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Dispersion forces and long-range electronic transition dipole moments
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A formalism of degenerate perturbation theory is presented, in which the initial basis set of functions
is fully adapted to the perturbation. This full adaptation is obtained by imposing a simple condition
which leads to an iteration procedure free of singularities. The formalism includes as a special case non-
degenerate perturbation theory. By using it we calculate the dispersion coefficients of alkali-metal di-
mers for molecular states which dissociate into one atom in the ground state and the other in one of the
first two S, I', or D excited states. The dispersion forces are extracted from the first- and second-order
energy corrections. Model potentials are used in order to describe the motion of the valence electron in
the field of the alkali-metal positive-ion core. Using the first-order wave-function correction, we investi-
gate the leading terms of the long-range expansion of the electronic transition dipole moments. An ex-
tension of the Dalgarno-Lewis method is developed in order to handle the radial matrix elements which
involves a reduced Green's function for real and complex energies. The results are compared with previ-
ous computations.

PACS number(s): 34.20.Cf, 31.15.—p, 33.90.+h

I. INTRODUCTION

A knowledge of the potential-energy curves and elec-
tronic transition dipole moments of diatomic systems
near the dissociation limit plays an important role in the
study of cold collision processes and laser cooling and
trapping of atoms. In this paper we study the dispersion
coefficient between two alkali-metal atoms, one of which
is excited in an S, P, or D state. We investigate also the
long-range limits of the electronic transition dipole mo-
ments from the ground state to these excited states.

At large nuclear separations R where the overlap of
the atomic charge distributions can be neglected but
where the contribution of retardation effects is still unim-
portant, it is convenient to represent the internuclear in-
teraction potential by an asymptotic expansion in inverse
powers of R. The coefficients of this expansion are the
dispersion coefficients. They can be computed using per-
turbation theory in which the perturbation is the
Coulomb interaction between the atomic charge distribu-
tions. For alkali-metal atoms the approximation can be
made from taking explicitly into account only the
valence-electron contribution. That can be done by in-
troducing a model potential describing the motion of the
valence electron in the presence of a frozen core. In our
paper we used the l-dependent model potentials derived
in Ref. [l].

In Sec. II we present the formalism of "degenerate per-
turbation theory in a fully adapted basis. " It is a natural
development of perturbation theory which incorporates
both the degenerate and nondegenerate cases. The essen-
tial feature consists of imposing certain conditions on the
initial basis set of functions in order to avoid any singu-
larities during the iteration procedure. Thus secular
equations appear at the outset, constructed from condi-
tions imposed on the initial basis set of functions. We use

the theory in Sec. III to calculate the dispersion
coefficients for the molecular states that dissociate into
one atom in the ground state and the other in any of the
first two S, P, or D excited states of alkali-metal atoms.
For the nS-mS dissociation limit we compute the C6, C8,
and CIO dispersion coefficients. For the nS-mP dissocia-
tion limit we compute the C3, C6, and C8 coefficients and
for the nS-mD dissociation limit we compute the C5 and
C6 dispersion coefficients. The radial sums are computed
using a complex integral representation similar to that
described by Chan and Dalgarno [2] for the ground-state
interaction. In Sec. IV we compute the long-range
coefficients for the electronic transition dipole moments
from the ground molecular state to those molecular states
which dissociate into one atom in the ground state and
the other into one of the first two P or D excited states.
The theory is carried out for arbitrary light polarizations.
The final results are particularized to linear and circular
polarization. In Sec. V, we describe the numerical
method used in the computation of the dispersion
coefficients and the long-range coefficients of the elec-
tronic transition dipole moments. We develop an exten-
sion of the Dalgarno-Lewis method [3] in order to deter-
mine exactly the matrix elements which involve reduced
radial Green's functions for real or complex energies.
The numerical results are presented in Sec. VI. A critical
comparison with previous computations is made. The
conclusions are presented in Sec. VII. This paper has
four appendixes which describe the analytical details.

II. DKGKNKRATK PERTURBATION THEORY
IN A FULLY ADAPTED BASIS

Let H be a Hamiltonian which can be written as a sum
of an unperturbed Hamiltonian Ho and a perturbation
term A, V,
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H =HO+XV (1) and the condition

where A. is a real parameter. We assume that the eigen-
value problem for Ho has been solved. Let E' ' be a de-
generate eigenvalue of the unperturbed Hamiltonian and
let 6( ' be its invariant subspace. There is more then one
eigenvalue of H tending to E' ' when k goes to zero. We
denote these eigenvalues by E and their invariant sub-
spaces by 8 &,p is a degeneracy index. In the limit as A,

goes to zero, E ~E' ' and 6 becomes a subspace of
6"( '. Because 6 ~ are disjoint subspaces for any A, , corre-
sponding to different eigenvalues, in the limit X~O they
become a disjoint partition of 8' '. An orthogonal com-
plete set of eigenvectors of Ho which respects this disjoint
partition of the 6 ( ' subspace is a fully adapted basis for
the perturbation problem.

In the conventional formulation of degenerate pertur-
bation theory [4] the iteration procedure starts with an
arbitrary orthogonal complete set of eigenvectors of Ho,

which must be satisfied by 'll( ~). Multiplying Eq. (6) with
y'„l' and integrating over configuration space we get for
the coefficients of 4'" in our basis

(9)

From Eq. (5) for k = 1 we have a ' " =0 and so

(i) (o) & pri ~ ~ m)I &

p g % I E(o)—E(o)
nl n m

(10)

where the sum is over all possible pairs of indices nl of
the y'„(' functions. Thus 4"~ is orthogonal on the ( ' '

subspace.
In the second order of perturbation we have the equa-

tion
(o) —E(o) (o)

OV nl n fnl (2)

where the second index of y is the degeneracy index. The
condition

where y'„l' are the kth-order corrections to the wave
functions, is assumed. The adapted basis is built order by
order, in the solution of the secular equations. For a
given order of perturbation the construction of the secu-
lar equation involves an examination of the next higher
order of perturbation in order to remove the singularities
caused by the choice of the initial basis. This complicat-
ed procedure can be avoided if the initial basis is a fully
adapted basis at the outset.

Suppose that we are interested in the E states of H
which tend to E' ' in the limit that A, goes to zero. The
initial basis should be a fully adapted basis for the pertur-
bation problem corresponding to the 6"( ' subspace. We
denote the components of this basis outside of the 6( '

subspace by y'„l'. They are arbitrary orthonormal eigen-
vectors of Ho and they satisfy Eq. (2). The components
of the basis which lie in the (o( ' subspace are denoted by

They are also orthonormal eigenvectors of Ho and
obviously they satisfy the eigenvalue equation

(4)

This basis is a fully adapted basis of the 8' ' subspace if

(5)

Thus all the wave-function corrections 4' ' for k ~ 1 are
orthogonal on the @' ' subspace. The condition given by
Eq. (5) is not immediately useful but can be rewritten ex-
plicitly in each order of perturbation.

The equation for the first order of perturbation is

(6)

Multiplying both sides of Eq. (6) by (11( ' and integrating
over configuration space we get

nl n m

(13)

We get also the condition for the 0" ' functions,

where we used Eq. (5) for k =1. The coefficients of 4( '

in our basis are found by multiplying in Eq. (11) by y„(
and integrating over configuration space,

(14)

(15)

From Eq. (5) with k =2 we have a '
~ ~

=0 and so

(16)

Again the sum from Eq. (16) is over the indices of the y(„))
functions and so 4( ' is orthogonal on the 6( ' subspace.

In a similar fashion starting with the equation for the
third order of perturbation,

(~ ~ (o))ip(3)

we get

and the condition for the 4' ' functions

(19)

Again multiplying by 4' ~ and integrating over
configuration space we get

(12)

or using Eq. (10)
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where we used Eq. (5) for k = 1 and 2. The wave-function
correction in the third order of perturbation theory is

nl n m

+E (0)
'( ~'ni'~

~
'mp &

mP g 0 nl (E(0) E(P) Pnl n m

(20)

(21)

and that Eqs. (21) imply Eq. (5). The first equation in (21)
is the normalization equation of the perturbation theory,
Eq. (3), which ensures that in the limit A, goes to zero,
where the perturbation vanishes, the wave function is
normalized to unity. The second equations are the secu-
lar equations which should be obeyed by the 4' ' func-
tions. Thus perturbation theory with the condition Eq.
(5) leads to the same conclusion as conventional degen-
erate perturbation theory, except that the secular equa-
tions appear from the beginning as a condition for an
adapted basis. The energy and wave-function corrections
are established in each order without examining the next
higher order of perturbation.

From Eqs. (8), (14), and (19) we conclude that in order
to have a fully adapted basis for the 6( ' subspace it is
sufficient that the function %" ' satisfy the condition

V 0 ~ ~

(E (0) E(0))
n& m

xV v e") =w~s
(E(0) E(0)) K

nK m

for all K ~0, where g(„&! is the sum over all possible
pairs of indices (n l~) for j= 1, . . . , K of y(„&) functions,
a =—(a), . . . , a)r ) is a set of positive integer numbers, and
8' is an algebraic quantity. For K =0 the condition Eq.
(22) reduces to Eq. (8). The condition to have a fully
adapted basis for the 8' ' subspace Eq. (5) determines the
choice of basis vectors in the 8( ' subspace.

In many cases it is easy to define an adapted basis be-
fore the iteration procedure and it is then more con-
venient to use this simple procedure. An example is the
calculation of the dispersion coefficients for the excited
states and the long-range limit for the electronic transi-
tion dipole moments which will be discussed in the next
sections. In finding an adapted basis, the basis functions
in the 6' ' subspace should respect the symmetry of both
the H and Ho Hamiltonians.

For the nondegenerate case the initial basis is automat-
ically a fully adapted basis since 8' ' is a one-dimensional
subspace and there is no ambiguity in the choice of the

and so 4( ' is orthogonal on the 6(m) subspace. Similar
equations can be established in each order of perturba-
tion.

It is clear that Eq. (5) is equivalent to the following set
of equations:

)I(( ' vector. Indeed, in this case Eq. (5) reduces to the
usual normalization condition of the nondegenerate per-
turbation theory. Discarding the degeneracy indices, the
entire formalism is reduced to the conventional nonde-
generate perturbation theory formalism and we may re-
gard degenerate perturbation theory in a fully adapted
base to be the natural formation of perturbation theory.

III. DISPERSION COEFFICIENTS

In this section we present the calculation of the disper-
sion coefficients which arise from the first- and second-
order corrections for the energy in the perturbation
theory. In the limit of infinite R the interaction between
the two atoms is zero and the total Hamiltonian is the
sum of the atomic Hamiltonian, which for our problem is
the unperturbed Hamiltonian. We describe the alkali-
metal atoms by an l-dependent model potential [I] and so
only the contribution of the valence electron is taken ex-
plicitly into account. For large R the Coulomb interac-
tion between the atoms may be expanded in a series of in-
verse powers of R [5]. For our problem the Coulomb in-
teraction is the perturbation and it has the expression

V(L, (r) r2)
(+L.+(R

(23)

X g K(L r ', r 2 Y( ( r, ) YL, (r2 ), (24)

with l:—2l+1,L, =2I.+1, and

Km [Pl+mPL+m](/2
1L l +L I+L (25)

where C„" is the binomial coefficient n!/k!(n —.k )!.
An orthogonal complete set of eigenvectors of the un-

perturbed Hamiltonian may be written

q. =@.(r&)c' (r&), (26)

where v is the set of quantum numbers ( nlm ] and @,is
the atomic wave function. The corresponding eigenvalue
is E„& +E„ l, the sum of the individual atomic energies11 22
corresponding to 4

&
and @ 2.

In this paper we study the molecular states which dis-
sociate into one atom in the ground state and the other in
an excited S, P, or D state. The zero-order correction for
the energy is E„g+E, where v~

=—[nsOOJ and
v, = fn, l, m, ]. The basis functions in this subspace are
chosen to be

(27)

The coefficient is given by P = ( —1) 'p o where p =+ 1 for
even (g ) and odd (u ) molecular states and o.=+1 for
singlet and triplet molecular states, respectively. We will
show that this basis is a fully adapted basis for the pertur-

where r, and r2 are the positive vectors of the valence
electrons of the two atoms. The coefficients V&L(r„r2)
are given by

V(L (r„r2)=( —1) 4m(lE).
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+K I a j ~ @(0)

I vv'j

~ ~ ~

bation problem for the E +E state subspace.v v

According to Eq. (22) we have to show that

(1)Uvgve+pUvevg
mp vv, v v (37)

where we used the identity from Eq. (C4). Using the ex-
pansion in 1/R for U from Eq. (B2) and Eq. (B13), we
have

K
m p (28)

where tal =a(, . . . , a)r, I vv'I =viv'i, , vtrvx, and
6 =E +E, —E —E, satisfies the equation

J

(+L+1
'

', « '
1=1L =1

Introducing Eq. (B14) into Eq. (38) we get
m p
21 +1

(1)E' 'p= — ), for I, ~1,
R

(38)

(39)

m'p'm p m m pp' m pm p
KIaj KIaj (29)

m p
where C2&'+, are the coefficients

e

for any K ~ 0. Using the notation from Appendix C, Eq.
(Cl), we have

I, +m, +1

(n, i, lr'ln, 0) .
e

(40)

I I

2Fx(.) =W""' '~+P W"" "
mp'mp g

V V

I I

+ppw"" ( )+pa""' "
V V V V (30)

where v', =
I n, I,m,

' I. From Eq. (C7) we find that
m,'=m, and so v,

' =v, . Using Eqs. (Cl) and (C8) we get
~+i I + + ~+i I +L,v;x'(aj —~~. 1( L 1) ~ 1(

v v

I 1L j

For the case where in the dissociation limit the second
atom is in an S excited state, which we refer to as the S-S
asymptote, the first-order correction for the energy is
zero and so is the coefficient. For the case of the S-P
asymptote, where in the dissociation limit the second
atom is in a P state, the energy correction in the first or-
der of perturbation is proportional to 1/R, and for the
S-D asymptote, where the second atom is in a D state, it
is proportional to 1/R . For these cases the coefficients
are given by Eq. (40) with 1, = 1 and l, =2, respectively.

v v, ;KIaj
v v; I1L j

(31) B. Second-order perturbation

Thus

vev 'KIaj v ve'KIaj
V V v v

g e
(33)

From Eqs. (C5) and (C6) with 1,
' =1, and lg

= lg,
+x+1'(lj +L~ ) must be even and

ve v 'K I a j v ve) K I a j
ve vg Vg Ve

We can show similarly that

The energy correction in the second order of perturba-
tion is given by Eq. (13) and so

(2) 11E p= —F (41)

where F"
& is defined by Eq. (28). Using Eq. (35) and the

e

1/R expansion for the W symbols Eq. (Cl) we get

(2) 1 V V V V

m P $ t+L+('+L' ( v v;ILI'L'+P+v v;ILl'L')
e II' R g e' g e'

LL'

where

,
'+PP Fx(-)

e™ep e e 2
(34) (42)

~g e; I j+~~e g
mp vv v v (35)

Because p and p' can be only +1, the right side of Eq.
(34) is zero if P'AP and Eq. (29) is proved. Thus our basis
is a fully adapted basis for our perturbation problem.

1. The S-S asymptote; v, = In, OOI

For this case we have computed the contribution up to
1/R ' in the interaction energy. After analyzing the pos-
sible combinations of {1Ll'L'I quadruples from Eq. (Cl 1)
we conclude that

A. First-order perturbation (2) C6 C8 C 10
p p p

~ ~ ~

t (43)

E(1) —(ql(0)
l
ylql(0) ) (36)

The energy correction in the first order of perturbation
is given by Eq. (7) as

where C6, C8, and C10 are the dispersion coefficients.
Contribution 1/R; I ILl'L'J—:I1111I. From Eqs. (43)

and (42) we have

where 'Il( )I) is defined by Eq. (27) and V by Eq. (23). The
e

matrix element on the right side of Eq. (36) is a particular
case of Eq. (28) for 4=0 and so it obeys E'q. (35). Thus

p- v v
1111+P+;1111

Using Eq. (Cl 1) we get

(44)
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ct,'=-,'(s', +ps', ), (45)

S 1

S2

(nlIrIngo) (mlIrIn, o)

nm En)+Em) En 0 E„0
e g

(ngOIr I
n 1)(n l r In, o)(ngoIr Im 1)(m 1I r In, o)

E i+E i
—E 0

—E 0e g

(46)

(47)

where S, and S2 are the following sums of radial matrix
elements:

V V

+P( W.;:„»»+W.;:„»»)

Using Eq. (Cl 1) we get

(4g)

C~~ =S3+S~+2PS (49)

scnbed later.
Contribution 1/R; [1Ll'L'}= [1212},[2121}. From

Eqs. (43) and (42) we have
V V V VC, = 8':.'.„„+8:..„„g e' g e'

The computation of these and other sums will be de- where

S3

S4

S5

(nlIrIn 0) (m2Ir In, o)

En ]+Em2 En 0 En 0
e g

(n 2Ir'In, O)'(m l Ir In, O)'

En2+E )
—En 0

—En 0

(n, oIr nl)(nl rIn 0)(n, oIr Im2)(m2Ir Ingo)

E„)+E 2
—E„0—En 0

(50)

(5 l)

(52)

Contribution 1/R; [lLl'L'}—:[2222},[1313},[3131}.From Eqs. (43) and (42) we have

V V V V

Cio = Wv v .2222+ Wv v . 1313 + W„v .3131 +P( Wv v .2222+ Wv v . 1313 + Wv v .3131 )

Using Eq. (Cl 1) we get

C 10
= —",S6+—', (S7+Ss )+p( —",S9+—',S 10 ),

where

(53)

(54)

S6

S7

S8

S9

S 10

(n2lr In s)0(m2lr In, o)

n2+Em2 En 0 En 0

(nlIr n 0) (m3Ir n, o)
E ]+E 3 E 0 E 0

(n3Ir In 0) (mlIrIn, o)

En3+Eml En 0 En 0e

(n, oIr n2)(n2Ir In 0)(n, oIr Im2)(m2Ir n 0)

E„2+E 2 E„o n 0—
(n, oIrInl)(nlIrIn 0)(n, oIr Im3)(m3Ir In 0)

E„)+E 3
—En 0

—En 0

(55)

(56)

(57)

(58)

(59)

2. The S Pasymptote; v, = jn, lm, }-.

Since in this case there is already a nonvanishing con-
tribution from the first order of perturbation, proportion-
al to 1 /R, we will study only the first two nonzero con-
tributions which arise from the second order. After
analysis of Eqs. (C13) aiid (Cl4) we conclude that these
contributions are proportional to 1 /R and 1/R . Thus

C'
E(2) C 8

~ ~ ~

R
(60)

m P m P
where C6 ' and C8 ' are the dispersion coefficients.

Contribution 1/R; [1Ll'L'}= [llll }. From Eqs. (60)
and (42) we have

(6l)
g e'
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The term proportional to P is zero because W ' '.»» =0
m pbecause of Eqs. (C5) and (C6). Thus C6' does not de-

pend on the value of P. Using Eq. (C13) we get

CmeP A meS] + A meS1
6 1 1 2 2

TABLE I. The algebraic coefficient AI, occurring in Eqs.
(62) and (66).

gm gm gm gm gm gm gm gm gm gm

4 22 18 129 3 18 48 18 18 48
9 45 25 175 5 25 35 25 25 25

where

(nllrlnsO) (mOlrln, l)
S,' =g'

Eni+E 0
—En 1

—En 0e

(nllrln 0) (m2lrln, l)
En1+E 2

—En 1
—En 0

(63)

(64)

1 19 6 93 1 16
9 45 25 175 5 25

24
35

6
25

6 24
15 25

the {1122I terms are equal to the contributions of the
{2211)terms and {1311I to {1113). Thus

meP V Ve V V V V
C 8 ~v v ', 1212 + ~v v;2121 +2 Wv v ' 1311

and where A1' and A2' are algebraic coefficients listed
in the first two columns of Table I. The prime on the
sum of Eq. (63) indicates that the case (n =n„m =ns ) is
excluded.

Contribution //R; {/L/'L'I —= {1212I,{2121I,{1122I,
{2211I,{122/J, {2/12I, {1311I,{1113I. From Eqs. (60)
and (42) using Eqs. (C5) and (C6) and the symmetry rela-
tions Eqs. (CS) and (C10) we find that the contributions of

+P( ~v v;1221 + ~v v;2112+ ~v v;1122 )

Using Eqs. (C13) and (C14) we get

m 10
Cs' = g Ak 'Sk+P g Ak 'Sk,

k=3 k=8

where

(66)

S,'=

S'=
5

S'=

Ss=

S'=
9

S10=1

(nllrln 0) (mllrln, l)

nm Enl +Emi En 1 En 0e

(nllrln 0) (m3lr ln, l)
E„1+E 3

—En 1
—En 0e

(n2lr ln 0) (mOlrln, l)
En2+Emo En 1 En 0e

(n2lr ln 0) (m2lrln, l)

.m En2+Em2 —En 1
—

n oe

(n llrlnsO) (n, llrlm2)(m2lr In, 1)

En1+E 2
—En 1

—En 0e

(n31lrln2)(n2lr I nOs)( nllrl m)2( ml2r ln 0)
E„2+E 2

—En 1
—En 0e

(n, 1lr
I

ln)( lnlrl Ons)( nllr lm 1)(m 1 rln O)s

E.1+E 1
—E. 1

—E. oe g

(n, 1 lr ln 2)(n 2lr InsO)(n, 1 lr lm 1 )(m 1I r InsO)

En2+E 1 E 1
—E 0e

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

and where A ' for j=3, . . . , 9 are algebraic coe%cients
listed in Table I.

I

coefficients are very large and so the utility of the 1/R ex-
pansion is questionable. Thus

3. The S Dasymptote; v, =—{n,2m, J-
(2)
m p

m p
6

~ e ~

For this case we will study only the contributions pro-
portional to 1/R . This restriction was made first be-
cause there is already a contribution proportional to
1/R from the first order of perturbation and second, as

m p
we will see later, the numerical values for the C6'

where C6 is the dispersion coefficient. According to
Eq. (42) for {/L/'L'I =—{1111I we have

mp vv V V

6 ~v vll1 1 +P~ vv;1111 (76)
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Using the definition of the W symbols Eq. (C2) for K =1
and a&=1 we get the expression

TABLE II. The algebraic coefficients Ak occurring in Eq.
(77).

C ' =A 'S+A 'S+PA 'S (77)
gm

1
gm

3

where

S 1

S2

S2—
3

(n 11r In&0) (m ll r ln, 2)

E„i+E i
—E„2—E„o

(n llrln 0) (m31rln, 2)

Enl+Em3 En 2 En 0

(n, 21& 1&1)(&11&lngo)(n, 2lr limni 1 )(m ll& lngo)

E„i+E i
—E„2—E„o

(78)

(79)

(80)

m=0

m =+2

2
5
1

3
2
15

16
35
3
7
12
35

2
5

4
15
2
15

and is exact.
Equation (81) must be used with care, because a or b

may be a negative quantity. For those cases where a &0
and b (0, I/(a +b ) can be replaced by

m m m
and A, ', A2', and A3' are algebraic coefficients listed
in Table II.

C. The sum of radial matrix elements

1 + +—f den Re
1 2

a+b a —b m 0 a —ice
Re 1

b l co

(82)

oo=—f d~Rea+b ~ o a —iso
Re, (81)

1

b Lco

where by Re we denote the real part. Equation (81) is
valid only for a &0 and b &0. In this way the sums are
separated into a product of two sums, each of them over
the intermediate states of only one atom. The final result
is an integral over the product of multipole polarizabili-
ties of complex frequencies, which in turn may be corn-
puted using the Dalgarno-Lewis method [3]. This pro-
cedure includes the sum over the continuum spectrum

A major step in the computation of the dispersion
coefficients is the evaluation of the sums of radial matrix
elements from Eqs. (46), (47), (50)—(52), (55)—(59), (63),
(64), (67)—(74), and (78)—(80). All of them are similar to
each other in being sums over the intermediate states of
both atoms.

An efficient way to separate these sums into indepen-
dent contributions of each atom was pointed out in Ref.
[2] for the case of the ground-ground interaction. It con-
sists in using the following integral representation [6] (for
other equivalent representations see Ref. [7]):

o (iiP Ir 12S)'(IP Ir13S)'
(E„P—E2S ) + (E P E3S)—(83)

Here we take a =E„I,—E2&, which is positive for any n,
and b =E I —E3z, which is positive except for m =2, as
Table III shows. For those cases where both a and b are
positive we used Eq. (81) and for the cases where m =2
we used Eq. (82). After the summation over n and I we
get

the last two terms canceling each other. This substitu-
tion permits a complete sum over atomic states in the in-
tegral.

The cases where such a problem occurs depend on the
succession of the excited atomic levels. In Table III are
listed the excited atomic levels lying below the first excit-
ed F state for each alkali-metal atom.

We carried out computations for the first two S, P, and
D excited states of each alkali-metal atom. In total there
are 230 sums to be computed. We discuss a few special
examples, in order to point out the utility of Eqs. (81) and
(82).

For the case of the Li(2S)-Li(3S) asymptote Eq. (46)
becomes

S, =—f dc@ Re[(2Slrg (E2s+ico)r12S)]Re[(3Slrg (E3s+ico)r 13S)]
0

+(2Plr13s) [(2s ling, (E2s —E»+E»)r 12s)+(3s ling, (E2s+E2p E»)r I3s)], —

where g is the radial Green's function for the angular momentum P.
Another interesting case is the Li(2S)-Li(2P) asymptote for which Eq. (63) becomes

(nPlr12S) (mS Ir I2P)
P E2S)+(E S E2P)

(84)

(85)

where g' indicates that the term for (n =2, m =2) is excluded. For the cases where m is equal to 2 and n ) 2 we use
Eq. (82) and for the rest Eq. (81). We get

Si =—f de Re[(2SIrg (E2s+ico)r 12S)]Re[(2PIrg, (E2P +iso)r 12P)]

+(2P Ir I2S ) [(2SI rg'(E2+)r12S)+(2S lrg (2E2s E2&)r I2S )], — (86)
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Li Cs

TABLE III. The excited atomic levels lying energetically
below the erst excited F state of each alkali-metal atom.

IV. LONG-RANGE COEFFICIENTS
OF THE ELECTRONIC TRANSITION DIPOLE

MOMENT

2S
2P
3S
3P
3D
4S
4P
4D
4F

3S
3P
4S
3D
4P
5S
4D
4F

4S
4P
5S
3D
5P
4D
6S
4F

5S
5P
4D
6S
6P
5D
7S
4F

6S
6P
5D
7S
7P
6D
8S
4F

In this section we study the long-range limit of the
electronic transition dipole moments from the ground
molecular state to those molecular states which dissociate
into one atom in the ground state and the other into a P
or D excited state. As for the interaction energy, the
transition dipole moment can be represented in the limit
of large nuclear separations by a series in inverse powers
of R. We present those contributions which arise from
the zero and first order of perturbation.

The electronic transition dipole moment is defined as

D &(s)=(% &ls (r, +r2)l%' ),

where by g'(E2~) we denote the reduced radial Green's
function for angular momentum P omitting the 2P state.

Also for the Li(2S)-Li(2P) asymptote an interesting sit-
uation occurs for the S3 sum from Eq. (67) which be-
comes

(nPlr 2S) (IPlr l2P)
(E„p E2I, )+(—E I E2s)— (87)

Here b =E p E2s» Po»tjve for any m and
a =E„r—E2&. For n =2, a =0 and neither Eq. (81) nor
Eq. (82) applies, so that this term must be treated sepa-
rately. For the rest of the terms with n +3 we use Eq.
(81) and otherwise Eq. (82). Finally we get

S3 =—f d co Re[(2P
l
r g (E2s +

iso�

)r
l
2P ) )

77 0 p 2S

(91)

In Eq. (91),

D' ' =(4' '&ls (r, +r )l%' ')
e

(92)

is the zero-order contribution, where 4' ' is the ground-
state molecular wave function in the limit of infinite nu-
clear separation,

where + is the ground-molecular-state wave function,

p is the excited-molecular-state wave function, and s
e

is the polarization vector. Later we will particularize the
results to linear and circular polarizations.

In the long-range limit the wave function from Eq. (90)
may be approximated by the perturbation series and the
electronic transition moment written as

X Re[(2S
l
rg'(E2p+ico)r 2S)]

+(2Plr 12S)'(2Plr'g (E2s)r'l2P), (88)

g(0)
g vgvg

The first-order correction D "'p can be written asm

(93)

where g '(E2r +ice) is the radial reduced Green's function
for angular momentum P, omitting the 2P state, for com-
plex energy. However, the denominator in Eq.(87) can be
rewritten with a =E p E2s and b =Emp E2p ~ Now
we have b =0 for m =2 and we get

(1) 10 01
Dm p Dm p+Dm p

where

D '
&
= ( 'II' "&ls (r i + r 2 ).l

%' ' ),

(94)

(95)

S3 coRe 2P r g
' E2p+i m r 2P

'IT 0 p 2P Do'~=&+"'~ls ~ (r, +r, )le,'") . (96)

XRe[(2$ l rgb (E2s +i co )r l
2S ) )

+(2P lr'l2P) (2S lrg~(E~s)r l2S), (89)

Equation (88) and Eq. (89) are equivalent to each other
and provide a very good test for the accuracy of the nu-
merical computations. More details about the numerical
computations will be given later.

Every sum can be treated in this way in order to
separate it into quantities which depend only on a single
atom. Among the alkali-metal atoms certain symmetries
occur because of the similar succession of the excited lev-
els, as shown in Table III. For example, the structure of
the sums for Cs(6S)-Cs(5D) is similar to those for
Na(3S)-Na(3D) and those of Rb(SS)-Rb(7S) to K(4S)-
K(6S), which brings some simplification at the level of
numerical computation.

We will call D p the left contribution and D '
p the right

e e

contribution since the first-order correction to the wave
function enters on the left or on the right side of the ma-
trix element. The matrix element which has on both
sides the first-order correction to the wave function
occurs in the second order of perturbation, together with
the matrix elements which have the second-order correc-
tion to the wave function on the left or the right side and
the zero-order correction to the wave function on the
other side.

A. Zero-order conribution D' '&
e

Introducing Eqs. (93) and (27) in Eq. (92) and using the
notation from Eq. (D8) we get
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DIoI (B"' ~ +pB

Using Eqs. (D10) and (D9) we get

(97)
the v1 and v2 indices could be 1 and 0 or 0 and 1, respec-
tively. From Eq. (86) we have l+l +li =(even) and

I + 1

L+l2=(even) so that ( —1)'+ =( —1) ' and Eq. (102)
becomes

DI I = — (T; '+T,'; ) . (98)

D"' =5 5 dIo~s e*
meP P] le 1 me

where

(99)

Since v, Wv from Eq. (D3) we conclude that the second
T symbol in Eq. (98) is zero and using Eq. (D4) we get
finally

D io 1+(—1) ' P 1

1L

(106)

The computation of D'
P Il sta. rts from Eq. (103) where

we substitute the B symbol with its expression from Eq.
(D9). The term proportional to T,',' is zero since from

g

Eq. (D3) v, =vs and from Eq. (813) we have U,','.
IL =0,

so that
d' '=Q ,'(n—,1 ~r ~n 0) . (100)

As expected, the zero-order contribution is not zero only
for l, = 1 and P= 1.

Dm, p; IL X
V)

VV;1L vv

E —E
Vi V

(107)

B. First-order contribution D" '&
e

The first-order correction D"'p, Eq. (94), is the sum of
e

the left and right contributions Eqs. (95) and (96). In the
left contribution Eq. (95) the first-order correction to the
wave function 4'"& is a result of degenerate perturbation

e

theory and in the right contribution '0"' is obtained from
nondegenerate perturbation theory. Thus the computa-
tion of the left and right contributions requires difFerent
approaches. Xs.e* (108)

where we used Eq. (810) in order to invert the upper and
lower indices for the U symbols. Finally, using Eqs. (814)
and (D4) we get the following expression for the left con-
tribution:

I +1
D" = ( 1) i —'"rC

11
3&ZR

X(n, l, ~tr '~nsO)(nsO~rg~(E„ I )r~ngO)

l. The left contribution D IO
pe

The first-order correction to the wave function 4"'& is
e

given by Eq. (10) which for our problem becomes

12+pU12
qy(1)

V V e g
m P ~ %v)v E +E

V) V2 V V

(101)

where the sum is over all the possible pairs of indices ex-
cept v, vg and vgv, . Introducing Eqs. (101) and (93) in
Eq. (95) and using the notation from Eq. (D8) and the
I/R expansion of the U symbols, Eq. (82), we get

where g~(E„ I ) is the radial reduced Green's function for
e e

angular momentum P omitting the E„ 1 state. Obviously
e e

if l,%1 it reduces to the usual radial Green's function for
angular momentum P.

2. The right contribution D
e

The first-order correction of the ground-state wave
function 4'" is a result of nondegenerate perturbation
theory given by Eq. (10) where the second indices of the
+ functions are discarded. In our notation it becomes

10 10 10
m P ~ g g I+I.+ I ( m PP;IL +PDm P;IL ) ~21 1L —1R

g(1)—
12E +E

V~ V2 V

(109)

where

g e B 1 2

vlv2, 1L v v

E +E —E —E
V~ V2 V V

(102)

(103)

where the sum is over all possible pairs of indices except
v v . Introducing Eq. (109) in Eq. (96) and following a
similar procedure as for the left contribution, we get

I +1
D",=, ,P( 1) l "rC„—(,i, ~. ~,0)

3&ZR

U'g. B '2
D10 v&v&, 1L v v

m P;IL
V~ V2 V V

Using Eqs. (88) and (D10) we have

(104)

X(ngO~rg~(2E„O E„ I )r ~ntO)s e*— (110)

3. Both contributions

where g is the radial Green's function for angular
momentum P.

mp;«mp;IL . (105)

From Eqs. (D9) and (D4) it follows that I, and 12 from
Collecting the results from the left and right contribu-

tions, Eqs. (108) and (110), we conclude that the first-
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order correction to the transition dipole moment is (II—~i)ly& = lq; &
—IE.i &&E.ilq; & . (118)

(&)
dm, p~($) e' ~ ~e

P I +2 S'emR'
where

1+1
( —1) '/ ' E™(nl ~r '~n 0)mP 3~2 e ll ee g

X [(n 0(rg'(E„ i )r ~n 0)

+(n Olrg (2E, ll &. i )rl~, 0)] . (112)

For linear polarization s =eo =—e, and for circular polar-
ization s =e+, —= + (1/v'2)(e„+ie ) for positive and neg-
ative helicity, respectively. The ratio between d"'& for

e

linear polarization and circular polarization is —2 for the
final state S I' and —-&3 for the final state S D. -

V. NUMERICAL COMPUTATION

At= &qf igI'(n)iq, &, (113)

where
~ y; & and

~ yf & are two-vectors, gi' is the reduced
radial Green's operator for angular momentum l omitting
the E„I state, and 0 is a complex number with ReQ &0.
Let ~y & be the vector

ly&=g'(&)ly; & . (114)

The numerical problem consists in the computation of
radial matrix elements involving a Green's function. We
distinguish four types of such matrix elements; a radial
Green's function for real energy, a radial Green's func-
tion for complex energy, a reduced radial Green's func-
tion for real energy, and a reduced radial Green's func-
tion for complex energy. Our procedure for solving these
problems is based on the Dalgarno-Lewis method [3].
The Arst and the second types of matrix elements were
studied in detail in Refs. [8] and [1], respectively. Here
we will present the procedure which we adopted for the
third and fourth types of matrix elements.

Let Ai be the generic matrix element

Multiplying both sides of Eq. (118) by &E„l ~
we see that

for AWE„l the solution of Eq. (118) is orthogonal to
~E„i& and the value At, is given directly by Eq. (115).
However, if Q=E„i an ambiguity in the definition of ~y &

by Eq. (118) remains and the condition Eq. (117) must be
explicitly enforced. Thus for this case Eq. (115) should
be replaced by

AI=&V fly& &mf—lF-„l &«.&IX& .

Because the inhomogeneity from Eq. (118) is already or-
thogonal to

~ E„i & the component of ~g & along
~ E„i &

arises only from numerical errors and so the matrix ele-
ment &E„l~y& from Eq. (119) should be a small number.
This is also a very good test of the accuracy of the eigen-
functions used in the computation.

The value of AI for QAE„l could also be computed us-
ing Eqs. (116) and (119). In this case ~y& would have a
large component of the ~E„i & vector, the orthogonal
component of ~E„l & would be affected by numerical un-
certainties, and the final result would be subjected to
large errors. This problem becomes more severe when
~qr; & contains a large component of the ~E„l & vector and
when 0 is close to E„&. Thus the procedure defined by
Eqs. (118) and (119) is preferable for the computation of
the matrix element JR from Eq. (113). Nevertheless, for
Q=E„l the numerical solution of Eq. (116) explodes to
infinity and it is impossible to recover any value for the
matrix element. Hence we used Eqs. (118) and (119) to
compute the matrix elements involving a reduced radial
Green's function.

If the energy of the Green's function is complex, we
follow a similar procedure to that in Ref. [1] in which Eq.
(118) is written as a system of two coupled inhomogene-
ous differential equations for the real and imaginary com-
ponents of ~y &.

Further tests were made in order to ensure the accura-
cy of the subroutines. If ~y; &X~pf & then ~y;~ and ~yf &

may be interchanged and ~lpf & will occur in the right side
of Eq. (118). For our program this test gave the same
value for the matrix element up to the machine error.
Further, if QAE„l, then

Then Eq. (113)can be rewritten as

=&vflx& (115)
&gflE.i&&&.ilq; &

AI=&qfla(fl)lq; &-
nl

(120)

Let h& be the radial Schrodinger operator for angular
momentum l. Then ~g & will obey the equation

(I1—&, )ly& = lq; &,

with the condition

&E„,ly& =0,

(116)

(117)

since in Eq. (114) we have a reduced radial Green's func-
tion that excludes the E„i state. Thus ~y& is orthogonal
to the ~E„l & eigenvector. An efficient way to implement,
at the numerical level, the condition Eq. (117) is to ex-
tract from the inhomogeneous term the component along
the ~E„i & vector and replace Eqs. (116)and (117)by

where on the right side we have a complete radial
Green's function. For our program this test gives a
confidence limit of more than eight digits.

For the discretization scheme for solving the second-
order differential equation we chose the Numero v
method with variable step described in Ref. [8], with the
bound-wave-function-type boundary conditions. The in-
tegral over co in equations such as Eq. (84) was done using
a Lagrange-rational method with 64 points. We found
that for our type of integrands this method is faster and
very precise compared to adaptive methods with error
control, which are also more expensive in terms of the
number of evaluations of the integrand.
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VI. DISCUSSION OF RESULTS

R, =2[(n O~r ~n 0)' +(n, l, ~r ~n, l, )' ] . (121)

Our values for the dispersion coefficients are accom-
panied by estimates of the Le Roy radius, in order to in-
dicate the range of validity of the 1/R expansion. The
expansion may be used for values of R smaller than R,
provided the contributions of the exchange terms are
added.

1. The S-S asymptote

For the S-S asymptote we report in Table IV the values
of C6, C8, and Cio for the cases where the second atom is
in the first excited S state. We include the values of C6,
Cs, and C,o computed by Vigne-Maeder [10] using a
model potential in the frame of a "natural state of in-
teracting systems" theory, and the values of C6 and C8
for Li and Na computed by Bussery and Aubert-Frecon

TABLE IV. The dispersion coefficients C6, C8, and C&0 for
the interaction between the ground and first excited S state
atoms for the symmetries P=+1. Brackets represent powers of
ten.

R, P C, C8 Cio Ref.

2S-3S 30.0 +1 3.110[4]
3.188[4]
3.121[4]
3.090 [4]—1 1.381[4]
1.365[4]
1.365[4]

Na 3S-4S 31.31+1 2.519[4]
2.511[4]
2.517[4]—1 1.430[4]
1.427[4]
1.560[4]

K 4S-5S 35.9 + 1 6.368[4]
6.276[4]—1 3.289[4]
3.228 [4]

Rb 5S-6S 37.2 + 1 7.324[4]
7.362[4]

—1 3.805[4]
3.784[4]

Cs 6S-7S 39.6 + 1 10.65[4]
10.16[4]—1 5.290[4]
5.046[4]

4.514[6] 1.250[9]
4.455[6] 1.232[9] [10]
4.472[6] [11]

[13]
3.539[6]
3.431[6]
3.392[6]
5.418[6]
5.376[6]
5.580[6]
4.146[6]
3.738[6]
4.460[6]

16.32[6]
15.92[6]
11.99[6]
11.57[6]
20.81[6]
10.06[6]
15.03[6]
14.48[6]
33.70[6]
30.81[6]
23.57[6]
20.89[6]

1.064[9]
1.014[9] [10]

[11]
1.650[9]
1.606[9] [10]

[11]
1.374[9]
1.226[9] [10]

[11]
5.945[9]
5.993[9] [10]
4.855 [9]
4.774[9] [10]
8.038[9]
7.906[9] [10]
6.505[9]
6.358[9] [10]

14.11[9]
13.04[9] [10]
11.27[9]
9.763[9] [10]

A. Dispersion coefBcients

We carried out calculations of dispersion coefficients
for molecular states which dissociate into one atom in the
ground state and the other in either of the first two S, P,
or D excited states, for Li, Na, K, Rb, and Cs. The repre-
sentation of the potential curves by a series in inverse
powers of R is valid only for R )R, where R, is the Le
Roy [9] radius

[11] using perturbation theory and model potentials of
Klapisch [12]. The results are mostly in satisfactory
agreement except for small discrepancies in the values of
C8 and Co& for Cs which may be attributed to the
different model potentials used in the calculations. The
model potential for Cs of Ref. [10] has two parameters
and no core-polarization term while our model potential
has five parameters [1] and includes a core-polarization
term. For heavy alkali-metal atoms the static dipole po-
larizability of the positive-ion core is large and the core-
polarization term is very important in obtaining a good
description of the wave functions.

In Table V, we report the calculated values of C6, C8,
and C&0 dispersion coefficients for the case where the
second atom is in the second S excited state. The value of
C6 for Li 2S-3S agrees well with that of Caves [13]. We
know of no other published values.

TABLE V. The dispersion coefficients C6, C8, and C&0 for
the interaction between the ground and second excited S state
atoms for the symmetries @=k1. Brackets represent powers of
ten.

R, P C, Clo

Li 2S-4S 49.6

Na 3S-5S 51.3

K 4S-6S 56.9

Rb 5S-7S 58 6

Cs 6S-8S 61.5

+ 1 6.712[4] 5.691[7]—1 6.575 [4] 5.700[7]
+ 1 7.622[4] 6.282[7]—1 6.939[4] 6.290[7]
+ 1 14.63[4] 22.82[7]—1 15.21[4] 23.47[7]
+ 1 16.33[4] 31.62[7]—1 17.42[4] 31.57[4]
+ 1 22.91[4] 31.28[7]—1 23.80[4] 29.47[7]

5.228[10]
5.231[10]
6.158[ 10]
6.162[10]

18.12[ 10]
18.14[10]
23.05 [ 10]
23.07[10]
37.56[ 10]
37.60[ 10]

2. The S-P asymptote

For the S-P asymptote we computed the C3, C6, and
C8 coefficients. In Table VI we present the results for the
case where the second atom is in the first excited P state.
We list also the computed values from Refs. [10] and
[14]. The computation of Bussery and Aubert-Frecon
[14] neglects the contribution of continuum states while
our computation, based on the Dalgarno-Lewis method,
includes it. Further, our model potential should be supe-
rior to the Klapisch model potential in giving accurate
results for high excited states.

The values of C3 may be compared with empirical
values determinable from measurements of the radiative
lifetime of the n P excited states. The empirical values
are compared to the results of our calculation in Table
VII. They appear to agree within the possible experimen-
tal uncertainties.

There are occasional significant differences between
our values of C6 and C8 and those of Refs. [10] and [14].
The discrepancies for the C8 coefficients and especially
for m symmetry between these three calculations are par-
ticularly large. For the S-P asymptote the contribution
of excited states with angular momentum up to F is im-
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TABLE VI. The dispersion coefficients C3, C6, and C8 for the interaction between the ground S and first excited Po. and Pm. state
atoms for the symmetries P=+1. For the coeKcients, brackets enclose powers of ten.

R, P

Li 2S-2Po. 18.8 +1

Na 3S-3Po. 21.5 +1

3S-3P7T

K 4S-4P0 25.1 +1

C3

11.01
10.99
11.02

—11.01
—10.99
—11.02
—5.503
—5.494
—5.510

5.503
5.494
5.510

12.26
12.51
12.95

—12.26
—12.51
—12.95
—6.128
—6.225
—6.480

6.128
6.225
6.480

17.33
17.54
18.68
17.33

—17.54
—18.68

2.066[3]
2.025[3]
1.927[3]
2.066[3]
2.025[3]
1.937[3 ]
1.401[3]
1.374[3]
1.301[3]
1.401[3]
1.374[3]
1.301[3]
4.094[3 ]
4.164[3]
4.144[3]
4.094[3]
4.164[3]
4.144[3]
2.636[3 ]
2.686[3]
2.669[3]
2.636[3]
2.686[3]
2.669[3]
9.393[3]
9.651[3]

10.13[3]
9.393[3]
9.651[3]

10.13[3]

Ref.

2.705[5]
2.657[5] [10]
2.296[5] [14]
9.880[5]
9.644[5] [10]

11.24[5] [14]
10.21[4]
9.987[4] [10]
9.920[4] [14]
4.756[4]
4.726[4] [10]
3.162[4] [14]
7.025 [5 ]
6.775[5] [10]
7.180[5] [14]

21.20[5]
20.78[5] [10]
24.21[5] [14]
2.171[5]
2.100[5] [10]
2.301[5] [14]
8.559[4]
8.229[4] [10]
5.556[4] [14]
1.975 [6]
1.892[6] [10]
2.454[6] [14]
6.712[6]
6.439[6] [10]
8.376[4] [14]

C3

+ 1 —8.665
—8.768
—9.340

—1 8.665
8.768
9.340

Rb 5S-5Po. 26.5 +1 18.40
18.80
20.13

—1 —18.40
—18.80
—20.13

5S-5Pm. + 1 —9.202
—9.400

—10.06
—1 9.202

9.400
10.06

Cs 6S-6P0 28.4 + 1 20.95
21.53
24.27

—1 —20.95
—21.53
—24.27

6S-6P~ + 1 —10.47
—10.76
—12.13

—1 10.47
10.76
12.13

6.291[3]
6.465[3]
6.868[3]
6.291[3]
6.465[3]
6.868[3]

12.05[3]
12.56[3]
16.12[3]
12.05[3]
12.56[3]
16.12[3]
8.047[3]
8.407[3]

11.35[3]
8.047[3]
8.407[3]

11.35[3]
17.39[3]
19.51[3]
26.09[3]
17.39[3]
19.51[3]
26.09[3 ]
11.83[3]
13.21[3]
18.61[3]
11.83[3]
13.21[3]
18.61[3]

Ref.

7.623[5]
7.132[5] [10]
5.814[5] [14]
2.893[5]
2.624[5] [10]—3.734[4] [14]
2.805[6]
2.662[6] [10]
4.056[6] [14]
9.462[6]
8.964[6] [10]

13.74[6] [14]
11.32[5]
10.11[5] [10]
6.744[5] [14]
4.203[5]
3.512[5] [10]—4.733[5] [14]
5.040[6]
5.061[6] [10]
6.417[6] [14]

16.56[6]
16.25[6] [10]
24.51[6] [14]
2.256[6]
2.078[6] [10]
1.729[6] [14]
9.131[5]
7.790[5] [10]—4.643[5] [14]

portant and some of the discrepancy may be due to
different model potentials. It appears also that in the cal-
culations of Cs in Ref. [14] the contribution of terms

I lLl'L'I —= [1212], I2121], I 1221I, and I2112] may have
been overlooked, causing the values for the K, Rb, and
Cs m states with symmetry P= —1 to have the wrong
sign.

In Table VIII, we report the computed values of C3,
C6, and C8 for the case where the second atom is in the
second I' excited state and we compare them to the values
of C3 and C& for Li and Na from [11]. The agreement for
C6 is very good especially for Li where the Klapisch
model potential and the representation of the high excit-
ed states by hydrogenlike functions used in [11] are realis-
tic. A factor of about 3 between our values for C3 and
those from [11]suggests that there is an algebraic error in

3. The S-D asymptote

We report in Tables IX and X the results for C5 and
C6 for the case where the second atom is in the first or
second excited D state, respectively, and the values for Cz
and C& for the Na 3S 3D asymptote from [I 1]. T-he re-
sults are in good agreement. The slight differences may
be explained by the model potentials and by the trunca-

TABLE VII. Theoretical and experimental values of IC3I for
nS-nPo. interaction.

Li

Na

Cs

Calculated

11.01

12.26

17.33

18.40

20.95

Experimental

11.05+0.05
10.95+0.09
10.92+0.02
12.31+0.02
12.54+0.23
12.34+0.07
16.64+0.30
17.36+0.33
17.80+0.34
18.03+0.35
18.18+0.57
21.0+0.5
19.6+0.9
21.6+0.2

Ref.

[15]

[17]
[17]
[18]
[19]
[19]
[18]
[20,21]
I:2o]
I:22]
[18]
[23]
[24]

tion approximation which is adopted in [11]. For the rest
of the coefficients it appears that there are no other calcu-
lations in the literature.

The value of C6 is large in comparison with the value
of C5. The large value of C6 occurs because energetically
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TABLE VIII. The dispersion coef5cients C&, C6, and C8 for the interactions between the ground and
second excited Pcr and Pest.ates for the symmetries P=+1. For the coefficients, brackets enclose
powers of ten.

Li

Na

Cs

2S-3PCT

2S-3P77

3S-4Pcr

3S-4Pm

4S-5P t7

4S-5p~

5S-6pcr

5S-6P&

6S-7Po

R,

34.3

38.4

42.9

44.7

47.1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

Cq

3.364[ —2]
8.600[ —2]—3.364[ —2]—8.600[ —2]—1.682[ —2]—4.300[ —2]
1.682[ —2]
4.300[ —2]
8.432[ —2]

24.00[—2]—8.432[ —2]
—24.00[ —2]—4.216[—2]—12.00[—2]

4.216[—2]
12.00[ —2]
9.225[ —2]—9.225[ —2]—4.612[—2]
4.612[—2]

14.28[ —2]
—14.28[ —2]—7.141[—2]

7.141[—2]
14.82[ —2]—14.82[ —2]—7.411[—2]
7.411[—2]

3.814[4]
3.843[4]
3.814[4]
3.843[4]
2.002[4]
2.033[4]
2.022[4]
2.033[4]
4.806[4]
5.100[4]
4.806[4]
5.100[4]
2.602[4]
2.779[4]
2.602[4]
2.779[4]

10.67[4]
10.67[4]
5.738[4]
5.738[4]

12.56[4]
12.56[4]
6.779[4]
6.779[4]

17.30[4]
17.30[4]
9.329[4]
9.329[4]

C8

2.702[7]

2.533[7]

1.535[6]

3.714[5]

8.368[7]

8.558[7]

1.548[7]

1.558[7]

19.38[7]
20.43[7]

3.300[7]
3.468[7]

25.12[7]
26.19[7]
4.372[7]
4.504[7]

36.51[7]
38.76[7]
6.280[7]
6.639[7]

Ref.

the 2P level of Li lies midway between the 2S and 3D lev-
els and for Na, K, Rb, and Cs the first P state lies midway
between the ground state and the second excited D state,
producing a large contribution to the Siand S& sums of
Eqs. (78) and (80), respectively, from the term where
n =m is the first excited P state. The large denominator
leads to large values of C6 for Li(2S)-Li(3D) in Table IX
and Na(3S)-Na(4D), K(4S)-K(4D), Rb(SS)-Rb(5D), and
Cs(6S)-Cs(6D) in Table X. For Li the 4D and 4F states
are energetically close to each other as are the 3D and 4P
states of Na, leading to a large value of S~ from Eq. (79)
for Li and large values for all three sums Eqs. (77)—(79)
for Na. Hence the large values of C6 for Li(2S)-Li(4D)
and Na(3S)-Na(3D). For K(4S)-K(3D), Rb(SS)-
Rb(4D), and Cs(6S)-Cs(SD) these aspects are less critical
and the ratio between the C6 and C5 coeKcients is small-
er than in the previous cases though still large in compar-
ison with the Le Roy radius R„given in Table IX.

These and similar features will propagate into higher-
order coeKcients and higher-order perturbation theory,
leading to still more rapidly increasing values. The ex-
pansion in powers of 1/R, which is an asymptotically
divergent expansion, may not be useful for the interaction
of highly excited states. Even for the case of the interac-
tion of S and D states, its range of applicability is restrict-
ed to very large values of R.

B. Long-range coefficients for electronic transition dipole
moment

In Table XI we report the calculated values of the first
two leading terms Eqs. (100) and (1 12) of the 1/R expan-
sion of the transition dipole moment from the ground
state to those molecular states which dissociate to one
atom in the ground state and another in one of the first
two excited P states. There appears to be no other direct
calculation of these coefticients but some indirect com-
parisons can be made. The absolute value of d' ' is the
positive square root of ~C~~ so that its reliability is estab-
lished by the comparison of C& in Table VII. For the
transition to the 2S-2P asymptote of Li, we can extract
values of d' ' and d'" from the ab initio calculation of the
transition dipole moment as a function of R, Ref. [25].
From the fitting procedure, we derive —299. 17 for do&'

compared to our prediction of —283.07 and 138.23 for
d +&I compared to our prediction of 141.53.

In Table XII, we give the values of the leading term of
the 1/R expansion of the electron transition dipole mo-
ment from the ground state to those molecular states
which dissociate to one atom in the ground state and the
other in one of the first two excited D states. The
coefBcient d' '=0 and the first nonvanishing term varies
as 1/R . The first-order coefficients are do i for linear
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R, Ref.

TABLE IX. The dispersion coefficients C5, and C6 for the in-
teraction between the ground and first excited D o., 7T, and 5
states for symmetries P=+1. Brackets represent powers of ten.

TABLE X. The dispersion coefficients C5 and C6 for the in-
teractions between the ground and second excited D cr, 7T, and 5
states for the symmetries P=+1. Brackets represent powers of
ten.

Li

Na

Rb

2S-3Do

2S-3D7T

2S-3D5

3S-3Dcr

3S-3D7T

3S-3D5

4S-3D a

4S-3D7T

4S-3D5

5S-4Do

5S-4D7T

5S-4D5

6S-5Do.

6S-5D7T

6S-5D5

30.8 + 1 —4.498[2] —1.663[4]
—1 4.498[2] 2.039[4]
+ 1 2.999[2] 14.96[3]
—1 —2.999[2] —9.718[3]
+ 1 —7.497[1] —1.323[3]—1 7.497[1] 11.02[3]

31.0 + 1 —5.783[2] 4.059[4]
—5.210[2] 4.123[4] [11]—1 5.783[2] 1.867[4]

5.210[2] 1.974[4] [11]
+ 1 3.855[2] 1.842[4]

3.480[2] 1.931[4] [11]
—1 —3.855[2] 3.303[4]

—3.480[2] 3.363[4] [11]
+ 1 —9.639[1] 1.766[4]

—8.700[1] 1.800[4] [11]—1 9.639[1] 1.035[4]
8.700[ 1 ] 1.083[4] [11]

29.4 + 1 —1.320[3] 6.423[4]
—1 1.320[3] 1.743[4]
+ 1 8.800[2] 1.956[4]
—1 —8.800[2] 5.076[4]
+ 1 —2.200[2] 2.598[4]
—1 2.200[2] 1.038[4]

28.2 + 1 —1.465[3] 5.049[4]
—1 1.465[3] 1.289[4]
+ 1 9.766[2] 1.481[4]
—1 —9.766[2] 3.988[4]
+ 1 —2.441[2] 20.58[3]
—1 2.441[2] 8.045[3]

25.6 + 1 —1.443[3] 30.61[3]—1 1.443[3] 6.253[3]
+1 9.622[2] 7.806[3]
—1 —9.622[2) 24.04[3]
+ 1 —2.405 [2] 12.47[3 ]—1 2.405[2] 4.348[3]

Li

Na

Rb

2S-4Do.

2S-4D7T

3S-4Do.

3S-4D7T

3S-4D5

4S-4Do.

4S-4D7T

4S-4D5

5S-5Do.

5S-5D7T

5S-5D5

6S-6Dcr

6S-6D7T

6S-6D5

53.2

53.4

49.7

48. 1

45.5

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

+1
—1

C5

—79.19
79.19
52.79

—52.79
—13.20

13.20
—88.47

88.47
58.98

—58.98
—14.74

14.74
—23.98

23.98
15.98

—15.98
—3.996

3.996
—0.5079

0.5079
0.3386

—0.3386
—0.0847

0.0847
—248.3

248.3
165.5

—165.5
—41.38

41.38

7.626[4]
7.733[4]
6.712[4]
6.641[4]
3.650[4]
3.668[4]
7.942[4]
9.334[4]
8.120[4]
7.193[4]
4.479[4]
4.943[4]

14.15[4]
14.14[4]
12.49[4]
12.50[4]
7.547[4]
7.541[4]

11.32[4]
13.68[4]
11.88[4]
10.31[4]
6.494[4]
7.281[4]

39.34[4]
13.31[4]
13.93[4]
31.32[4]
15.80[4]
7.110[4]

d (0)
d01

(1) d+»(1) Ref.

TABLE XI~ The leading two coefficients in the expansion of
the electronic transition dipole moments between the ground
and first excited S and P states of the interacting atom pairs.

polarization corresponding to a X-X transition and d~+,',
for circular polarization corresponding to a X-II transi-
tion.

VII. CONCLUSIONS

A formalism of degenerate perturbation theory was
presented. We required that the initial basis set of func-
tions be fully adapted to the perturbation. This is
represented by Eq. (5). The iteration procedure proceeds
smoothly, order by order, without any other require-
ments for modifying the initial basis set. The formalism
includes the nondegenerate case. Indeed, if we restrict
the range of possible degeneracy indices to one we get the
well-known formalism of nondegener ate perturbation
theory. For this reason we regard the "degenerate per-
turbation theory in a fully adapted basis" as a useful
unification of the formahsms of nondegenerate and de-
generate perturbation theories.

This paper is a nontrivial application of perturbation

Li

Na

2S-2P

2S-3P

3S-3P

3S-4P

4S-4P

4S-5P

5S-5P

5S-6P

6S-6P

6S-7P

—3.3175
—3.3400
—3.3167

0.1834
0.1767

—3.5007
—3.5425
—0.2904
—0.3197
—4.1630
—4.1475
—0.3037
—0.2827
—4.2899
—4.2804
—0.3779
—0.3609
—4.5768
—4.6529
—0.3850
—0.3894

—283.07
—299.17

141.53
138.23

—16.904 8.4521

284.26 142.13

41.917 —20.959

—615.54 307.77

—696.78 348.43

95.662 —47.831

—931.98 465.99

116.80 —58.401

68.049 —34.024

[25]
[26]

[27]

[28l

[5]

[29]

[5]

[5]

[5l

[5]

[5l
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TABLE XII. The leading coefficients in the expansion of the
electronic transition dipole moments between the ground and
second excited S and P states of the interacting atom pairs.
Brackets represent powers of ten.

mi&m2+m3. Based on properties of the 3j coefficients
the following symmetry relations hold:

( jimi l j2mz l j3m3 )

Na

Cs

2S-3D
2S-4D
3S-3D
3S-4D
4S-3D
4S-4D
5S-4D
5S-5D
6S-5D
6S-6D

d0 —1
(I)

—2.0197[3 ]—7.3411[2]
3.0323[3]
8.2805[2]

—1.0698[4]—8.3192[2]
—1.6548[4]
—2.5026[ 1 ]—4.6892[4]

4.2292[ 3 ]

1.1661[3]
4.2384[2]—1.7507[ 3 ]—4.7808[2]
6.1765[3]
4.8031[2]
9.5544[ 3 ]
1.4449[ 1]
2.7073[4]—2.4417[ 3 ]

=&j,—m, lj, —m, j,—m, ),
=( —l) ' '&j, —m, lj, —m, lj, m, &,

=&jimilj3m3lj m

'& j3 —m3lj~m2lji —mi & .

(A3)

(A4)

(A6)

&J,m, lj,m, loo&=s, „|i (A7)

We restrict the list to those relations which occur in the
calculation presented in this paper. We make use of

(opl jzm3 l j3m3 ) =( —1) '5J. 5 (AS)

theory. The dispersion coefficients are extracted directly
from the energy corrections. The long-range coefficients
of the electronic transition dipole moment are computed
using the wave-function corrections. Beyond the formal-
ism itself the results have their own value. They give a
quantitative description of the long-range interaction be-
tween atomic systems. Some of our results appear to be
new, especially those which involve D states or the
second S and P excited states as well as the long-range
coefficients of the electronic transition dipole moment,
and others improve on exciting computations. Our cal-
culations have two advantages. They use an accurate
model potential and an exact evaluation of the second-
order sums. We developed an extension of the
Dalgarno-Lewis method in order to handle the radial ma-
trix elements which involve reduced radial Green's func-
tions.

APPENDIX B: THE U SYMBOLS
I I

Let U ' ' be the matrix element
1 2

U,'",'=
& v .. . l vip, .&, (B1)

I I 00 oo I I

U
V(vp V) V2

vl v2 ~ ~ ~ I+L+ 1 vl v2' IL
1=1 L =1

where

(B2)

(B3)

where the index v stands for the triplet Inlm], y„„ is
defined by Eq. (26), and V by Eq. (23). Using the expan-
sion of V in inverse powers of R we get

ACKNOWLEDGMENTS

APPENDIX A: THE 3jm SYMBOLS

In this Appendix we give some relations involving the
integral of a product of three YI functions. We define
the following 3jm symbols:

( jimil jzm2l j3m3 &

=(4n)'~ J Y (r)Y (r)Y (r)dQI . (Al)

Using the Clebsch-Gordan algebra we get the following
expression for the 3jm symbols in terms of 3j coefficients:
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Energy, Office of Basic Energy Sciences, Office of Energy
Research and by the Smithsonian Institution.

X g KiT (1',m ', llm l, m, ) (lcm 2 lL —
m llzm2 )

X(n il', Ir'In, li)(nzlqlr'ln212), (B4)

where & l & are the 3jm symbols defined in Appendix A
and ( l l ) are the radial matrix elements. The KiT
coefficients are defined by Eq. (25) and they obey the rela-
tions

~m ~m ~ —m
IL LI IL

From the properties of the 3jm symbols we obtain

(B5)

I I

u '„'.
iL

=0 if 1 i+1, +1=(odd)or i&+i@+1=(odd),

Introducing the expression for tp from Eq. (26} and ViL

from Eq. (24) into the right-hand side of Eq. (B3) we get
I I

U~1~2
( 1 )L(~f )

—1/2

J1 J2 J3
& jimilj2m2IJ3m3 & =( —I) '(jij2j3) p () p

J1 J2 J3
X —m1 m2 m3

(A2)

and
I I

U ' '.
iL

=0 if m', +mzAm, +m2 .

(B6)

(B7)

The 3jm symbol is zero if j, +jz+j3 =(odd) or if From Eqs. (B4}and (B5) we have
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(BS)
v, v,';K I aj
v v'; IIL j

Using Eqs. (84), (85), and (A3) we get

1 2 1 2U...,;IL (89)
I
vv' j

v1v1', 11L1 v2v2', 12L2 v v; I&+1LI(..+1

~ig ~2g ~Kg

where if v= [nlm I then v= [nl —m I. Using Eqs. (84),
(A6), and (BS) we get the third symmetry relation

1212U. .;IL U ..I
(810)

From the last two relations we get two more symmetry
I I

relations for U ' ',
1 2

We used the following notations:

r l2) =l2( (22 (2lr

[lL I
= l, L „l2L2). . . ) l~+(L~+, )

r
I) I I I» J =&i&&~~2&2~. ~~K~K ~

(C2)

(C3)

U 1 2

V1 V2

U 1 2

V1 V2

1 2

V1 V2

V1 V2

(811)

(812)

~jg E . I +E 'I' E In. l. ng g

The a are integer numbers. For K=O the W symbols
reduce to the U symbols

I I

We list below several useful expressions of U ' '.
IL for

1 2

some particular values of the indices.

I I

V V V V
(C4)

nOOn&12 m2 (813)

XJ l l' (n, l, ~r 'inO(nO)ir '~n2l2), (814)

From Eqs. (86) and (87) it follows that the W symbols
are nonzero only if

K+1
l, + lz + g l = ( even ),

j=1
K+1

l,'+I +sg li=(even),
j=1

and
XI(.l,' (n, l, ir 'inO)(n2l2ir 'inO),

m +m'=m, +m,' . (C7)

X g 5l L+ I) lL'(, l2m2i(L —m, elm, )
cr =+1

Based on the U-symbol symmetry relations Eqs. (BS),
(89), and (810) we get the following symmetry relations
for 8'symbols:

(CS)

X(n, l, ~r'~ns0)(n2l2ir ~n, 1) .

(816)

ve ve ' I a j ve ve 'K I

v v';tlLj v v';IILj (C9)

APPENDIX C: THK Wsymbols

The 8'symbols are a straightforward generalization of
the U symbols presented in Appendix B. They appear in
higher orders of perturbation and are defined as

I

v v'., IIL j
I IL j

where

V, V,';KIaj v v';Kfaj
v v „'IIL j v v ;IIL j

(C10)

where r lL J
= lz+, LLr+„—lzLz, . . . , 1,L&.

The most common 8' symbols through our paper are
I

for K = 1 and u& = 1 denoted simply by 8' ';, ,vg vg ILI L

Below we give the expression of this symbol for some par-
ticular values of indexes which occur through this paper:

where as usual if v= rnlm J th—en v= [nl —m I. For the
case where E +E, =E +E, we have

Ve V g V

(n, O~r'inl)(nl ~r'~n', 0)(n20ir imL)(mLir ~nzO)
~n

&
00n&00; !L!'L' ~ll'~LL'( ) ~2(l + ll g + ++nm nl mL n10 n20

where we used the binomial identity

I+m L+m 21g ~l+L ~l+L ~2(l+L)

(C11)

(C12)
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Using Eqs. (B16)and (B10) we get

n 00n lm A. AA A.

~n OOn 1m;ILl'L' ~l!' X ~L+aL'+a'(
o, o''=+1

XQEtLKt'L ~ (L+Om, p—lL —
1M lm, )(L+trm, —

ltt L' —lMl1m, ) .

and

( n, l lr'lng0) (n2L+trlr ln, 1)(nzL+ crlr ln, 1)

l+E L+ E 1 E 0
1 2 1 2 e g

(C13)

~ 'OO '1';iL1L = 2 ~l l+ &LL'+
o., cT'= +1

XQEClL' Kt'L (l'lu, Litt
—m, lm, )(Lm, —plL' —lttl1m, )

(n, l' r'ln, 1)(n, l' r' ln 0)(n2L lr ln 0)(nzL lr ln, 1)xg
n11' n2L n 1 n 0

(C14)

APPENDIX D: THE T AND B SYMBOLS

In this Appendix we introduce two new symbols related to the dipole matrix elements which are needed in the study
of electronic transition dipole moments. We start from the identity

s PY (r)=( —1)'+ g ( —1)"+ ' l+
o =+1 2

pq

l+0. 1 l

q
—m Yi+.,(r)s e, , (D 1)

where s is an arbitrary complex unit vector and e are the spherical unit vectors; eo =e„e+,= + (1/&2)(e +ie ). We
define the following T symbol:

I I

T."„'=&q..ls r1 q. .&, (D2)

where qr„(r „r2 ) are defined by Eq. (26). Using Eq. (D 1) we get

I I

T 1 2 —g ( 1) 1 1 ~ g ( 1)11+a)/2
2 2

1
1 1 1 1

m' m —m' —m 11 11 m —m
(n'l' Irln I )s e

1 1

A simple expression holds for the case v, = [ ng00]:

nlmn„l m„
oon" l I" =&1 —(n 1 lr lng08'e*

g x x x 1 3
(D4)

I I I

T ' '(~)=( —1) ' 'T ' '(~)
1 2 V1 V2

The B symbols are defined to be

(D7)

From the relation e*=(—1)~e, we obtain the follow-
ing symmetry relations:

I I I

T ' '( *)=(—1) ' '[
V1 V2

I I

7 1 2(g e) [T 1 2(~g)]e
V1 V2 V V

1 2

1 2(m)]n
V1 V2

(D5)

(D6)

where the asterisk indicates the complex conjugate opera-
tor. Combining Eqs. (D5) and (D6) we get the third sym-
metry relation for the T symbols,

(DS)

Using Eq. (D2) we get

12 T 12+T 21
V1 V2 V1 V2 V2V1

(D9)

12B21
1 2 2 1

(D 10)

It is clear from Eq. (D9) that the 8 symbols satisfy the
following symmetry relation:
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