch of the spectral bands of the field and the de-
tector or from the timing errors of toto [Eq. (63)]. When
the detector response band is wider than the band of the field,
even though some of the modes of the field to which the
detector responds are unexcited (i.e. , in the vacuum state),
they nonetheless contribute vacuum noise to the homodyne
detection scheme because photocurrent fluctuations in such a
scheme are sensitive to a vacuum input for the signal. To see
this point more clearly, we consider in Fig. 6 the situation
where both @(II) and q(A) have a rectangular shape with
bandwidths 5@ and b, , respectively (A&(A~). Because of
the relations JdA~@(A)~ =1 and fdic q(r)=1,
P(A) = I/gb, & for A inside 5& and q(A, ) = I//2m for 0,
inside Aq. Thus Ci=h~/2' and C2=5~/2m for (t=to) and
a/b=-5&/5 for P= l. The equivalent vacuum noise contri-
bution is then 1 —a/b=(h~ —A~)/h~, which is from the
unexcited field modes.

On the other hand, when the detector response band is
narrower than the band of the field, some of the information
about the state of the incoming field is lost and is not re-
ceived by the detector. The measurement is incomplete. Ac-
tually, the detector acts as a low-pass filter or frequency-
dependent beam splitter by which some of the spectral
components of the field are filtered out. Take again the rect-
angular shape shown in Fig. 6 for @(II) and q(O, ) but now
with 6&)A~. Consider that the field described in Eq. (60)
first passes a beam splitter with frequency-dependent trans-
missivity T(A) = f(fl)

~

. f(A) = 0 for fl outside of 6 and

f(A)=1 for 0 inside of 5 so that q(II)=f(A)//27r.
Therefore, the state of the field after the filter is not the one
described in Eq. (60) but rather is given by the density ma-
trix

@(II)~ f (A)dA

(70)

It can be shown that Eq. (70) gives rise to the same expres-
sion as Eq. (62) for Ct( —i(r) with C2 ——5 /2m' & and

C, =5 /27r Thus, with P=l, .

i, = d7 X(t r) 8'(t r)q(—r)—
Jo

(71)

and for a slow detector, we can pull q(r) out of the integral
and have

= Q(0) dr X(r) 8'(r),J-- (72)

which is exactly in the form of the temporal mode match
between the signal field and the LO field [27].

Return now to the original way of casting the temporal
dependence in terms of frequencies of the field. In the above
example, because of its nonstationary nature, all the fre-
quency components of the field are correlated. Therefore, the
bandwidth of the detector needs to match exactly the spec-
trum of the field so as to record complete information about
the state. Note that this matching requires a priori knowl-
edge of the field state itself [namely, @(Il)].Next we con-
sider a two-mode wideband squeezed state that has the mode
at frequency ~0 —A coupled to the mode at frequency
a~o+ II and is described by the state [35]

is exactly the part contributed from vacuum noise due to the
beam splitter [that is, ideal detection of the field described by
Eq. (70) will lead to the same photocurrent statistics as will
the nonideal detection of the field described by Eq. (60)].
Equation (70) is also equivalent to tracing over those modes
that are not seen by the detector because the bandwidth of
the field is wider than that of the detector.

The physical implication of the requirement in Eq. (63)
that the spectrum of the single-photon state overlaps with
that of the detector can be better understood in terms of the
concept of temporal modes [34]. Notice that the single-
photon Wigner function in Eq. (68) is for a single-mode
field. If we treat the single-photon state in Eq. (60) as a
single-mode field, its temporal dependence
[P(t)—=

fdic

P(A)e J ' '0 ] defines a temporal mode, just
like spatial modes [such as ui(x) in Eq. (45)]. From this
point of view, the temporal dependence of a field is decom-
posed into and described by the temporal modes rather than
frequency modes [34]. It is known that in homodyne detec-
tion, an imperfect spatial mode match between the signal and
the strong local oscillator field is equivalent to nonunit quan-
tum efficiency (or linear loss) [24]. We can apply the same
arguments to the temporal modes. As a matter of fact, the
time convolution in Eqs. (54) and (57) corresponds to the
temporal mode match. Here the detector response function
q(~) acts as the temporal mode of the LO since the LO field
is nearly monochromatic [8'(T) varies slowly compared with
q(t)]. Therefore the perfect mode match requires a match in
temporal shape between q(t) and P(t), which is equivalent
to Eq. (63). However, if we do not assume the monochro-
matic behavior for the LO and thus keep the function cY~

inside the time convolution in Eqs. (54) and (57), we find
that Eq. (57) becomes
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I
(I'I) —SwBI o) (73a) icos(t+ y&)

where

t' p

SwB= exP~ dA 2 g(A) [a(cop+ II)a(cup —A)
~J

Low
Pass

—at(cop+ A)at(cop —II)] (73b) Low
Pass

Ifs(t)

Here g(II) =g( —II) is a real function. For this state, we
find the spectrum of quadrature-phase squeezing
S (A)=e, which is defined by

(AX (A)AX (6'))=S (A)B(A+El'),

S (A)S~(A)=1. (74)

By substituting Eqs. (73) into Eq. (58), we find that

with q = 0 and m/2 corresponding to + and —,respectively.
The state in Eq. (71) is a minimum-uncertainty state that
satisfies

V~ sin(t + y&)

FIG. 7. Scheme of heterodyne detection.

the bandwidth of q(A), no information on the correlation is
lost. On the other hand, when the bandwidth of q(A) is
larger than the bandwidth of g(II), we once again find that
the vacuum fluctuations from unexcited modes of the field
[those II for which g(A) = 0] contribute to the fiuctuations
of the photocurrent I,

VI. HETERODYNE DETECTION

&I(-)(r v') =exp 2r'&' d&lq(&)l'le ""'cosy
e

g((i)s I2
—r B(1—P)14 (75)

which corresponds to the probability distribution

1 2 2
P (I )

—I I2o

$2~o2
(76)

with

~2(q) =—~2 d&lq(&) I'I. ""'cosq+g"'"'»nql2

+B(1—P)/2. (77)

(7g)

The probability distribution in Eq. (76) is a Gaussian distri-
bution with phase-dependent variance o.(q&). The variance
o. —= o.(y=0) is smaller than the vacuum state, which is
expected for the squeezed state in Eqs. (73). However, the
product o. o.+ of the variances for cp=O, m/2 is equal to

o, , thus satisfying the criterion for a minimum-uncertainty
state only when the bandwidth of q(A) is much smaller than
that of g(A) and when the effective quantum efficiency
p= 1 so that o. =e — o, This is the situation discussed
by Smithey et al. [27]. In contrast to the case of the multi-
mode single-photon state [Eq. (60)], here we do not require a
perfect match for the bandwidth of the detector to the spec-
trum of the field because

I q( —A) I

=
I q (A) I

and only sym-
metrically placed pairs of modes are correlated for the wide-
band squeezed state [Eq. (73)]. Therefore, when we narrow

The situation g(A) =0 for all A represents the detection of a
vacuum-state input, for which

In the preceding section on homodyne detection, we have
seen that when the bandwidth of the detector is wider than
the spectrum of the field, the vacuum fluctuations from the
unexcited modes of the field will contribute to the fluctuation
of the output photocurrent. On the other hand, when the
bandwidth of the detector is narrower than the spectrum of
the field, we have the danger of losing some information
about the field. All this is because there exists a spectral
correlation. Therefore, one solution to this dilemma is to
make a spectral analysis of the photocurrent by heterodyne
detection in which the photocurrent out of the detector is
passed through a filter with center frequency Ao. This is of
particular importance in practice because of the existence of
the large electron noise near @=0 in the postdetection am-
plifiers as well as low-frequency classical noise from the
strong LO field. Thus, by shifting the measurement band-
width away from the LO frequency at cup (which defines
II = 0) by an offset Qp to a new frequency cop+ Ap, one can
avoid such noise. In the following, we will analyze such a
scheme and find the relation between the spectrum of the
field and that of the photocurrent.

Relative to the formalism used in Sec. V, the role of the
filter is now played by a response function q(2.), which has
its spectral response q(A) centered at ~ Ap. This is because
the photocurrent I,(t) oscillates around a frequency Ap be-
cause of the offset of the carrier frequency at cop (A = 0) and
the signal fiuctuations at cup+Ap (A:Ap). In the hetero-
dyne detection scheme as shown in Fig. 7, the photocurrent
I,(t) is mixed with (multiplied by) another local oscillator at
radio frequency Ao so as to shift the spectrum of the signal
fluctuations to dc and to obtain the slowly varying compo-
nent. The mixed current then passes through a low-pass filter
(or simply a long time average with Boxcar integrator) to
further eliminate any high-frequency components. The final

output current If has the form

lf(t) = V&1 Ie( r)cos(IIp7 + (prt) h(t 7 )dr, (79)
J —oo
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where h(r) is the response function for the low-pass filter
and h(r) = 0 for r(0 [h( r) can be a constant if we use long
time averaging instead of a filter]. The bandwidth of h(r) is
chosen to be much smaller than Ao and its spectrum is cen-
tered at 0, =0. V,& is a proportional constant related to the

amplitude of the rf local oscillator, while cp,& is its phase.
In order to calculate the characteristic function for I&(t),

we employ Eq. (37a) with r(r)=rV, )cos(AO7+cp r)A( r 7)
and T=~ to obtain

too ( tee
CI (r) = .A:exp drinI(r, )~ C& r

J —~

( r
M~:exp de, ol(e, ) OC —H)t —e, )e' ""+""+c.c. —) (80)

where

H(r) = dA —V,rh(A) q(A+ Ao) e (81)

I, ' —I, in Eq. (79). Here we must apply the more general
expression in Eq. (46) for the case of two detectors with the
choice

When q(&+ Ao) and h(A) are centered at A = 0 as in het-
erodyne detection, H(A) = V&h(A)q(A+ Do) is also cen-
tered at 0 =0 with a narrow bandwidth much smaller than

halo and H(r) is a slowly varying function of z.
Turning next to a balanced heterodyne detection scheme

as in Fig. 5, we see again that two detectors are used now
with the current I, replaced by the current difference

r(x, r) =r~' V,icos(Aor+ q&)h(t r) wh—en x ca '

(s = 1,2), (82)

where r~' = —I" = r. For a strong LO field at ~o, the char-
acteristic function for I& then has a form similar to that in

Eq. (53) and is given as

f oc

CI (r)= A:exp j rQn~g dr X(r)[H(t r)e~ o"+~~~+—c.c.]/2f

X exp —
2 r Q n

~
c~$ d r H( r)

~

l2
J —oo

/

(83)

where we assume that the detectors are identical and thus perfectly balanced and that the quantity Q does not fluctuate and the
bandwidth (BA) of H(r) is smaller than Ao or, in other words, H(AO) =0. Substituting Eq. (59a) for X(t) and Eq. (81) for
H(t x) in Eq. (83), w—e rewrite this equation in terms of the relevant spectral components as

(' oo

CI (r) = .X~:exp j rQa~g~ dA/m/2Vi[h(A)X(A+Do)q(A+Do)e '+~)'+H c.]f

Xexpl —
—,'r Q n~Q~ dA 7rV„~h(A)q(A+Do)~

J —cn
(84)

where H.c. stands for Hermitian conjugate.
Since the low-pass filter described by h(A) has a narrow band (BA) centered at &=0, only those spectral components

n

within 6Q around 0= 0 arising from the fluctuations of X(AO+ Ao) of the signal field will contribute to CI (r) and hence tof
the fluctuations of the photocurrent. From Eq. (59a), we know that X contains two frequency components at coo~ 0„ for the
field. In order to concentrate on only one frequency component, we assume that coo lies below the frequency band for the field
of interest. Thus we assume that the frequency components around coo —Ao (the image band of the field [25]) are not excited
and are in the vacuum state. We can then carry out the quantum average in Eq. (84) for the unexcited frequency mode at
coo —Ao. By using Eq. (59a), we have, from Eq. (84),
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Ct (r) = M~:exp j rQ

nlrb)

dA/7r/2V«[h(A)q(A+Do)a(coo+ 0+ Do)e +'+~« ~~+H c.]

oo

&&exP —
—,'r'Q nlrb' dA 7rV,',lh(A)q(A+Do) z .

J —oo )

A A

Next we use the identity e 'e '= e 'e 'e~ ' zl to write the normally ordered operators in antinormal order so that Eq. (85)
becomes

(
Ct (r) = .A exp j rQ

nlrb

dA/m/2Vt[h(A)q(A+Go)a(coo+0+Do)e t '+~« ~ +H.c.]
J —o

( f oo

x exp~ —
—,
' r Q n(1 —n) l P dA mV, qlh(A)q(&+ &o) l

Here, &~ denote the antinormal ordering of the creation and annihilation operators.
In our balanced detector, as illustrated in Figs. 5 and 7, we are free to vary the phase y,& to access a particular quadrature

amplitude X(A) [Eq. (59a)]. As shown in Fig. 8, we can split the photocurrent I, along two paths and mix each with separate
rf local oscillators with 90' phase difference to obtain two currents for two rf quadratures

I&(t) = V« I,(v) cso(A vo+cp, t)h(t r)d7, —1&(t) = V,t I,(r)sin(Aov+ q&„t)h(t —7)dz
g —oo g —oo

(87)

Here we assume that the amplitudes of the two rf LOs are the same and that the low-pass filters are identical for the two

quadratures. Note that I& and I& are associated with ReX(A) and ImX(A). We can find the joint probability distribution

Pt t~(I1 iIz) for the currents I/, I& by performing Fourier transformation on their characteristic functionff
C;t:(r, , r, ) =(e' "&'/+"z'/~). (88)

By following the same line that leads to Eq. (86) for the current I&, we can calculate the characteristic function in Eq. (88) for

I~, I~ as

c ~ " j ttit+q —y)C, , (r, , rz)=,A exp j Qn g de�/7r/2V 1[(r, jrz)h(A)q—(A+Do)a(too+fl+Qo)e' '+~« ~ +Hc]
J —oo

f oo

x exp —
—,'(r, +rz) Q n(1 —n)l g dA 7rV„, h(A)q(A+ Do)

l

J —oo

(89)

When the quantum efficiency is unity (n= 1), the factor
outside the angular brackets (quantum average) is 1. Further-
more, if the low-pass filter described by h(A) has a narrow
band centered at 0=0, we can approximate it as a 6 func-
tion [h(A) = h 8(A)]. Therefore Eq. (89) becomes

It is known that the Fourier transformation of the antinor-

mally ordered characteristic function of the field gives the Q
function (which is simply (Pl pip)) [4].Thus the joint prob-
ability distribution P;, (I, ,Iz) for the curre. nts I&,I& is sim-ff
ply related to the Q function as

Ct t:(r, , rz) =(,M(expU~+sa(coo+&o)e + /*a (coof f PI'I'(Il Iz) = Q(P P*)/ ~'= (P pl P)/~'.
f f

(91)

+ Ao)e'"]))), (90)

where X'—= g~/2 Q hVl «(Aq)Cog, P—= y —y,t—y~, and we
define a complex variable s =—r 1 jrz. Therefore, the p—hoto-
current fluctuations from the heterodyne detection process
are directly linked to the antinormally ordered quantum av-

erage of the field at frequency too+Go defined in Eq. (3b).
Antinormal ordering arises in Eq. (90) because of the as-
sumed vacuum state for the "image" modes at —Ao, which
produces a "broadened" characteristic function [the last term
in Eq. (85) comes from the vacuum state expectation for the
modes around —Ao].

where P=(I1 j Iz) e~~/Ã and
l

P—) is the coherent state for
the mode at frequency ceo+ Ao. The above equation relating
the probability distribution with the Q function has been de-
rived along the line of Shapiro and Wagner [36] for a single-
mode field. For a multimode field such as the multimode
single-photon state discussed in Sec. V, a match in bandwidth
between the detector and field is required. Notice that the
measurement of P;t (I, ,Iz) for a single fi.xed y is enough to

f f
completely determine the Q function. Significantly, in this
case there is no need for optical tomography, as done in Ref.
[27].
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homodyne
detection (81)

I(I)
e

VII. MEASUREMENT OF THE QUANTUM STATE OF A
MULTIMODE OPTICAL FIELD

E(+)( ) Mode

Separation

mode 2 homodyne
detection (82)

y
(2)
e

homodyne
detection (8„)

I( )
e

FIG. 8. Scheme of heterodyne detection for the simultaneous
monitoring of the cos and sin quadratures of the photocurrent.

CI (r)=exp ——r Q P~ V,r dA n(I —n[1

Before proceeding to the next section we consider the
situation of heterodyne detection of a two-mode squeezed
state expressed in Eqs. (73). In this state, correlated modes
are paired up and located symmetrically around the carrier
frequency at coo and match exactly the spectrum of the filter
[q(A)] if the frequency of the LO is also coo. Unlike the
situation discussed from Eqs. (85)—(91), the coo —0 compo-
nent is not in vacuum but rather is correlated with the
coo+0 component. It is straightforward to calculate the
characteristic function in Eq. (84) for the two-mode squeezed
state in Eqs. (73). The result is

We have shown in Sec. V how to derive the Wigner func-
tion from the measurements of the probability distribution of
the fluctuations of photocurrent in homodyne detection, as
discussed by Vogel and Risken [26]. We further discussed
this problem in Sec. VI and found that the probability distri-
bution of photocurrents in heterodyne detection is directly
related to the Q function, which is associated with the anti-
normally ordered characteristic function as in Eq. (3b). How-
ever, in both cases, as well as in Eqs. (3) and (6), only a
single-mode field is considered. In addition, the derivation of
Vogel and Risken was based on the theory and Yuen and
Shapiro [25], which is for ideal photodetection. In practice,
there exist many frequency components as well as a quite
complicated spatial dependence (multimodes) in an optical
field and the detectors are not ideal. So we need to extend the
derivation of Ref. [26] to cover the multimode case. Gener-
ally, for the multimode case there is more than one degree of
freedom. For each degree of freedom labeled as mode i, let
us assign a parameter s, (x;,y;) as in the single-mode case of
Eqs. (3) and (6). Similar to Eqs. (3), we can also define
multimode characteristic function as

c~"&(s, , . . . , g„. . . )

= Trp(at ta& ', . . . ,'a;, a, ;.. . )exp(jXj,*a, )

X exp( jX j;a,),
—

l G,(n) l']) lh(n) q(n+ n, ) l', (92)

C ' (j), . . . , s;, . . . )

where G~(A) =e'~icos—hg(A+Do)+ej~sinhg(A+Do)
Similarly, if we consider two quadratures of the photocur-
rent, we have X exp(jXg;at), (95b)

= Trp(at, a&,'. . . ', a, , a, ;. . . )exp(jXg,*a;)

CI, (r, , r2) = exp .——(r&+ r2) Q'l O'V,'f

&& n(1 —n[1 —
l
G (0)

l ]jh(A) q(A

+DO)l

which indicates that I& and I& are identical but independent
of each other. The measurement of either one of them or both
together [(I&) + (I&) ] will give rise to identical results. The
latter corresponds to the measurement by a spectral analyzer.
In particular, when n= 1 (ideal detector) and h(II) = B(A)
(ideal low-pass filter),

c~ l(g, , . . . , g, , . . . )

=Trp(a~, at ', . . . ', a, , a, ;. . . )exp(jXg,*a,

+jXj;a,), (95c)

W(x, ,y&, . . . ,x;,y;, . . . )

f f
JjLidpj ' ' '8p cfvl l

with (n), (a), and (W) again referring to normal, antinor-
mal, and symmetric ordering. The Wigner distribution for the
multimode field is then given by the multidimensional Fou-
rier transform of C, namely,

CI (r) =exp ——r Q lg V~lG (IIo)l lq(IIo)l
C (p'i, vi, . . . , p';, v;, . . . )

Xexp —g (j x;p,;+jy;v, ) (96)

Thus, by measuring I& at different 00, we can map out the
function g(A) and therefore determine the two-mode
squeezed state.

Similarly, the density matrix can be formed from the charac-
teristic function C(") as
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I~ (t) from
Balanced
Homodyne
Detection
Scheme in
Fig.5

I,(t)++

Vrj cos(t + y&)

Low
Pass

h(s)

homodyne

(heterodyne)

Photo

Current

Splitting

I(l)f
X2I

1(2)f

I (n)f
FIG. 9. Multimode homodyne detection for the measurement of

the quantum state of the field.

FIG. 10. Multifrequency mode heterodyne detection for the
measurement of the quantum state of the field.

d j=
J

. „)1I:
' c(")((g,l)

I'd n;II e p[ j(s
J J

(97)

As we have seen for the multimode case in Secs. V and
VI, the situation is quite different for fields with frequency
components (modes) that are, on the one hand, correlated
and, on the other hand, uncorrelated. In the latter case, the
characteristic functions C ", C ', and C in Eq. (95) and
therefore the density matrix in Eq. (97) will factorize into a
product of terms of each mode so that we need to concentrate
only on one mode at a time. This situation corresponds to a
simple extension of the single-mode case discussed by Vogel
and Risken [26]. On the other hand, for the more general
case of a multimode field with correlated modes, the charac-
teristic function C cannot be factorized in a product of
independent terms. The density matrix of the system given in

Eq. (97) then involves a nontrivial multivariable integration.
Correspondingly, the degrees of freedom of the field are de-
pendent on one another in the general multimode case and a
complex measurement scheme is required in order to recover
complete information about the system.

In a single homodyne detection scheme as discussed in
Sec. V, there is only one quantity for measurement, namely,
the photocurrent I( ), which can provide some limited in-

formation. While this information can at best be used for the
construction of the quantum state corresponding to a single-
mode field, it is not sufficient in principle for the construc-
tion of the quantum state of a correlated multimode field,
which would require N quantities for its complete descrip-
tion (N is the number of modes). As discussed in Sec. I, in

order to make a complete measurement, we first need to find
the mode structure by separating the modes. We then send
each one to a separate homodyne detector and simulta-

neously measure the photocurrents from each of the homo-
dyne detectors (Fig. 9). From the results in Sec. IV for the
multidetector case, we find that it would then be possible to
reconstruct the multimode Wigner function defined in Eqs.
(95c) and (96) and therefore the complete quantum state of
the field. But such a scheme requires more than one homo-
dyne detector and becomes quite complex for a large number
of frequency components. Furthermore, optical tomography
has to be performed at each detector, which makes the mea-
surement process even more complicated.

For modes with different spatial dependences and polar-
izations, this seems to be the only way to separate them. On
the other hand, for temporal modes or modes with different
spectral components, the photocurrent carries all the infor-
mation about temporal (or spectral) dependence of the field
(provided the bandwidth of the detector is wide enough to
cover the bandwidth of the field). Thus it is not necessary to
physically separate spectral modes. Since the photocurrent is
a macroscopic classical quantity, in principle we can faith-
fully amplify and split it without introducing extra noise. So
in photodetection process, we can quite simply derive more
than one photocurrent for measurement. Our strategy is then
as follows. We first split the photocurrent after the amplifi-
cation stage, send the divided currents to different filters, and
then mix them with local oscillators (rf) of different frequen-
cies and phases (Fig. IO). Currents corresponding to various
frequency components of the field can be simultaneously ex-
tracted. Furthermore, if we monitored to quadratures of each
current, we can avoid the optical tomography process, as
shown in Sec. VI. By following the steps that lead to Eq.
(90) and choosing multiple r parameters with

r(r)) = Xv„' [r,' cos(A; r+ q&„' )+ r, ' sin(A;r+ y~ )]h ' (t

(9g)

where r,', are independent parameters, we find the charac-
teristic function for the filtered currents as

C, S

=—(exp(jXr ' I ' +v ' I ' ))
= (.A(exp(jX S~') [g(')a(o)o+ A;) e

(99)

where

I,(r) VI,')cos(A, + y('))h(')(t —r)dr,

I,' = I,( r) V,& sin(A, r+ q,& )h(' (t —r) d r,
I

((()= (() J„(()
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It can be seen that Eq. (99) is just the antinormally ordered
characteristic function defined in Eq. (95b). Thus, as in Sec.
VI for the single detector [Eq. (90)], we now find that mea-
surements of the joint probability distribution
P((I('),I(')), . . . , (I('),I(')}, . . . ) allow us to obtain the Q
function for the multimode field

P((I(1) I(1)} (I(i) I(i)) )11(+i))2

+ Q((P" (P")*))=((P")Ipl(P")) (Ioo)

where the product is over all the modes of the field under
consideration and P(')=(I()+j I('))/5 '). Since the antinor-
mally ordered characteristic function in Eq. (99) is just the
Fourier transformation of Eq. (100), we can therefore com-
pletely reconstruct the density matrix and hence the quantum
state of the system, at least in principle.

As an example, let us consider a two-mode single-photon
state given as

[a(o)o+0 ),at(too+0„)]=8, .

~"(~, , ~,) =[I—l(~, + ~,)(~,*+~,*).-(~' ~"~~ ~'

=(I I."i+"2+2 i "2cos(F)

-~ )])e '"""'. (102a)

where pi =r)e'~' and (2=rze'"2, and the Q function as

Q((~, , ~i*);(~,, ~,*))=(~i~, l pl ~),~2)

In practice, each mode might have a narrow structure and
then we need to treat them as continuous modes, as in the
case of the single-photon state in Sec. V. We can easily cal-
culate the two-mode antinormally ordered characteristic
function as

1
I+)= [a (~o+&i)a (~o+&2)]lvac). (101)

2 (102b)

Here we consider two modes as discrete, with the commuta-
tion relation

According to Eq. (100), the joint probability distribution is
then

P((I ', I,");(I' I' '))=-'[(I" /N')+I' /X')2+(I '/r"' +I' /P )) ]exp( —[(I(' )'+(I(' )']/(X' )'

[(I(2))2+ (I(2))2]/( ~+2))2) (103)

By measuring P(I(',),I(. )) directly and then making the re-
verse Fourier transformation, we can derive the antinormally
ordered characteristic function and thus the density matrix or
the state of the system from Eq. (97). Note that the photo-
currents I('),I(,) are correlated because P(I(,),I( )) cannot
be written in the form of P(I(',))P(I(,)). Therefore, the mea-
surement of just one current is not enough to describe the
system. Of course, in practice, when the number of modes
increases, it becomes difficult to perform the reverse multi-
variable Fourier transformation with sufficient precision to
obtain faithfully the antinormally ordered characteristic func-
tion.

The heterodyne measurement scheme discussed here
works well for the measurement of modes of different fre-
quencies (as long as the bandwidth of the field is sufficiently
small for the detector to respond), but fails to resolve modes
with different polarizations and spatial dependences. In these
latter cases, we must first separate the modes by polarization
and spatial shape and then send each to a separate heterodyne
detection scheme as in the multimode hornodyne detection
scheme of Fig. 9. Multiple LOs with different polarizations
and spatial dependences are then required for the heterodyne
detection of these modes. But no optical tomography is re-
quired.

For two-mode squeezed state, from the discussion in Sec.
VI, we know that simple heterodyne detection of If is
enough to determine the state. No multicurrent correlation is

required. This is because the two-mode squeezed state con-
sists of modes with only paired correlations. The situation is
similar to a field with no correlation among different modes.
Only here we have a field with no correlation among differ-
ent pairs of modes so that we need to deal with only two
correlated modes, which is exactly what heterodyne detec-
tion does.

VIII. SUMMARY

In this paper, we have derived characteristic functions for
photoelectric currents in various situations, from which prob-
ability distributions of the currents can be calculated. In the
derivations, we have assumed that the detectors have finite
response time and thus a non-8'-function response function.
Fluctuations from postdetection amplification and filtering
(electronic noise) are also considered. As in the work of Yuen
and Shapiro [25], we have identified in Eq. (47) an operator
for the photocurrent in the quantum measurement of photo-
detection process, here generalized to the case of nonideal
photodetection. In particular, such an operator is proportional
to the convolution of intensity operator of the field with the
response function of the detector, just as in classical theory.

By paying special attention to homodyne and heterodyne
detection processes, we have found that the characteristic
function of the photocurrent is directly related to the sym-
metrically ordered characteristic function of the field opera-
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tors in homodyne detection and to the antinormally ordered
characteristic function of the field for heterodyne detection.
The probability distributions of the photocurrent in homo-
dyne detection can be used to deduce the Wigner function by
optical tomography, while those of the rf quadratures of the
photocurrent can be employed more simply to find the Q
function of the field in heterodyne detection without tomog-
raphy.

A complete measurement of the state of a field consists of
two parts: (i) the determination of mode structure of the field,
which can be done with conventional methods, and (ii) a
complete characterization of quantum fluctuations of the
field with intermode correlation. The discussion of the
present paper is on (ii). For the multimode case, a mode
separation must be done before photodetection measure-
ments are made on each mode. The characteristic functions
of the field can be derived from the joint measurements of
the fiuctuations of photocurrents from homo(hetero)dyne de-
tection of each mode. The characteristic functions are then
used to derive the density matrix and hence the quantum
state of the field. Therefore, we have proved that it is pos-
sible to measure the complete quantum state of the system
from the photodetection process. We have shown explicitly
that the situations are quite different for fields with modes
that are either correlated or uncorrelated. Homodyne detec-
tion is most applicable to the fields that have independent
modes, while heterodyne detection can be used for the analy-

sis of the spectral correlations of the field. Of course, the
degree of complexity of the problem will increase as larger
numbers of degrees of freedom are involved.

We have considered a few examples of correlated and
uncorrelated fields for homodyne and heterodyne detection
and found that when the detector bandwidth is larger than the
bandwidth of the field, unexcited modes of the field will
contribute vacuum noise to the detection. On the other hand,
the case when the detector bandwidth is larger than the band-
width of the correlated field is equivalent to passing the field
though a spectral filter and some information about the cor-
relation will be thus lost. It should be clear from the discus-
sion of Sec. V for the example of a multimode single-photon
state that optical tomography itself does not suffice to
uniquely determine the field state. Only in the case of a
priori knowledge of @(0) (which can be determined by in-

dependent methods) can one tailor the detector response to
ensure appropriate detection of the field state.
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