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From amplification of spontaneous emission to saturation in x-ray lasers:
A Maxwell-Bloch treatment
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The interaction between radiation and matter in an x-ray laser occurring in a cylindrical laser-
produced plasma is investigated by means of the Maxwell-Bloch equations with level degeneracies ex-
plicitly taken into account. Radiation is initiated by spontaneous emission and amplified while propaga-
ting along the cylinder axis. This theory generalizes the current simple theory of the small-signal gain
coefBcient and is suited to correctly describe the gradual transition to the saturation regime. A detailed
numerical study of the germanium x-ray laser is performed to illustrate the theory for the case of the
Ne-like ion collisional laser. The efect of electron-ion collisions leading to transitions between degen-
erate states on linewidths, as well as on saturation behavior is outlined.

PACS number(s): 42.55.Vc, 32.80.8x

I. INTRODUCTION

In x-ray laser studies [1] the theory of amplification of
spontaneous emission (ASE) with a (constant) small-
signal gain coefficient fails to describe the evolution of the
radiation when the intensity becomes large. This prob-
lem is generally overcome by the use of the steady-state
saturation intensity [2—4] which enables the effect of
stimulated transitions on the populations to be modeled
indirectly. This treatment, however, fails to directly
model changes in the level populations (potentially
significant in a system which has several lasing transitions
which may be coupled) and, more importantly, neglects
to model certain quantum-mechanical e6'ects which arise
in a linearly propagating field. It is possible to overcome
both of these limitations by combining the Maxwell wave
equation and the Bloch equations (which govern the time
evolution of the density-matrix elements), taking into ac-
count the electric-dipole interaction between the radia-
tion and the ions of the plasma constituting the amplify-
ing medium. The population rate equations must, of
course, additionally include all the other mechanisms
(spontaneous radiative decay, collisional excitations and
de-excitations, ionization and recombination) which pop-
ulate or depopulate the individual states. A number of
works have already used the Maxwell-Bloch equations as
the basis for specific investigations such as the buildup of
radiation [5], gain [6], transverse coherence [7,8],
super6uorescence [9], and superradiance [10] theory.
However, in x-ray laser studies, apart from purely
theoretical preliminary works [11],the degenerate atomic
structure of the ionic levels has not yet been specifically
considered for the numerical treatment of the interaction
of the ASE electric field with the medium.

In the present work, the level degeneracies have been
explicitly taken into account to derive the Maxwell-Bloch
equations which self-consistently govern the evolution of
the population of the plasma ionic states and the evolu-
tion of the (unpolarized) spontaneous emission which is

amplified while propagating through the active medium.
The population inversions themselves depend upon the
intensity of the radiation through the population rate
equations. The customary paraxial approximation (see,
for example, Ref. [5]) is used to manage the Maxwell
wave equation, and coherences of the density matrix are
assumed to be in the steady state with respect to their
production and decay processes. The wave equation so
obtained contains a real part and an imaginary part
which can be separately analyzed.

The real part gives the spatial evolution of the phase of
the wave electric field as a function of the free-electron
density and of the population inversions. The refractive
index of the medium for the wave can then be deter-
mined.

The imaginary part gives the spatial evolution of the
amplitude of the electric field as a function of the popula-
tion inversion. The (local intensity) gain coefficient can
be then deduced directly and is expressed in a form which
reduces to the small-signal gain coefficient at low intensi-
ty. The gain value is consistent with the Einstein
coefficient of stimulated emission as calculated by the
Fermi golden rule.

At high intensities the population of each interacting
energy level (aJ)—where a stands for specifications
(electronic configuration and so on) and J for total
angular-momentum quantum number of the level —can
no longer be considered as an entity to which a rate
coefficient of stimulated emission (or absorption) is asso-
ciated. As a consequence of the nature of linearly propa-
gating radiation —all electric-field oscillations occur in
the plane perpendicular to the direction of
propagation —the interaction between the radiation and
each individual state (aJM) is, in general, different for
each state and must be taken into account, as shown in
this work. The elastic electron-ion collisions of the type
(aJM)+e ~(aJM')+e must also be considered, as
these tend to restore equilibrium populations among the
states of a same level. The present theory is appropriate
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to describe the gradual transition from ASE to satura-
tion.

This paper presents first, in Sec. II, a resume of the
simple ASE regime, valid for low intensity with the
small-signal gain coefficient. This is presented for com-
parison with the results of a more elaborate theory de-
rived in subsequent parts. In Sec. III, the basic equations
leading to the Maxwell-Bloch equations are given in their
complete generality. Section IV develops the problem
with approximations for practical applications. Section
V is devoted to the refractive index of the medium and
Sec. VI to the gain, intensity, and population evolutions.
It is shown in Sec. VII that the simple theory of Sec. II
appears as the low-intensity approximation of the
Maxwell-Bloch treatment, as expected. In Sec. VIII the
particular case of the ¹ like collisional x-ray laser is
presented in detail and a numerical study of saturation in
a germanium plasma is performed. The conclusions are
given in Sec. IX.

II. ASE REGIME WITH CONSTANT GAIN
ALONG THE Z AXIS

The geometry of the problem is presented in Fig. 1. A
plasma column (along the z axis) exhibits a population in-
version between an upper level (u) and a lower level (l)
which have population densities N„and NI, respectively.
These levels are connected by an electric-dipole transi-
tion.

The intensity I ( v ) of radiation at frequency v of the as-
sociated spectral line with normalized profile N(v), prop-
agating along increasing z satisfies

BI(v,z) =j (v)+ G(v)I (v, z),
Bz

where j(v)=N„{[A„&4(v)B]/(4m. )]hv is the emissivity;
G(v)={[hv@(v)]/c]g„B„&bn„& is the gain; A„& is the
Einstein coefficient of spontaneous emission,
A „&

= [(8irh v ) /(c ) ]8„„B„&is the Einstein coefficient of
stimulated emission; 8„&= [d /(6' Eog„)], with
d = (u ~~d (~l ) and d the atomic dipole; g is the level sta-
tistical weight; e is the solid angle of emission; and
b, n„& =N„/g„N&/g& is —the inversion density.

As long as j (v) and G (v) can be considered indepen-
dent of z, the integration of Eq. (1) yields

I(v, z)= (e ' '—1)+I(v,0)e
'(v)

G (v)

1.e.,

I(v z) = (e '"'—1)
'(v)

G(v)

where I; is the total decay rate of level i and R,. is the
sum of all processes populating the level i. In particular,
I „ includes A„&+B„&fdv{ [I(v)]/c]N(v) and R„ in-

cludes N&[(g„B„i)/g& ]f dv {[I(v)]/c ]@(v); I
&

includes

[(g„&„i)/gi]fdv{[I(v)]/c]N(v) and R& includes

N„a„,fdv{ [I(v)]/c]@(v).
At high intensity (large gain lengths) the populations

[and hence j(v) and G(v)] are no longer independent of z
and the differential equation (1) cannot be integrated into
Eq. (2). In addition, the individual states pertaining to a
common level do not interact in the same way with the
radiation, and their populations may differ from one state
to another. At high intensity, another theoretical basis is
necessary.

III. BASIC KQUATIQNS

The Maxwell wave equation for radiation through the
(globally neutral) plasma ( V E=0 ) is

1 BE ~pe 1 BP
c Bt c e c Bt

(4)

where E=E(x,y, z, t) is the electric field, P=P(x,y, z, t)
the polarization vector, and co~, =[(N,q )/(Eom, )]' the
electron plasma frequency (N, being the free-electron
density).

An electric Geld of transverse waves propagating along
the z axis cannot include any component of k, i.e., +-
polarized radiation. Transverse fields being real vectors,
and since spontaneous emission is right- or left-circularly
polarized with equal statistical probabilities, E can be ex-
pressed as an incoherent superposition of o+ and o.—
electric fields with the same (real) amplitude E but
difFerent (real) phases y. The right-circularly polarized
field E + will then be expressed as

It is useful to note that the ratio
{[j(v)]/[G(v)I(v,z)]] =[1/(e "—1)] is only 10
when the product G(v)z is as small as 4.6, which is far
below saturation. So the first term on the right-hand side
of Eq. (1) (the contribution of local spontaneous emission)
is negligible with respect to the second term (the stimu-
lated emission) for G(v)z greater than 4.6 and Eq. (1)
reduces to

BI(v,z) =G (v)I (v, z) [G (v)z ~ 4.6] .
c}z

The populations are obtained from the population-rate
equations

dX; = —N I -+R
l l l

plasma-' ~ r
ampll fylng medium

z=O

E + =E cos(cot —kz+y+ )7

+E siil( cot kz + Ip+ )j &&i p
UP

FIG. 1. Geometry of the problem.
where k =co/c.

For standard tensorial components, the following spa-
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tial unit vectors are introduced

—i+ij
V'2

e eo=k

Setting E = E/—&2, this becomes
right-polarized wave a+

M'

1eft-polarized wave a-
i (,cot —kz + tp+ ) — —i ( cot —kz +y+ )E +=Ee +

e1 —Ee + e

and similarly

FIG. 2. The interaction of u+ and o.—radiation with a
J =2—J'=1 transition.

—i ( cot —kz +q ) — i (cut —kz +p )E = —Ee et, +Ee e

Corresponding emission and absorption processes are
shown in Fig. 2.

The polarization vector I' is given by

P =Tr(pd ),
where p is the density operator and d is the atomic elec-
tric dipole. It is shown in the Appendix that the
equivalent useful expression is

P= g g[(JMId, IJ''M —
q&pgM q~ M+( —1)'(JMld qlJ'M+q)pJMJM+q]eq,

q M

where pJM JM (JMlplJ'M').
We then consider the (Schrodinger) Bloch equation as

iA =[Hp]Bp
af

with H =H„—d E, where H~ is the atomic Hamiltoni-
an with eigenstates

I
JM ) such that

H. IJM &=~,IJM &,

H„IJM &=W, , IJ'M &,

8'J —8'J =%cog .

The term —d E describes the interaction between the
radiation and the medium (dipolar approximation). As
the density of emitters remains much smaller than k (A,

being the wavelength of the radiation) dipole-dipole in-
teractions are not considered [14]. The population densi-
ty of any state is affected by a number of processes, not-
ably free-electron collisions and possibly more than one
radiative transition. The independent-rate approxima-
tion is used, i.e., the total evolution results from the sum
of the different current processes. So, Eq. (8) determines
the time evolution of the different p-matrix elements
when completed by all other production and decay pro-
cesses analogous to those occurring in Eq. (3). At t =0
the nondiagonal elements of p (coherences) are equal to
zero and p may hence be written as

p= Q IJM)(JMln~M (t =0),
JM

where n JM
=p JM JM is the population density of the state

JM.

IV. APPROXIMATIONS FOR PRACTICAL
APPLICATIONS

Two main approximations are made.
(1) The energy nonconserving parts of the term d.E

(atomic transition from a lower to an upper state with
emission of one photon, or from an upper state to a lower
state with absorption of one photon), which may occur if
accompanied by a secondary process which serves to con-
serve energy, are ignored.

(2) The coherences (their envelopes) are assumed to be
in quasi-steady state (QSS) with respect to their produc-
tion and decay processes.

In the following, J and J' refer, respectively, to an
upper and a lower level of a transition.

So, with %(co) defined by the relation

I —i5 =qr(It(co),
&', +~'

so that J dc@ (It(co) = 1, where I is the collisional total de-

cay rate of the coherences pz M, JM (including the elastic
electron-ion collisions), and 5z =co —co&, one obtains (see
the Appendix)

They are consistent with usual definitions of scalar product
and vector product of complex vectors: ( A '" 8"')

( —1)qAqB q which, for Hermitian vectors, is
equivalent to A.B (and A B = A .B) and A XB

i &2 [ A "'B—"']"', respectively (see Refs. [12,13]). The
components of A =g A e are given by Aq =e, A. Then
A~i+ A~j+ Ak= A&e&+ A le &+ Aoeo with A~& =
+ [( A +i Az )/&2] and Ao = A

P += %(co)g (JMld, lJ'M —1) (nqM nJM,)—
(10)

'It*(~) g (JMld (IJ'M+1) (nqM n~M+, )—
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=g&JMldilJM 1—) (njM njM i).
M

For convenience we call UJJ. this common value:

Ujj' g & JMld ilJ'M-+»'(njM nj'M+1)
M

= g & JMldilJ'M —1) (njM nj, M i) (12)

Therefore, with fields and polarizations given by Eqs.
(5) and (10) for o + and Eqs. (6) and (11) for o —,respec-
tively, the usual paraxial approximation, and the retarded
time variable t —z/c, Eq. (4) now becomes (see the Ap-
pendix)

T

Bg
Bz

2
~pe — .BEE —i

Bz

ik U~~.
m%(co)E,

2EOA

It is worth noting that, within our approximations,
only the coherences pJ M & zM and pJ M+, zM are excited.
Furthermore, the coherences pJ M & JM are excited only
by o.+ fields and the coherences p&M+& JM only by o—
fields.

It is shown in the Appendix that

&&JMld ilJ'M+1)'(njM nj'M+i)

and cot —kz +y(z) =cot —k'z +y with

ct) e kUjj~2

k'=k — ' + y(co) .
2kc' 4p&

Now the refractive index n (co} is defined by n (co)=k'/k,
i.e.,

2

n (ai) =1— + y(co) .2' &p

The refractive index at line center [y(co& )=0] is

2
' 1/2

pe 1 Ne Ne
n(co& }=1— =1—— = 1—

Nc Nc

as often written, where N, = [(Eom, co~ )/(q )] is the criti-
cal density at co& (the relation N, «N, is verified). It
can be shown that, out of resonance (5L %0), the third
term [(Ujj )/(4eoiii)]g(co) remains small (less than 1%)
compared to the second term co, /2' for cases of in-

terest here.

VI. GAIN, INTENSITY, AND POPULATION
EVOLUTIONS

for o+,

E+co ikU

2kc Bz 2E A

The gain coefficient can be derived from Eq. (14). As

fdcoC(co)= f dcom[ql(co. )+4'*(co)]=2m.
[see (9)], @(co)corresponds to @(v) such that

for o.—.These equations are the complex conjugates of
one another.

Extracting the real part from each member we obtain
in both cases

fdv@(v)= f da) N(co)=1 .1

2'
Then, using the variable v instead of co, Eq. (14) can be
rewritten as

2
By ~pe

Bz 2kc~

k UJJ.

4c.pA'
(13) BE(v,z) jj

@( )-( )
kU

Bz 4sofi

where

25L
y(o)) =in[%(co) —%"(co)]=

5L +I
and the imaginary part is

BE kUjj
4(co)E

Bz 460k'

where

@(co)=m[ql(co)+0" (co)]= 2I
5L +I'

(14)

where @(v) is the normalized line profile, as used in Eqs.
(1) and (2). Furthermore, as the energy of the radiation
propagating along a cylinder of section area S during the
time interval T (volume cTS) is

—f d r(E +c B )=EDf d r E =cocTSE

the intensity on area S is socE =2aocE (v, z) for both the
o.+ and cr —fields, and the total intensity when both
fields are present is

I(v, z)=4cocE (v, z) .

Then

V. REFRACTIVE INDEX

k UJJ&
y(co) z

4cpfi

The refractive index of the medium for the radiation
can be derived from Eq. (13). As long as Ujj is indepen-
dent of z (below saturation), one obtains

2
COpe

qr(z) =qr+
2kc with

G( )I( )
Bz

BI(v, z) jj'
@( )I ( )

kU

Bz 2cpA

which may be written as

(16)
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G(v)= „-e(v)g & JM~d, (J'M —1&'(nJM n J'M i)
k

2coA

(17)
[see Eq. (12)]. Equation (16) is analogous to Eq. (1'). The

expression (17) is a generalization of the quantity G(v)
used in relations (1}, (1'), and (2) as shown in Sec. VII.
The populations must be calculated with use of Eq. (8).
Considering both the o+ and cr —fields, their contribu-
tloli to (d /dt)ngM is

E (v)N(v)[(JMldil J'M 1& (n~~ n—zM, )+(JMld i IJ—'M+1& (nzM n—z M+. , )] 2g2

and their contribution to (d/dt)nz M is

+[&JM+ 1~d, ~

J'M &'(n, —n . )+(JM—1~d, ~J'M &'(n, —n . }]
E (v)N(v)

Taking into account the whole line profile, the above relation between I (v) and E (v), and all other production and
decay processes, we obtain finally

dt nJM re ~JMnJM —[ & JM~di ~

J'M 1 &'(nJM nJ M 1'}—

+ (JM
~
d i ~

J'M + 1 & ( n JM nJ.M +,—) ]f d v
4A Eoc

Mnz =rJ I I z Mnz—~+[(JM+1Idi I
J'M &'(n JM+i n J'M }

+(JM —l~d i ~J'M& (nJM i nJM)] f—dv I ( v)C&( v)
4A coc

(18)

and the system is governed by Eqs. (16), (17), and (18).
Equation (18) determines the populations of the indivi-

dual states and generalizes the equation system (3) which
describes the populations of the energy levels. The r and
I coefBcients results from all populating and depopulat-
ing processes except those of absorption and stimulated
emission associated with the radiation of the J—J' tran-
sition, propagating along the z axis. Dealing with
individual-state populations, elastic collisions (a transi-
tion occurring from one state to another state of the same
energy level) must be taken into consideration. The cor-
responding rate dominates over other processes, and an
estimation of the rate coeKcient can be obtained from the
formula [15]

I (s ') =3.87X 10 [N, (cm )]Z [T,(eV)] lnA,

where lnA is the Coulomb logarithm, and I is the fre-
quency of electron-ion collisions with momentum
transfer. In a neonlike selenium plasma (Z =24) with

X, =3X 10 cm and T, =800 eV, this gives
I =8X10' s ', and in a lithiumlike aluminum plasma
(Z = 10) with N, = 10' cm and T, =30 eV, this gives
I =9 X 10' s ', the same order of magnitude.
Spontaneous-emission rates are generally much smaller.
This is also true for absorption and stimulated emission
rates and the lifetime of an ionic state is thus determined
essentially by I which includes all inelastic and elastic
electron-ion collisions. Spontaneous emission occurring
from states of lifetime I ' has the spectral profile of the
Fourier transform of e "', which is simply N(co). The
normalized profile of the spontaneous emission is then

I

given by 4(v). Note that with b, A, /A, = b,co/co
=21 /co=I A, /mc, i.e., EA, =I 1, /m. c, one obtains b, A, =40
mA for A, =200 A and I =10' s '. Such a situation
occurs in a neonlike germanium plasma (Z =22) with
temperatures and densities as considered in Sec. VIII.
Total linewidths at A, =200 A are estimated to be about
50 mA for this ion, while the Doppler width for ionic
temperature T; =300 eV is about 30 mA. The total width
results from the Voigt profile obtained by convolution of
the Lorentzian profile (collisional plus radiative decay,
width about 40 mA} and the Gaussian profile (Doppler
width about 30 mA), the resulting linewidth being small-
er than the net addition of the two widths. It is to be no-
ticed that the effect of electron-ion elastic collisions (with
a transition from one state to another state of the same
energy) on linewidths appears to be important. Different
situations should be considered, according to difFerent
hM values, and states pertaining to different (more or less
excited) levels. Specific quantitative values of the
different rates of interest (not considered in the global for-
mula of Ref. [15], and not available in general) would
then be highly desirable.

As I(v) is, in fact, z dependent according to (16), the
populations [see (18)] and therefore the gain [see (17)] are
themselves also z dependent. The set of equations [(16),
(17), (18)] is locally valid and must be treated accordingly.

When the intensity I(v) increases along the propaga-
tion axis, the linewidth full width at half maximum
(FWHM) changes because the gain is frequency depen-
dent. The line center being more amplified than the
wings, the line shape is drawn out and thinned, resulting
in the well-known efFect of "gain narrowing. " Labeling a
the narrowing factor of the spectral line,
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a=[(b,v)/(hv, ~~)] where b,v is the linewidth (FWHM)
of the profile 4(v) and hv, mz is the linewidth (FWHM) of
the amplified radiation of intensity I(v) at distance z, it is
possible to show that, to good approximation, one may
use

vt v4v = I (vo)

(vo is the frequency at line center) and hence (18) can be
written as

I (vo)
nJM rJM ~JMnJM p [&JM~dl

~
J M 1 & (nJM nJ'M —1}+& JM~d i ~

J'M+»'(ni~ nJ'M—+1}ldt 4afi ape
(19)

I(vo}
d

nj~=rj ~ I g—Mng~+, [&JM+ lid) IJ'M &'(ng~+) ng~—)+ & JM —]Id )IJ'M &'(n~M i ng~—}l .
4a'6 Epc

As an illustration, we present in Sec. VIII an application
with numerical codes, performed to study saturation in
collisionally pumped ¹ like germanium x-ray lasers.
We apply the theory to two lasing transitions which share
a common lower level in the ¹ like ion, specifically the
196-A and 236-A transitions of Gre

VII. THE LO%'-INTENSITY LIMIT

We show in this section that the simplified theory of
Sec. II can be derived from Eqs. (16), (17), and (18) which
govern the system. As long as the intensity is weak,
stimulated emissions are negligible and the populations of
the difFerent states (JM) of one level J remain equal (any
small deviation from equilibrium population is negated
by elastic electron-ion collisions). In this case,
nz~=n~=Nz/(2J+1) where Nz=gsrnzM So, acc.ord-
ing to Eq. (17},G(v) becomes

G(v)= @(v)(nz nz. )g & JM~—d&~J'M —1&
k

2cpm

Owing to a sum rule of 3-j symbols the last sum is
d2/3, where d =

& J~~d )~
J' &. Then

kG(v)= N(v)(nj nj )—
2eoh

or

h v@(v)G(v)= BJJ.hn JJc

as expected, and, from Eq. (18},

Nz=RJ I zNJ —(nj —nj—. ) J dvI(v)4(v),
dt 6' Gpc

or

d +JJ'
N& =Rz —I &N& g&(n& —n—

& ) fdvI(v)@(v)
dt C

in agreement with the simplified theory of Sec. II.

VIII. NEONLIKE IONS, SATURATION IN GERMANIUM
X-RAY LASERS

In recent years, the generation of high gain lengths and
even saturation in Ne-like collisionally pumped x-ray

lasers has become almost routine [16,3,17]. 'The method
of theoretical investigation of such systems is generally
through the use of a hydrodynamics and atomic physics
package to generate a time-dependent description of the
laser plasma which is post processed by either a ray-
tracing [18,19] or a wave optics [20—23] treatment. The
2J+1 degenerate states which comprise a laser level are
assumed to react as a whole to the radiation field and the
rate equations which describe the atomic populations
concern the level populations and not specifically those of
the degenerate states. Within such approximations, the
role of saturation in determining the intensity of the laser
output and a description of gain narrowing for arbitrary
homogeneous and inhomogeneous components to the line
shape are now well understood [3,4].

In this section we incorporate the above-described
Maxwell-Bloch analysis of the field-ion interaction into a
detailed collisional-radiative model [24] of the ¹like
germanium ion. We examine specifically the 236-A tran-
sition:

(2p ir23s)z (~(2p )n3p3/2 J—p
5 5

(2-1 transition in the following)
0

and the 196-A transition:

(2p, n3s)z t~(2p uz3p&&z) J—o
5 5

(0-1 transition in the following)

which share a cornrnon lower level. We consider two
effects relevant to the onset of saturation; first, the cou-
pling of the 196-A and 236-A lasing-level populations
through stimulated transitions —a relevant issue as much
of the recent progress has been in the successful augmen-
tation of the output of the 0-1 transition to intensities
comparable with and exceeding those on the 2-1 transi-
tions [25—27] and, second, the possible breakdown of the
assumption of a statistical distribution of population
among the states of the lasing levels due to the differences
in the stimulated transition rates which exist in presence
of a linearly propagating field.

Let us label

de= &(2p in3s)J=&lldll(2p in3p3nb=z&

and
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2p53p

2p53s

J=o

J=2
M= -2

I
I 0

do '
3 /d2

/ 2
30II

//

+1 +2
p

/
/d2 /d2

/ 2
10 / T

/ /
/0

J=2
FIG. 3. Values of

(old( IJ'M —»'= (J—Mld, l
J —M+»'

for the coupled lasing transitions in the Ne-
like ion; d; is the reduced matrix element
(J'= 1 lid llJ =i ).

do =
& (2u ( I23s )I= 1 II

d
II

(21()"'1I23I) 1I2 )I=0 )

The values of (JMldilJ'M —1) =(J—Mld 1
lJ'

—M +1) are given in Fig. 3.
The equation system (19) governing the evolution of

populations nJ~ for this case is then

+00 roo 00 00 ( 00 11) I(01)dt

d
2 —2 d 22 22 22 22 ( 22 11 ) I(21)dt dt

n2 —1 d n21 21 21~21 (+21 bio) ~I(21)dt dt

n20 r20 ~20n20 (+20 +11 ) 2~I(21)dt

d =d
1 —1 d ll 11 11 11 ( 22 11 ) I(21)dt dt

+ ( n 20 n 11 ) 4 ~I(21)

+("oo It i()T'I I(o()

d
10 10 ion 10+( 21 n 10 ) ~I(21)dt

where

dI III (v(),z)
~I(JJ )=

6iri c,oc (2J+ 1)aII
1.e.,

BIIIIr(vo, z)
~I(JJ')

C CXJJ~

To perform these calculations we have adapted the
collisional-radiative model of Pert [24] which uses a
weighted implicit method to solve the matrix equation

[q;
+'

q; ]/b, t=—+XI.[WIq, +'+(1—W~)q, .~]

—X,, [ W,, q,"+'+(1—W„)q,"],
where q, is the population of level i at the time step X
and X,j represents the total rate from level i to level j. En

general, the weights 8'; are the quasi-analytic positivity
preserving forms of

W,"=max[1/2, 1 —1/(max[N;, NI IA, ;I )I .

Here, X; is the number of nonzero transition elements
connecting i to all other levels and A,;I=( X,J+X)Ib,t.
The choice of weights is crucial for time-dependent

calculations —we leave them for the sake of
completeness —but it is largely irrelevant when we allow
the system to iterate to a steady state. We note that the
apparently simpler method of inverting the rate matrix to
obtain steady-state populations is avoided as the matrix is
singular for the degenerate states when the contribution
of the symmetry breaking stimulated transitions is negli-
gible. The rates X; contain all significant interlevel terms
and with the use of the R-matrix collision rates of
Kingston and Robertson [28] have yielded a very satisfac-
tory description of the laser in the small-signal limit [29].

We have developed the model of this earlier work
through the separation of the degenerate lasing levels and
the inclusion of the stimulated transition rates as dis-
cussed in the previous sections. It should be emphasized
that, while an asymmetry is introduced into the stimulat-
ed emission rates through the absence of m. radiation
which forbids b,M =0 transitions, spontaneous emission
includes both AM =+1 and AM =0 transitions.

As we have separated some of the levels into their de-
generate terms, it is of course necessary to include the
elastic collisions which equilibrate the populations of
these states in the collisional radiative model. We use the
rate coefficient of Delcroix and Bers [15] introduced ear-
lier. Elastic collisions on a state JM with a total rate I,
are distributed evenly among the 2J+ 1 states JM' of the
level J (including M' =M because elastic collisions
without change of state are also possible), i.e., the rate of
each transition M —M is I, /(2J + 1). Similarly, inelas-
tic collision rates I J.J into a level J are distributed evenly
among the 2J+1 states.

The approach we take is to initially calculate the
steady-state populations in the absence of a field and to
solve the radiative transfer through a small length of
homogeneous plasma —we assume that a 10-mrad seg-
ment of the spontaneous emission contributes to the
beam, in accordance with typically measured diver-
gences, Only the radiation from the 196-A and 236-A
transitions are considered. Subsequently, the problem is
modeled in a piecewise fashion through the plasma
column, each step assuming a constant uniform field for
the purpose of solving the atomic populations and ampli-
fying the beam through the plasma thus obtained (ap-
pending the appropriate ASK term from the segment).

The populations are calculated in the steady state.
While the excited state kinetics can be excellently ap-
proximated in this fashion, we note that the ionization re-
laxation times are generally significantly longer than hy-
drodynamic time scales. Steady-state calculations thus
tend to overestimate the degree of ionization and conse-
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derestimation of the ratio of the source function to the
saturation intensity. The model we describe here has, in
fact, been coupled with hydrodynamic and raytracing
calculation and was found to reproduce the experimental-
ly observed behavior very well [29]. In the present work,
for simplicity, we have not considered any effect due to
transverse profiles of electron density and gain (see Ref.
[5] for a study with Maxwell-Bloch equations, including a
fluctuation source term, in a two-level system where de-
generacies are not explicitly taken into account). The
purpose of this work is primarily to present the detailed
Maxwell-Bloch treatm. ent to describe the onset of satura-
tion as the local intensity increases.

It is instructive to compare the results with those of x-
ray laser studies using the simple theory of Sec. II. In
this, using the small-signal gain coefficient Go (gain at
line center), the saturation is often analyzed in an approx-
imate way by making use of the saturation intensity
Is =h vio r [4,16] (where o is the cross section for stimu-
lated emission and r the gain recovery time) and of the
simple formula [4,20]

Is
I(z)+Is

where the intensity I (z)= fdvI (v, z) = b,v, I (vo, z).
Owing to the radiation transfer equation (1') and to the
gain narrowing of the line [hv, z is proportional to
(Goz) '~

] we may write
1/2

I(z+bz)= z+b,z
e G(zjhzI (z)

In Fig. 5 we show the comparison between the results
obtained in using these two coupled equations, and the
results presented in Fig. 4 and Fig. 6, for the 2-1 transi-
tion and the low-density case. Differences appear clearly
at saturation, where the Maxwell-Bloch treatment is
more rigorous. For instance, at z =3 cm, the intensity is
l.4 X 10 W cm (Maxwell-Bloch) against 9 X 10
Wcm (simplified theory, 36% smaller), and the local
gain is 2.7 cm ' (Maxwell-Bloch) against 3.6 cm
(simplified theory, 33%%uo larger).

In Fig. 6, we note the relatively obvious point that the
saturation intensity is approximately proportional to the
electron density (through the collision rates) and thus
that lasing systems which facilitate beam propagation
through high density plasma will benefit from a higher
saturation intensity. These points are clarified in Fig. 6
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FIG. 7. The steady state J=2
and J=1 level populations per
unit statistical weight as a func-
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culation which assumes an
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which comprise the levels. The
two graphs represent the low-
(2 X 10 cm ) and high-
(7X 10 cm ) density cases, re-
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which plots the variation of intensity with plasma length
for the two densities. The dependence on the elastic col-
lision rate is discussed below.

Figure 7 illustrates the development of the state popu-
lations of the 2-1 transition as a function of length for the
case of an infinite elastic collision rate. In the low-density
case, the 2-1 line dominates the lasing and hence the satu-
ration behavior. The populations obey the expected satu-
ration behavior, tending to a weighted average of the un-
perturbed populations. In the high density case, the
behavior is significantly difFerent. The 0-1 line is the first
to saturate and the J=2 population is at first driven up-
wards as a consequence of this, before the 2-1 line satu-
rates also.

Figure 8 illustrates the identical case when the elastic
rates are set to zero, thus enabling the efFect on the states
to be clearly seen. At the onset of saturation, the popula-
tions of the five states (represented as three through the
symmetry in +M) of the J=2 level separate as a conse-
quence of the asymmetry in the stimulated emission rates
imposed by the absence of ~ polarized radiation, the
M =+2 populations falling most rapidly as these states
interact only with cr 4 radiation in any case. A small dis-

tance beyond the onset of 2-1 saturation, the 0-1 line it-
self begins to saturate and stimulated emission on this
transition begins to affect populations. The result is a
surge in population of J= 1,M =+1 states which are the
lower states of the 0-1 lasing line, accompanied by a
second-order effect in the J=2,M=O, +2 states which
are coupled to these states. In the high-density case, the
difFerent behavior arises as a consequence of the 0-1 tran-
sition dominating the lasing and being responsible for the
saturation behavior. The initial effect is a rapid increase
in the population of J= 1,M =+1 states (through pump-
ing from the J =0 level), with consequent efFects on the
connected J=2,M =0,+2 states as the 236-A radiation
density nears saturation values.

Figure 9 illustrates the effect on the redistribution of
the level populations through elastic collisions. The elas-
tic collisions are fast enough to ensure almost complete
redistribution of the J=2 level, while discrepancies of
the order of 1 to a few percent (according to the density)
remain in the J=1 states —an effect which can surely be
neglected. Circumstances can be envisaged in which the
effects are significant —a beam saturated in high-density
plasma passing through low-density plasma, for
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levels. The two graphs represent
the low- (2 X 10 cm ) and
high-(7 X 10 cm ) density
cases, respectively.
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FIG. 10. Temporal evolution of gain in the plasma slice that radiation reaches at time t =0 with an intensity I close to the satura-
tion intensity Iz [I=I~=(hv/err)] The. curves correspond to I=1.8X 109 W/cm (0-1 line) and I =1.2X10 W/cm (2-1 line) with
an electron density of 2X10 cm, and I=4.8X10 W/cm (0-1 line) and I=2.9X10 %/cm (2-1 line) with electron densit
7 X 10 cm '. Go is the corresponding small-signal gain.

instance —but in simple cases it appears unlikely that
these are of practical relevance. It must however be
pointed out that the elastic-collision rates that we have
used are approximate. Even if the main features here ob-
tained are likely not questionable, more accurate estima-
tions of elastic-collision rates for the different states in-
volved should be useful.

In contrast to the individual M-state populations, the
gain and intensity evolutions are found to be weakly
dependent on the elastic collision rate, as mentioned in
Fig. 4 and Fig. 6. This may result in part from the ap-
proximation used in this work (that the total rate is dis-
tributed evenly among the states, in particular). But we
must first notice that the gain is proportional to a sum of
products (n&M nz.~, )(J—Mid) IJ'M —1) [see Eq. (16)].
So, pertinent comparisons must relate to population
difFerences (nzM n~.M, )—rather than to populations n JM
themselves. One can see in comparing Fig. 7 and Fig. 8
that the population difFerences (nz~ nz.~, ) ar—e much
less sensitive to the elastic-collision rate than the popula-
tions themselves. Moreover, in the problem considered
here, where the lower level is involved in two lasing lines,
a number of elementary processes —radiative (absorption
and stimulated emission) and collisional transitions —are
coupled and the analysis cannot be achieved by consider-
ing either of them alone.

In Fig. 10 we show the characteristic temporal evolu-
tion of local gain in a plasma slice just at the beginning of
the x-ray laser pulse, in a region where the incoming in-
tensity (at local time t =0) is already large enough to pro-
duce saturation. As an example, this slice is close to
z =3 cm for the 2-1 radiation in the low density case (see
Fig. 4). Results are obtained using the time-dependent
solutions of equation system (19), the initial population
densities being the steady-state values calculated with in-
tensity equal to zero (they correspond to the small-signal
gain Go). In presence of radiation, the steady regime is

reached in a time of the order of 0.5 to 2 ps, according to
the plasma density.

The equations, and the corresponding quantitative re-
sults here obtained, have been derived using the assump-
tion that the values of coherence envelopes pJ~ 1 J~
correspond to quasi-steady-state (QSS) with respect to
their production and decay processes. Since

d
~ PJ'M 1,JM ( —+ 8L)PJ'M ),JM—dt

X (nzM n—
this assumption is valid provided that the populations do
not vary significantly during the time interval I '. This
is clearly true below saturation. When the radiation in-
tensity is large, the characteristic time of evolution of
population densities is I I ' with
I 1(~q)=[[B~JI~J(vo z)]/(cadiz. )I where a=(bv/hv, )

(see above). The time I I ' is long compared with I' ' if
I I &(I. Considering the cross section for stimulated
emission [31] o =(Golg„bn„I)=(hvB/bvc), and the to-
tal intensity I =fdvI(v) =b,v, I(vo), it comes
I =(rrI/hv) or I=(hv/o )I

In the high-density case (7 X 10 cm ), I =2. 8 X 10'
So, with I I ~ 2. 8 X 10' s ', the condition is

I ~2.9X10' W/cm for the 0-1 line (obtained at z=2
cm), a value six times greater than the "saturation inten-
sity" [(h v/o r ), [4,16]] Is =4. 8 X 10 W/cm (obtained at
z=1.5 cm), and I~2. 1X10' W/cm for the 2-1 line (ob-
tained at z=2. 8 cm) while I&=2.9X10 W/cm (ob-
tained at z = 1.6 cm).

In the low-density case (2X10 cm ), I =9X10'
s '. This leads to I ~9.3X10 W/cm for the 0-1 line
(obtained at z=4. 5 cm) while Is= 1.8X10 W/cm (ob-
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tained at z=3.3 cm), and I &6.9X10 W/cm for the 2-1
line (obtained at z=4. 5 cm) while Is=1.2X10 W/cm
(obtained at z =3 cm). So, in all cases, the method is suit-
ed to describe the plasma and radiation evolution until
intensities far above the "saturation intensity" (a factor of
5 in intensity for the least favorable case).

IX.CONCLUSION

This work gives a general theoretical description of
populations and radiation intensities coupled evolutions
suitable for plasma samples exhibiting population inver-
sions between levels connected by electric-dipole transi-
tions. The equations are valid whatever the radiation in-
tensities are, provided that the coherence envelopes may
be assumed in steady state relative to their production
and decay processes. For the Ne like Ge + ion con-
sidered in detail in this work, by way of illustration, this
is verified for intensities up to five times (at least) the sat-
uration intensity.

At low intensities the solutions correspond to the usual
ASE regime (below saturation) with a constant gain value
along the z axis. This gain value is consistent with the
Einstein coefficient for stimulated emission as calculated
by the Fermi golden rule.

At high intensities approaching saturation it is no
longer valid to consider a level as a whole interacting
with the radiation. The specific individual-state interac-
tions must be taken into account, as shown in this work.

The present theory is appropriate to describe the gra-
dual transition to saturation of x-ray lasers in plasmas
when the ASE intensities become large. It must be point-
ed out that the elastic-collision rates are important pa-
rameters, as well for spectral line profiles as for satura-
tion behavior. Even if reasonable estimates of these pa-
rameters are provided by an available approximate for-
mula, accurate elastic-collision rates for different in-
volved states should be useful.

For the Ne-like Ge + ion, we find that the equal popu-
lation redistribution of the states of one level by elastic
collisions is almost complete, despite the fact that the in-
teractions with the radiation are not equal between the
different states. Thus, although our results have arisen
from the use of an approximate elastic-collision rate and
may not be valid for the general case, one may ask wheth-
er the simple theory of Sec. II (which considers a level as
a whole and ignores the individual M states) is sufficient
to study the transition to saturation. The important
point is that the Maxwell-Bloch treatment is undoubtedly

more rigorous in obtaining the correct quantitative popu-
lation evolution. The fact that the individual M popula-
tion differences are small due to collisional redistribution
is another point. When saturation occurs, the equations
for populations and for gain are not strictly rigorous in
the simple theory of Sec. II, which ignores the individual
M states and their specific interactions to a given radia-
tion. The results converge only if the rates of collisional
transitions JM —JM' are large enough to ensure the
equalization of states populations pertaining to a com-
mon level, whatever the radiation intensity is. This key
point is only assumed, not verified in the simple theory.
In contrast, the theory presented in this paper does not
need such an assumption, and gives the correct result in
any case, whether the statistical redistribution of popula-
tion occurs or not. Nevertheless we would expect the use
of the simple theory to be adequate for most practical ap-
plications.
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APPENDIX

The polarization vector

The polarization vector P is given by

P =Tr(pd ),
i.e.,

P=Tr p y IJ'M'&&J'M'Id
J'M'

or

P = g ( JM
l p l

J'M' ) (J'M'
l
d

l
JM ),

JMJ'M'

where p is the density operator and d is the atomic elec-
tric dipole.

We shall use the notation pJ~J~ =(JMlplJ'M').
Considering one particular dipolar transition with upper
level J and lower level J', and using d =gqdqeq, leads to

P= g [&J'M+qld
I
JM &pJM, J'~+q+ & JM+qld I

J'M &pJ'M, J~+q]eq,
Mq

or

P= g [&J'M+qld IJM &pJ~, J'M+q+& JMld IJ'M —
q &pJ'M qJ~]eq . —

Mq

Matrix elements such as (J'M+qldq l JM ) are real numbers which verify

& J'M+q d, lJM &=( —1)'&JMld, lJ'M+q)
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so that we may also write

~= g g [&JMld IJ'M —
q &pJ'M q, JM— +( —1)'&JMld, IJ'M+q &pJM J'M+q]eq

q M

[Eq. (7) in Sec. III].
Considering one particular dipolar transition connecting levels J and J, the atomic electric dipole is

djM JMIJ'M')( JMI+ g dJM JM IJM)( J'M'I
MM'

= g & J'M+qld, l JM &e, lJ'M+q && JMI+ g & JMld, l
J'M —

q &e, l
JM && J'M —ql .

Mq

(JMI 4 I
J'M —q ) = (

—1)q( J'M q I
d —

I
JM )

the last term of the above equation is also QMq(
—1)q(J'M —qld I

JM ) eq I
JM ) ( J'M —

ql or, equivalently,

QMq ( —1 )q( J'M +q I dq I
JM )e

q I
JM ) (J'M +ql, and hence

d = & (J'M +q I d, I
JM & [ I

J'M +q & & JM
I e, + ( —1)'IJM & ( J'M+ q I

e ,]-
Mq

(the fact that d is real appears clearly in this expression). Accordingly, the product d.E may be written as

d &= g (J'M+qldq IJM &[IJM &(J'M+qlEq+( 1)'IJ'—M+q && JMIE q] .
Mq

This last expression is convenient for using in Eq. (8), Sec. III. So, with the a + field given by Eq. (5) of Sec. III, Eq.
(8) and approximation (1) of Sec. IV give in particular

d
PJ M JM

—l M AP J M JM

iE i (a)t —kz +y+ )+ (&JM+ 1 ldi I
J™&pJM+i, jM & JMldi I

J'M 1&pj'Mj'M i)e—
d
dtPJM r JM ~~APJ'M —rJM

iE i (cot —kz+y+ )+
~

& JMldi I
J'M 1&(PJM, JM

—PJ'M 1,J'M 1)e— —

d
dt PJM, J'M + 1 t ~ A PJM, J'M + i

iE —i (cot —kz+y++ ((JMld, I
J'M —1)pjM, J.M+i —(JM+2ldi I

J'M+1)pJM JM+2)e +) .

As the coherences are initially equal to zero, and the populations di6'erent from zero, only coherences pJ M $ JM can
become nonzero at later times. The slower evolution of (Zeeman) coherences of the type pjM JM or pjM JM with
MAM' are of second order and will be neglected. So, defining

and

—i (cot —kz+y+)
PJ'M —i,JM PJ'M —i,JMe

5L —CO CO A

we obtain (neglecting Bqr+ /Bt with respect to co, consistently with. the paraxial approximation):

iE
dt p J'M —i, JM t re, p J'M —i, JM +

~
&™ldi I

J'M —1 &(ttJM it J'M i)——

to which should be added the collisional total decay of the coherence (including by elastic electron-ion collisions), the
rate of which is labeled I", to obtain finally

iE
dt pJ'M —i, JM

—( I + t foal, )pJ'M i JM+ ~
& JMl—d i I

J'M 1& ( tJM n J'M i )— —

The approximation (2) of Sec. IV [(d/dt)pjM, JM =0] then leads to
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iE 1 —i I.
PJ'M —i, jM g

& JMldl lJ M 1 ~(nJM nJ'M —1}
5I +I'

where d, is the standard tensorial component of d on e &, namely,

d, = — —(d„+id ) .1

2

Let us define %(co) by the relation

I —i5L
=n)It(a)) .

s', +r'
Equation (7} in Sec. III leads now to

M

i.e.,

P + = {lt(t)))g (JMldilJ'M —1) (n&M nz, M
—i)Ee + ei+H. c.

M

[Eq. (10},Sec. IV].
In a quite similar way, with the cr field given by Eq. (6) of Sec. III we obtain

P = )It'(co) g (JMld i lJ'M+1) (nzM nzM+))E—e ei+H. c.
M

[Eq. (11),Sec. IV].

Wave equation

By considering the Wigner-Eckart theorem and the 3-j symbol properties it can be readily shown that

(JMld, lJ'M+1)=( —1) +'(J —MldilJ' —M —1) .

Therefore, whenever the symmetry M~( —M) is statistically preserved by the physical processes,
5JM nJ M, nJ M+/ nJ. M &, etc. , and hence

&JMld )IJ'M+1&'(ngM nJ'I+i)=&J—Mld)IJ' M— 1&'(nj ——M
—np —I—i) .

Summing over M (
—J & M & J}is equivalent to summing over M' = —M( —J & M' & J), so

g (JMld ilJ'M+1) (nqM n~M+i)—= g (JM'ldilJ'M' —1) (nJM nq~ )) .—

On the rhs, the dummy index M' can be relabeled I, which proves that

g (JMld ilJ'M+1) (nJM nzM+, )= g—(JMldilJ'M —1) (nz)r nzM i)—.

Let us call Uzj this common value. Then, reporting E + [Eq. (5)] and P + [Eq. (10)] in Eq. (4) gives

Q2

c Bt

2
COp~

c2
i {tot —kz + gr+ ) 1 Q i~ —i {tot —kz + g&+ )

eoc2 {}t2

Projection on e& gives

a'
2 Bt2

2 2~po —{{tot—kz+y+) 1 8 im — t'{tot —kz+p+)

c 2 c.oc Bt
O' U E

—i{tot —kz+y )

coc Bt

Similarly, reporting E [Eq. (6)] and P [Eq. (11)]in Eq. (4) leads to

2
2 ~pg — —i (a)t —kz +@ )V— Ee

c2
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which, apart from y in place of y+, is the complex conjugate of the previous equation. Now, if the field propagating
along the z axis is correctly described by (5) and (6), the condition V' E=0 leads to

i (cot —kz + tp) 0

Using finally the usual paraxial approximation (see, for example, Ref. [5]), and the retarded time variable t —z/c, Eq.
(4) becomes

Bqp ~pe — gE
Bz 2kc

fof 0+
r

pe — . BEE+&
(jz 2k~ 2 (jz

for o.—.

lk UJJt
rrÃ(co)E,

2coA'

lk UJJI
rr%'*( co )E

2coA

2With the o+ field in Cartesian coordinates, the condition reads as [(BE/Bx)+E(By/By)]cos(cot —kz+y)
+ [(BE/By) —E(Bp/Bx)]sin(cot —kz+@&)=0 for all t, i.e., (BE/Bx) = E(B&p/By—) and (BE/By) =E(Bp/Bx). Consequently
(ViE) =E (Vip), ViE Vitp=0, ViE=E(Vip) =(1/E)(ViE), and ViEe' ' '+~' =[VIE—(1/E)(ViE) ]e'"' "'+r'=0. The
same holds for the (7 —field.
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