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Ultrafast pulse interactions with two-level atoms
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An iterative predictor-corrector finite-difference time-domain method is used to solve the semiclassical
Maxwell-Bloch system numerically without invoking any of the standard approximations such as the rotating-

wave approximation. This approach permits a more exact study of self-induced transparency effects in a

two-level atom. In addition to recovering the standard results, for instance, for vr, 2~, and 4m pulses, several
.features in the results appear at the zeros of the driving pulse, where its time derivatives are maximum. Several
ultrafast-pulse examples demonstrate that time-derivative-driven nonlinearities have a significant impact on the

time evolution of a two-level atom system. Moreover, typical small-signal gain results are also obtained with

our Maxwell-Bloch simulator. We illustrate that these time-derivative effects can be used to design an ultrafast,

single-cycle pump pulse that completely inverts the two-level atom population. A pump-probe signal set is then

used to illustrate gain in the probe signal.

PACS number(s): 42.50.Md, 42.50.Rh, 42.50.Hz, 32.80.—t

I. INTRODUCTION

Nonlinear optical (NLO) devices are currently being ex-
plored for their applications in various systems associated
with communications, remote sensing, optical computing,
etc. However, as the size of the optical devices is pushed to
the size of an optical wavelength and less, the need for more
exact materials and response models is tantamount to the
successful design and fabrication of those devices. Most cur-
rent simulation models are based on known macroscopic,
phenomenological models that avoid issues dealing with spe-
cific microscopic behavior of the materials in such NLO de-
vices. Inaccuracies in the simulation results are then exacer-
bated as the device sizes shrink to subwavelength sizes and
the response times of the excitation signals surpass the re-
sponse times of the material. There are laser sources cur-
rently under development with submicrometer wavelengths
that are pushing the boundaries of the subfemtosecond re-
gime. Phenomenological nonresonant models lose their abil-
ity to describe the physics in this parameter regime; hence,
they lose their accuracy there. Quantum-mechanical effects
begin to manifest themselves; the simulation models must
incorporate this behavior to be relevant.

The problem of accurate numerical modeling of NLO de-
vices has been subject to increasing interest in recent years.
Since the most interesting nonlinear phenomena are transient
and superposition is not available, it is natural to try to carry
out this modeling directly in the time domain. For this reason
the finite-difference time-domain (FDTD) method is receiv-
ing intensive study (see, for example, [1—11]).In contrast to
the case for frequency-domain linear analysis, a single value
of permittivity e is completely inadequate to describe non-
linear time-dependent phenomena, and it is essential to
model the interaction of the electromagnetic field with the

material medium. To understand these small-distance-scale
and short-time-scale interactions, particularly in the reso-
nance regime of the materials and the associated device
structures, a first-principles approach is desirable. This in

turn requires quantum-mechanical descriptions of the elec-
tronic states available in the medium. Physical models incor-
porate all propagation effects such as dispersion and nonlin-
earity, with the proper physical linkages between them.

In this paper we utilize the Maxwell-Bloch system which
couples the Maxwell equations with a two-level atom model
for the polarization. The two-level atom has been studied
extensively in the past (some representative references in-
clude [12—21]) and has been used for pulse dynamical ef-
fects in recent guide-star applications [22—24]. The present
effort is different in that it combines a realistic material
model that is quantum-mechanically based with a full-wave
vector Maxwell's equations solver. The FDTD implementa-
tion of the Maxwell-Bloch modeling system is relatively
straightforward, but it also yields some interesting physical
consequences to which our paper is addressed. Both Fleck
[15] and Eilbeck and Bullough [17] have also solved the
Maxwell-Bloch system numerically, but in both cases the
method of characteristics was used. The latter involves the
simultaneous treatment of both forward- and backward-
propagating waves rather than solving the original Maxwell-
Bloch system directly. Fleck [15] further introduced a trun-
cated Fourier series expansion for the various terms in this
system, made a rotating-wave approximation, and then
solved the resulting system for the Fourier coefficients with a
finite-difference approach in the time domain. On the other
hand, Eilbeck and Bullough [17] integrated the equivalent
characteristic form of the Maxwell-Bloch system directly in
the time domain with a finite-difference approach. In the
same manner the FDTD approach solves the Maxwell-Bloch
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system directly in the time domain, but it invokes neither the
rotating-wave approximation nor the decomposition into
characteristic waves.

Several examples will be presented which will illustrate
the advantages of the self-consistent microscopic materials
and macroscopic electromagnetics response model repre-
sented by the coupled Maxwell-Bloch system. These will
include configurations that produce ~, 2m, and 4m self-
induced transparency (SIT) effects. These problems depend
intimately upon the quantum-mechanical effects associated
with the two-level atomic system model; the SIT results are
not realizable with purely phenomenological macroscopic
material models. The model includes nonlinearity, disper-
sion, dissipation (or amplification), saturation, and resonance
effects. The one-dimensional versions of these SIT problems
have known rotating-wave and other approximate solutions
which are used to guide and validate the present numerical
analyses. New features present in the full-wave solutions that
are absent in these standard approximate models are ex-
plained from first principles. It will be shown that the time
derivatives of the electric fields of the SIT pulses play an
essential role in the nonlinear evolution of the system. These
time-derivative features are then emphasized through the use
of ultrafast- (single-cycle-) pulse excitations. We use these
time-derivative characteristics of the two-level atom model
to design an ultrafast, single-cycle pulse that completely in-
verts the two-level atom population. Additional ultrafast
pulse examples will demonstrate that the time-derivative-
driven nonlinearities have a significant impact on the nonlin-
ear evolution of the two-level atom medium.

We also consider small-signal gain conditions which are
obtainable from the two-level atom model. Known [25] re-
sults are recovered. We then simulate a pump-probe configu-
ration. We design a pulse set that uses an ultrafast, single-
cycle pulse to pump the medium into an inverted state; a
trailing probe pulse then experiences the expected small-
signal gain.

II. THE MAXWELL-BLOCH SYSTEM

The starting point for the implementation of linear or non-
linear electromagnetics is the Maxwell equations

Oj,H= — V XF,
Pp

1 1
B,F= —V XH ——B,P.

Ep 6'p

W(r, t) exist in a Hilbert space M with inner product (, ). It
evolves in time according to the time-dependent Schrodinger
equation

i@8,+=H%', (3a)

where the Hamiltonian operator H =Ho+ eF. Q is composed
of an unperturbed part H& representing the behavior of the
atom when no field is present, and a dipole interaction term

H;„, = eF. Q. The expectation value of the position operator
is then

(3b)

The unperturbed Hamiltonian Hp can usually be assumed to

be a diagonal operator. The determination of q(r, t) requires

determination of 'Ir ( r, t) .

It is often more convenient to use the density-of-states
operator p in place of the state vector W. Then the Schro-
dinger equation is replaced by the Liouville equation

if&8,p = [H, p], (4a)

in which the commutator operation [A,B]=AB—BA. The
expectation value of the displacement operator now becomes

8tp= fi 'Hp, (5)

where Tr represents the trace operation (sum of diagonal
elements).

In the FDTD method the spatial derivatives in (1) are
replaced by discretized operators acting on samples defined
on a spatial grid. The resulting system of ordinary differen-
tial equations is then integrated stepwise in time. This re-

quires the evaluation of the polarization P at each time step,
and hence the solution of the additional system of ordinary
differential equations (3) or (4). An important consideration
in integrating large systems of differential equations over a
very large number of steps is that the solutions should remain
stable.

The Schrodinger equation (3) and the Liouville equation
(4) can be integrated by identical methods provided that the
Hamiltonian H is expanded in the adjoint representation of
the Lie algebra SU(n), where n is the number of discrete
energy levels of the quantum system. For the Liouville equa-
tion this leads to the system

The polarization P is given by

P(r, t) = N„, eq(r, t), — (2)

where N„, is the density of polarizable atoms and —e is the

electronic charge. For the classical description q(r, t) is the
displacement from equilibrium of an electron in the atom at

the equilibrium position r. In quantum-mechanical descrip-

tions of the atom, the displacement q(r, t) is expressed as the

expectation of a time-independent operator Q with respect to

the quantum state 4'(r, t). In particular, let the state vector
6 COp

/1
0

o )
(6a)

where p is the (n —1)-dimensional vector representing the

operator —i p and H is the n X n antisymmetric adjoint ma-
trix representation for the commutation operation [—iH, ].
All the parameters have real values in this representation.

For a two-level system we have n = 2, and we can assume

a single vector direction a for both the field F, and the po-

larization P, reducing these quantities to scalars. With

Q = Qa, we the have the explicit representations
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(0
0 (6b)

Maxwell equations.

where coo is the atomic transition resonance frequency from
the ground level to the excited level. The constant qp is an
atomic length scale having a typical physical magnitude
qo= 10 'om. The nonlinear differential system (5) and (6)
reduces to

0 tHy — B~Fx,
Pp

1 1
8E = ——8H ——BPt x Z y t x

Fo 6o

P1 ' l(~ = ——8H-
Z

0

atomy agom y~p
P1+ p, . (11b)

Ep T2 6p

P2

P3 0

0 2A,
—20~ 0

P2 (7)
Bloch equations.

where, if the dipole coupling coefficient y=eqo, the Rabi
frequency

1
~tp1= P1+ ~OP2 ~

2
(12a)

1 y
tp2 ——~op1 —

T P2+~& F~P3
2

(12b)

P2

0 0)p

0 P2

1
0

T2
0

1
0 — 0

T2

1
0

Tl

P1

P2

P3 P3o

(9)

where T1 is the excited-state lifetime, T2 is the dephasing
time, and p3p is the initial population difference in the sys-
tem. Note that the specification that p3p= —1 represents all
the atoms initially being in their ground states.

We take the incident electromagnetic field to be a uniform
plane wave that is propagating along the z axis and is polar-

ized along the x axis; i.e., E(r, t) =E (z, t)x and

H(r, t) =H (z, t)y Thus the spatial o.rientation of the dipole

is a =x. This means the polarization is P = P x, where

p (r)= &" 'Ypi(t)—(10)

The one-dimensional Maxwell-Bloch system resulting from
this reduction of Eqs. (1) and (9) is thus as follows.

The terms p1, p2, and p3 satisfy the relationship

pi+ p2+ p&
= 1 and represent, respectively, the dispersive or

in-phase component of the polarization, the absorptive or
in-quadrature component of the polarization, and the frac-
tional difference in the populations for the two energy levels.
The near-resonant behavior of nonlinear systems cannot be
meaningfully discussed unless dissipative effects are taken
into account. The usual method of achieving this in simple
systems is to include phenomenologically obtained diagonal
terms consisting of characteristic decay rates in the Liouville
equation (7). In particular, we have

y 1
~ p3= —

2& &.p2
—

T (p3 p3o). —
1

(12c)

This system of equations can be discretized using finite dif-
ferences in severa1 different ways. The approach we have
developed to date to be the most efficient and well-behaved
numerical algorithm is based upon a predictor-corrector it-
erative scheme; it is discussed in detail in the Appendix. This
approach allows solution of all of the equations in the system
with each time update.

We note that the rotating-wave approximation (RWA) has
been used effectively to describe self-induced transparency
effects in a two-level atom. There are many examples of SIT
studies [12—21]. Our system of equations agrees with Eil-
beck and 8ullough's system [17] when p, ~ + r, ,

p2 —
&
—I 2, p3~+ r 3, and y+ —p. Their ground state

p3= —1 corresponds to our specification that p3p= —1. In
terms of the density-of states matrix p discussed by
Yartv in [20], we have p, = p, 2+ p2, =2 Re{p&2),
p2=E(pt2 p2$) = —2 1m{p~2)=+2 1m{p2t), and p3
= p22

—p». We have chosen the present form (9) primarily
to maintain real number for all the quantities throughout the
numerical simulations.

The steady-state nature of the nonlinear behavior obtained
from this system can be characterized as follows. Since
P = —N„, yp1= Ep+E, the index of refraction satisfies
the relation

a~om yP1
n =1++=1

&o&

Consider the case of equilibrium for a slowly varying pulse
in the absence of loss, so that we can assume
that Ez .Eeq const. Then 0 = ~p p2 and 0 = —cu p p
+A~ p3, so that pz" =0 and p3 =(coo/AR")p', . There-
fore, with p, + p2+ p3

——p3[1+ (Ap/coo) ]= 1 and

(AP/coo) (& I, we obtain
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N„, y
epE,q

[I+(n' /Cd ) ]eo(fi Cdo)

xatom y atom y
eO( A, CdO) 2 eO(6 Cdo)

1 f N„, ycdo)BE= —BH+
E i Eo

P2 (14a)

which shows that the index of refraction is dependent on the
square of the equilibrium electric-field value. Thus the two-
level atom has Kerr-medium characteristics when equilib-
rium is reached.

On the other hand, for an extremely short pulse in which

T„(T1,T2, we must investigate the transient behavior of the
system. In particular, we are interested in the impact of the
time derivative of this pulse on the behavior of the two-level
system. When T„(~T, , T2, one has from Eqs. (11) and (12)
that

comes a constant; i.e., 8, ps -0 from Eq. (14d) and

B,ps-0 from Eq. (12c). Note that if a second pulse were to
interact with the resulting two-level atom medium it would
have to propagate in the presence of these oscillating p1 and

p2 terms.
Finally, the FDTD Maxwell-Bloch simulator can also re-

cover standard small-signal gain conditions. This will allow
eventual investigations of ultrafast-pulse propagation in am-
plifiers and microcavity lasers. The small-signal gain coeffi-
cient can be obtained from a R%A of the Maxwell-Bloch
system. In particular, in the limit ct)pT2~) 1 and coR,b +(cop,
where the Rabi radial frequency

yEp
~Rabl (16)

1 cop
BqtEx BgEx atom yap pp1 T x2 2

T p2

consider the time derivatives of Eqs. (11a) and (12a). These
yield the relations

2 2 2y'
Bt P1+ ~pP1= ~ ExP30 J

(2y 3 i2y
B, P2+ ~0+ ' E P2 + P3BtE

(14b)

(14c)

2 1
+atom yP0~0P1 / T i2

q M0T2)

2
+atom yP'p~pP1

&, P3+'
~ E~ P3= t CcdopiE~ P2~cEx]
fz, g(6 (14d)

CO0

Bt P1+ —BctP1+ ~pp1 = 2 Ex~pp3 p2
T2 6 T2

It is evident that the nonlinear behavior is dependent not only
on the electric field E, , but also on its time derivative
c/, E, . As discussed in Refs. [26—29], contributions to the
polarization of the medium from time-derivative behaviors
are known to occur even in linear media. The relations
(14a)—(14d) indicate that when E -0 and c/, E 4 0 the time-
derivative terms completely dominate the evolution of the
nonlinear two-level system. In particular, when E -0 the
rate equation (12c) yields B,P3=0 and the oscillator equa-
tions (14b)—(14d) give

B, p1+ copp1-0,

y
Ex~0p3 (17b)

2
2 2

2 + ~ ' E0 +atom yp p~pp10 (18a)

y
P 10 ~ 2 Ep T2P30

fi,
(18b)

If we make the RWA so that (E,p i,p2)
-exP [i(kz —cdr)](EO, Pio, Pzo) and P3-Pso, we obtain
from (17a) and (17b) the expressions

2y
BtP2+~pP2-

&
P3BtE.

2y
B, P3- —

~ P2B E, .

(15b)

(15c)

2
GOp

k — 1 —i
C2

~ 2N,, „
ZP30 ~ (19)

and hence its imaginary part

which combine to give the approximate propagation constant

Together with (12c), Eq. (15c) means that p3 should act like
a cubic function near the points where E -0 and should be
asymmetric in value with respect to those points. Moreover,
Eqs. (15b) and (15c) show that the time-derivative behavior
will sustain the nonlinear process through these null-field
points. Finally, when both E, and c/, E, are zero (after the
pulse has passed through a region of two-level atoms), we
find from Eqs. (15a)—(15c) that the pi and p2 terms oscillate
at the level frequency cup and that the level density p3 be-

~2x„. y'~ ~0T,
& m p3o t„= p3o g.

Fp
(20)

The resulting small-signal gain coefficient g, which occurs
when p30=+ 1, agrees with known expressions [see, for in-

stance, Ref. [25], Eq. (8 5.14)]. Of course, the FDTD
Maxwell-Bloch simulator will contain all of the dynamics
including those associated with the R%'A. As will be shown
below, the initial conditions can be arranged in an essentially
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sinusoidal input-signal configuration to test the recovery of
the expected small-signal gain exp(gL) in the electric field
or the corresponding intensity gain exp(2gL), where L is the
length of the gain medium. Moreover, the simulator allows
one to explore the behavior of a gain medium in a variety of
other pulse configurations. We note that, in contrast to Hawk-
ins and Kallman's approach [30), which incorporates gain in
the FDTD approach by treating the gain medium as a phe-
nomenological negative-conductivity region, our FDTD
Maxwell-Bloch simulator results can be connected directly
to the parameters associated with the two-level atoms.

III. NUMERICAL RESULTS
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We will first compare the FDTD SIT results with those
obtained from the approximate RWA analytical arguments. In
particular, it is known (e.g. , [21]), that the pulse

0.00 50.00

Distance ( p, m )

150.00

E (z, t) =E,(z, t) sin( cut), (21)

which has as its envelope

E (z, t) =Ep sech[(t —z/U)/r~], (22)

will produce SIT results if that envelope E has a pulse area

FIG. 1. For the SIT 2m pulse the electric field propagates as a
solitary wave in the two-level atom medium. All of the atoms are
taken to be initially in the ground state; this corresponds to the
initial population profile p30

—1 as shown in this figure. The
simulation region is 150 p, m long; the two-level atom medium ex-
tends from 7.5 to 142.5 p, m. The normalized (to E „)electric-field
profiles [E,(200 fs), E,(300 fs), and E, (400 fs)] at the simulation
times t= 200, 300, and 400 fs are shown.

f oo y y f co

A~„„,= —E,(t')dt'= —Ep sech (t'/rp)dt'
J

A,Ap„l„ 1 2' p Ap i„
yr~7r arctan (sinhu)~+', p 0.999 942yzr

yEO
7p 7T (23)

Ap„l„=4.2186' 10 2' (26)

that is an integer multiple of 2 ~. The constant
A=h/(2m)=1. 0546X10 . A 27r pulse gives a complete
transition of the two-level system from its ground state to its
excited state and back to its ground state while maintaining
the shape of the excitation pulse. This transition occurs in
one Rabi period T R,b; =2~/coR, b;. Thus we can rewrite the
envelope pulse area as

A „)„
277

~Rabi +p
(24)

For all of the SIT simulations discussed below, we begin the
pulse propagating into the FDTD mesh at the left boundary
(which is identified with z = 0) with the initial time history

E (z = O, t) = Ep sech (10I ) sin (tu, t), (25)

where I = [t—(T„/2)]/(T„/2), T„being the pulse duration.
Comparing with (22), the constant r= T„/20. We take the
carrier frequency to be equal to the chosen level transition
frequency, cu = cup = 2 7rfp, fp = 2.0&& 10' s '. The pulse du-
ration is finite and set equal to T„=20Tp= 20/f p= 100.0 fs.
With (22) and (25) this means that we have chosen
r= 1/fp. Consequently, if the coupling coefficient
y= 1.0X 10, the amplitude of the SIT pulse (21) neces-
sary to achieve a specified pulse area is

Therefore a 2 m pulse requires a maximum electric-field am-

plitude Eo =4.2186' 10 .
The simulation region is taken to be N„ll, cells long. The

pulse initially propagates in a free-space region, then enters
the two-level atom medium for a specified distance, and fi-

nally exits the medium into another free-space region. For all
of the simulations noted below, the number of atoms in the
two-level medium is set equal to N„, , = 10 m . The cell
size Az=) 0/200=7. 5 nm was chosen to ensure very accu-
rate numerical results. The resulting time step is set equal to
half the Courant-condition value; i.e., 5 t = 0.5 X 6zl c
=1.25X10 ' s, where c=3.0X10 m/s is the speed of
light, the speed of the signals in the free-space region. In
order to meet the SIT criterion that Tl, T&&) Tp, we have set
Tl = T2 = 1.0X 10

With the indicated parameter choices, the 2~-pulse simu-
lations essentially recover the known analytical results. The
2m. -pulse simulation region was taken to be 150.0 p, m or
N„ll, = 20 000 long. The left and right free-space regions are
7.5 p, m wide. The two-level atom medium is 135.0 p, m long.
A Tp=20TO pulse in free space is 30.0 p, m long spatially.
The numerically predicted electric-field profiles E for the
simulation times t= 200.0, 300.0, and 400.0 fs are shown in
Fig. 1. Also plotted in this figure is the initial ground-state
distribution of p3, i.e., p3= p3O= 1. It is clear from this
figure that the SIT electric field propagates as though it were
unaffected by the presence of the nonlinear medium, i.e., as a
solitary wave. A closer look at the electric field and the p3
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FIG. 2. The SIT 2~ pulse completely excites and deexcites the
two-level atom medium locally. The normalized electric-held

(E, 2 ) and population (p32 ) profiles are given for the simulation

time t = 187.5 fs in the region 25.0—55.0 p, m. The Aattenings of the

population profile where the time derivative of the electric field is
maximum or minimum are apparent.

profiles at t = 187.5 fs is given in Fig. 2. This agrees with the
known analytical results except for the additional cubic
polynomial-like features that appear in the p3 profiles. The
medium is completely inverted by the leading edge of the
electric-field pulse; the two-level atoms then decay by stimu-

lated emission back to their ground state, giving the original
excitation energy back to the pulse. The cubic-polynomial
features occur at the null-field points of the pulse as expected
from the transient analysis of the preceding section. The tran-

sitions between the ground and excited levels represented by

p3 eginbegin to slow and may even be reversed locally at these
null-held points by the time-derivative behavior of the field.
We note that any 2' effects, which are absent in the RWA,
would also manifest themselves at these points. The single-
cycle-pulse cases introduced below substantiate the conclu-
sion that these features are associated with the time-
derivative behavior.

Also considered were the ~-pulse and 4m-pulse excita-
tions. The resulting electric-field and p3 profiles for these
cases are shown in Figs. 3 and 4, respectively. The maximum
electric-field value for these two cases is, respectively,
E = -'E =2.1093' 10 and Eo =2E0 =8.4372X 10 . As
known from analytical results, the ~ pulse completely in-

verts the medium. Similarly, the 4~ pulse shows the ex-
pected two symmetrical transversals between the ground and
excited states. However, in all cases the null-held, time-
derivative features are present.

In order to emphasize these transient features further, we
have also investigated the response of the two-level atom to
ultrafast pulses which have no carrier. Such a pulse could be,
for example, a single cycle of the multiple-cycle 2~ pulse.
Originally, it was expected that we would see little to no
effect from these pulses since there was little energy at the
transition frequency in such a broad-bandwidth excitation.
Moreover, it was also expected that any significant changes
in the medium's properties would occur only after a time

FIG. 3. The SIT 7T pulse completely excites the two-level atom
medium locally. The normalized electric-field (E ) and popula-
tion (p3 ) profiles are given for the simulation time r = 187.5 fs in

the region 25.0—55.0 p, m. The Aattenings of the population profile
where the time derivative of the electric field is maximum or mini-

mum are apparent.

span greater than several cycles. The results were quite sur-

prising. It was found that the state of the two-level atom
medium could be completely controlled instantaneously with
the ultrafast pulses in a fashion similar to the carrier re-
sponse.

Because the single-cycle sinusoid has a discontinuous de-
rivative at its end points, a great deal of numerical noise was
geneenerated in those original simulations. To probe the medium
more effectively, we have used the excitation pulse
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E -040
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-0.80

-1.00
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FIG. 4. The SIT 4~ pulse completely twice excites and deex-
cites the two-level atom medium locally. The normalized electric-
field (E, 4 ) and population (p34 ) profiles are given for the simu-

lation time t = 187.5 fs in the region 25.0—55.0 p, m. The flattenings

of the population profile where the time derivative of the electric
field is maximum or minimum are apparent.
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FIG. 5. A designed ultrafast pulse can completely excite the
two-level atom medium locally. The normalized electric field

(E, sp) and population (p3 sp) profiles are given for the simulation
time t=12.5 fs in the region 5.5-8.0 p, m. The flattening of the

population profile where the time derivative of the electric field is
maximum is apparent.

where the time signal

0 for t(0
f(t) = t —4.201 355x(l —x')' for O~t~T„(28)

0 for t~T

and the term x = (2TIT~) —1. This pulse has continuity in its
first two derivatives at all points; it is a bipolar pulse which
has zero area. To localize the spectrum of this broad-
bandwidth pulse about the transition frequency fo, the total
pulse width is set equal to the width of one cycle of the
sinusoid in (21); i.e., T„=5.0 fs. The maximum of the spec-
trum of (27) then occurs at fo . This pulse propagates through
the two-level atom medium with only minuscule changes.
However, it has a profound impact on the state of the atoms.

Because the pulse (27) with T„=5.0 fs is much smaller in

length (1.5 p, m) than the SIT pulses (30.0 pm), the simula-
tion region for these ultrafast-pulse cases was taken to be
only Nd&, = 2000 or 150 pm in length. The resulting
electric-field and ps profiles for the short-pulse (27) excita-
tion with E'o = 8.205' 10 at the simulation time t = 12.5 fs
are shown in Fig. 5. The corresponding p j and p2 profiles at
the same time are given in Figs. 6 and 7, respectively. This
choice of Eo was engineered to cause the cubic feature to
occur at the null-field point crossing of the electric field. A
larger (smaller) value of Eo causes this feature to occur at
positive (negative) p3 values. This pulse has completely in-
verted the two-level system, despite the pulse area being zero
and the frequency content at f„being only a small portion of
the total energy content of the pulse. In contrast to the SIT
pulse which might be classified as resulting from an inte-
grated effect over the entire wave form, the present result
occurs because the time derivative has a large instantaneous
value. This is immediately confirmed by comparing the E,
p&, and p2 profiles directly when the E field is nonzero.
One finds that pz follows E instantaneously so that the peak

FIG. 6. The p, profile corresponding to the ultrafast-pulse case
shown in Fig. 5 is given. After the initial variations due to the pulse,
the medium settles into oscillations at the resonance frequency of
the excited state.

in p &
occurs at the peak in 8,E . The shape of p& coincides

over this interval in time with the behavior of 8,E between
its two minima. In Figs. 6 and 7 note that once the pulse has
turned off both p& and p2 oscillate at the transition frequency

fo as predicted by Eqs. (14b) and (14c). Also note that with
the indicated choices for T& and T2 the lifetime of the in-

verted state is approximately 10 T .
We have also considered using the same pulse shape to

cause, like the 4~ SIT pulse, two transitions between the
ground and excited states during T . This possibility was
explored by simply increasing the magnitude of the time
signal exciting the two-level system. The best behavior we
found is shown in Fig. 8 in which the electric-field and pz
profiles for the short-pulse (27) excitation with

EO=2.272' 10' at the simulation time t= 12.5 fs are given.
It was found that it is not possible to achieve two complete
symmetric inversions with only the time signal (27). We
were only able to obtain about a 70% inversion in each
swing of the pulse. This is due to the derivative nature of the
effect. The medium is responding rapidly to the variations in
the pulse shape and its time derivative. A pulse would have
to be designed which incorporated two derivative maxima to
achieve the desired effect.

These single-pulse results indicate that it may be possible
to achieve multiple inversions if enough time were provided
so that a single pulse could achieve the first inversion and a
later pulse of the same form could be used to achieve the
next inversion, and so on. To test this possibility, we consid-
ered the excitation E,(g=0, t) =Eo[f(t)+ nf(t mT )], —
where m=0. 96 and m=3. The simulation region was in-
creased to N„», =5000 to accommodate the larger overall
pulse length. The resulting electric-field and p3 profiles for
the excitation with E0=8.235&&10 at the simulation time
t=62.5 fs are shown in Fig. 9. The leading pulse completely
inverts the two-level atom medium; the second pulse then
completely deexcites it. The need for the amplitude of the
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FIG. 8. A designed ultrafast pulse can excite and deexcite the
two-level atom medium locally. The normalized electric field

(E, tJo) and population (p, Uo) profiles are given for the simulation
time t= 12.5 fs in the region 5.5—8.0 p, m. The Aattenings of the
population profile where the time derivatives of the electric field are
maximum or minimum are apparent.

second pulse to be slightly lower than the original value
results from the medium still having energy residing in p&
and p2, which were set into oscillation at fo with small
amplitudes by the initial pulse. This has been tested with a
longer set of these pulses with the result that one can control
the final state of the two-level atom medium with an engi-
neered sequence of pulses.

For the gain validation case we considered an initial pulse
, (27) which has a unit amplitude, Fo= 1.0, and the time sig-
nal

where the term x = (2 Tl T„)—1. This represents a
continuous-wave sinusoid at the transition frequency after a
smooth turn-on over 5 periods. The simulation space was
shortened to N„»,=2000 or 15.0 p, m to accommodate the
larger number of time steps (150000) that were run, and
hence the associated data storage and simulation costs. The
number of atoms and the coupling constant were held fixed
at N,«~=1.0X10 and y= 1.0X10 . The length of the
two-level atom medium was fixed at L=9.0 p,m. The me-
dium was assumed to be initially in its inverted state so that
p30=+1.0; this provides the appropriate initial conditions
for gain to occur. The time constants were set to
Ti=1.0X10 ' s and T2=5.0X10 '" s. This gives the
frequency —relaxation-time product fo T2 = 10.0 or
cop T2 = 62.8, which satisfies the condition that led to the
small signal-gain coefficient (20). The smaller (than previ-
ously assumed) value for T2 was chosen for two reasons.
First, the gain coefficient is small: g=0.0225 p, m ', and
secondly the time for saturation effects to occur is reason-
able: 10T2= 500.0 fs which corresponds to 40000 time steps.
Thus with 150 000 time steps the simulation is well into the
saturation region. The unit-amplitude initial electric field is
so small that the gain medium is only minutely perturbed by
the presence of the pulse. The expected amplitude and inten-
sity gains away from the saturation region are, respectively,
exp(gL) = 1.224 and exp(2gL) = 1.498. In the saturation re-
gion the gain coefficient becomes half of its peak value [31];
hence the gain values become exp(gL/2) =1.1064 and exp
(g L) = 1.224 respectively.

The intensity of the electric field was measured as a func-
tion of time at ten cells before and after the medium. Only
every tenth time value was collected since the data manipu-
lation become prohibitive with the available computer plat-
form. The envelopes of the normalized intensities at these
points are compared in Fig. 10. The solid (dotted) line rep-
resents the normalized intensity values after (before) the me-
dium. Gain is evident as is the switch to saturation which
occurs in time at 10T2 after the output field has reached the
observation point. The peak value of the gain is 1.483 and
the saturation value is 1.223. These results are in reasonable
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impact the results. It was found that p must be a small num-
ber to avoid depleting the number of atoms in the inverted
state. Even a value of p = 0.01 caused the medium to relax at
late times to a state with p3-0.0 yielding very little gain. A
peak gain of the output signal relative to the input probe
signal intensity of 1.1615 was obtained at earlier times. The
amplitude was then scaled down to p= 1.0X 10 . Although
some perturbations of the late-time p3 values continued, the
results were much closer to the undepleted, sinusoidal-pump
case.

ulsesThe delay time between the pump and probe pu ses,
Tdelay affects what kind of medium the Probe Pulse exPeri-
ences. The longer the delay, the more time the two-level
atom medium has to relax into its equilibrium state. For
instance, with the indicated T& and T2 values, the p& and

arameters have an e-folding time T2 which is much
larger than the pump-pulse on time Tp . How
Td, l,y

= 3.0Tp as it was in the ultrafast-pulse multip e-
inversion case, the small-amplitude probe pulse will experi-
ence a strongly perturbed medium with very large values of

and p2. It was found that the system did settle into thep l an p2. was
saturation regime yielding a small-signal gain vvalue but the
initiation o e prof th robe-pulse effects in the output intensity
was not readily observable because the corresponding ampli-
tudes were smaller than the fields arising from the associated
relaxation of the medium. However, by increasing the delay
time the system has time to settle. Figure 12 provides a
comparison of the envelopes of the normalized input and
oupu inet t t nsities at the same locations as the sinusoid gain
case for inPut Pulses with Tdelay 20Tp 2 an
T =40T =4.0T2. It is clearly seen that the input probedelay p 2

ulse experiences different gain conditions d p
'

ge endin on thepu se
onetheless,sae ot t f the inverted two-level atom medium. o

all of the cases relax to the same saturated gain values a a e
times. The late-time saturated gain value of the intensity is
1.2073, slightly lower than the value obtained in the sinusoi
case. This results from the medium having approximately

FIG. 12. Using an ultrafast pump pulse, the two-level atom me-
d' b inverted as shown in Fig. 5. A time-delayed, trailing
probe signal will then propagate in the resulting gain medium. e
results for this pump-probe configuration are shown. The pump
pulse has a time extent of T„=5.0 fs; the probe pulse is a sinusoid
at the transition frequency, The envelopes of the normalized output
intensity measured just after the gain mediu ght4o ght

'
m I . ;I p) are

compared with the corresponding input intensity envelopes mea-
sured just before it (I&,«.4p ', Ii p 2p for p p, for robe ulse delays of 40
Tp and 20T„.

93.17% of the atoms still in their inverted state at these late
times. With N„, ~0.9317X N„, in Eq. (20), the saturated
gain value of the intensity is 1.2072, very close to the ob-
served result.

IV. CONCLUSIONS

Using a finite-difference time-domain approach to solving
the semiclassical Maxwell-Bloch system, we have studied in
a more exact manner (without removing the carrier wave)
self-induced transparency effects in a two-level atom me-
dium. Standard SIT m, 2', and 4' results were reproduced.
Features appeared at the null-field points and were identifie
as being associated with the maxima of the time derivative o
the electric field. These features are not present in standard
approximate solutions to this problem.

These time-derivative effects were emphasized further by
considering a variety of ultrafast-pulse cases. It was demon-
strated that during ultrafast-pulse interactions with a two-
level atom medium a single-cycle pulse can be designed that
completely inverts the two-level atom medium. A multiple-
pu se1 train was given that can completely invert the medium
from the ground to the excited state and then comp e e y
reverse the process. These results confirm that the time-
derivative-driven nonlinear properties of the two-level atom
medium have a significant impact on the time evolution o
this system in the limit of ultrafast pulses.

We also used the FDTD Maxwell-Bloch simulator to re-
cover expected small-signal gain results for sinusoidal input
signals. The designed ultrafast inversion pulse was then com-
bined with a sinusoid to form a pump-probe signal set. It was
illustrated that a two-level atom medium could be inverte
by the leading ultrafast pulse to yield a gain medium for the
trailing sinusoidal probe pulse.
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Full device and system integration complexities are pres-
ently being introduced into our model by considering the
multilevel atom (for instance [32], and [33])and multidimen-
sional (spatial) extensions of the present results. We will be
investigating several different amplifier and microcavity la-
ser configurations with the resulting multidimensional FDTD
Maxwell-Bloch simulator. These current modeling efforts
will be reported in future presentations.
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APPENDIX: FDTD SOLUTION OF THE MAXWELL-
BLOCH SYSTEM

Practical implementation of the quantum-mechanical
Bloch models in large-scale FDTD models of nonlinear elec-
tromagnetic devices requires attention to be paid to a number
of features, which are now being actively researched. Since
the atomic model is computed at every time step for every
spatial point, it will form the dominant component of the run
time of the code, and must therefore be made very efficient.
This is assisted by the form of the equations being first-order
differential equations, which means the state variables can be
simply updated at each time step from their values at the
previous time step. However, practical devices require the
tracking of pulses lasting for many optical cycles, over time
scales of many pulse widths, implying a very large number
of time steps. Under these circumstances, it would be desir-
able to remove the carrier oscillations explicitly from Eqs.
(3) and (4); this is traditionally done by means of the
rotating-wave approximation, which is equivalent to a
slowly-varying-amplitude approximation, but this becomes
progressively more complicated in n-level systems where
n)2. A better method is Fourier expansion of the field and
the density matrix in harmonics of the nominal carrier fre-
quency, with coefficients which are also time dependent, but
on a much longer time scale than the carrier oscillations. The
Fourier series can be truncated at some arbitrarily chosen
harmonic of the fundamental carrier frequency, which need
not be particularly high in practice. Also, as noted above, the
near-resonant behavior of nonlinear systems cannot be mean-
ingfully discussed unless dissipative effects are included.
This makes it impossible to use the traveling-wave Ansatz,
because the wave must decay as it propagates in the presence
of dissipation.

As noted previously, we have avoided some of these dif-
ficulties for the moment and have kept the carrier (if it exists)
in our pulse throughout the calculations. We introduce the
standard staggered-grid finite-difference discretizations of
the spatial and temporal time derivatives into the continuum

p, (z, t) =exp[ —t/T2]ut(z, t),

p2(z, t) =exp[ —t/T2]u2(z, t),

ps(z, t) = p3u+ exp[ —t/T, ]u3(z, t),

(Ala)

(A lb)

(A 1c)

one obtains the electric-field and two-level atom equations in
the form

1
B,E = ——B,H +Aui —Bu2.,

E'O
(A2a)

&au i = &Ou2, (A2b)

8,u 2
= —clou i + C+Exu 3+DE~, (A2c)

B,u3= —C E p2, (A2d)

where the time-varying coefficients

N„, y t~
A(t) = exp

0T2 T2 )
(A3a)

Nafom y ~o I'

B(r) = exp
Ep T2

(A3b)

I'1 1i
C+(r) =2—exp —t

fL
~ Ti T2)

(A3c)

y (1 1~
C (t) = 2—exp —t

t, T2 Ti)
(A3d)

p3o
D(t) = exp~ —'.

Ti I( Ti)
(A3e)

equations (1la) and (1lb). This means the electric-field com-
ponents and the magnetic-held components are spatially
separated by Az/2 and temporally separated by At(2. We
associate the magnetic-field component as being at the
"edge" of the cell in the grid; the electric-held component
with the "center" of the cell. As a consequence of where the
polarization appears in the Maxwell's equations, we associ-
ate all of the material properties with the location of the
electric field. This means we will treat all of the p;,
i =1,2,3, as being located with the electric-field values.
Many variations of these choices have been tried; the follow-
ing has been the most accurate and efficient of the ap-
proaches we have tested to date. We treat the coupling coef-
ficient y as being associated with the cell center, the electric-
field location. This provides a simple manner in which to
specify where the two-level atoms are in the simulation re-
gion. Notationally we label, for example, the discrete values
of the electric field simply as E,(md z, nest) —=E,(m, n) .

Because the exponential decay terms make the Bloch
equation numerically stiff, we analytically manipulate the
equations before discretizing them by factoring out this ex-
ponential behavior. Also, we recognize analytically that the
presence of the constant p3o term in the p3 equation may
cause some numerical integration difficulties unless it is mul-
tiplied by a term that eventually goes to zero. Introducing the
quantities u;(z, t) through the definitions
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With the assumed positions for the discrete variables, the
magnetic-field equation is solved at the space steps (m
+ —,')br for the time steps (n+ ,')D-t. The electric-field and
the medium terms p&, p2, and p3 are solved at the space
steps mAz for the time steps

nest.

The discretized version of
the Maxwell-Bloch system that we have developed is of the
following form.

Maxwell equations.

Notice that there is a mixing of the next and current time-
step values in the Maxwell-Bloch equations. This form of the
equations does not allow a straightforward leap-frog time
integration, It is, however, amenable to a predictor-corrector
scheme.

Since the magnetic-field equation is updated at a time
different from the other terms in the system (A4), it is ad-
vanced in the standard fashion. The remaining system of
equations (A4b) —(A4e) is cast into the form

H (m+ 2, n+ z) =H, (m+ ,', n ——2) — [E,(m+ l,n)
PO~Z

U,
"' =U,' +AtF;(U", U"' ) for i=1,2,3,4, (A5)

E,(m—, n)], (A4a)

At
E,(m, n+ 1)=E,(m, n) — [Hz(m+ 2, n+ 2)eohz

—H (m —,', n+ ——,')] A(n—+ —,')-,' [ui(m, n+ 1)

+ ui(m, n) ]+B(n+ -,') -,
'
[up(m, n+ 1)

+ u2(m, n)]. (A4b)

Bloch equations.

ui(m, n+ 1)= u, (m, n)+ Atcoo-,'[u2(m, n+ 1)+ u2(m, n)],
(A4c)

uq(m, n+ 1)= u2(m, n) —IJ. tto& 2[ui(m, n+-1)+ui(m, n)]

+ Ar C ~ (n+ —,) -,
' [E,(m, n+ 1)+E (m, n) ]

[u3(m, n+ 1)+u3(m, n)]+D(n+ 2)).

(A4d)

u3(m, n+ 1)= u3(m, n) —AtC (n+ 2)(~ [E,(m, n+ 1)

+E,(m, n)] X —,
' [u2(m, n+ 1)+u2(m, n)]).

(A4e)

where the solution vector components U&=E, U2=u~,
U3 = u2, and U4 = u 3, and the functionals F; represent,
minus the stand-alone values U", the right-hand sides
of (A4b) —(A4e). The coefficients in F are updated and

then the values U"' are first set equal to their previous
time-step values U' in F giving the updated values (A5).
These values are compared with the values of U"' before
the use of (A5), and if the differences are larger than a speci-
fied value the process is iterated. We have found that the
process converges to give a difference of 0.001% between

the previous and new values of U"' within 3—4 iterations.
The updated values of p], p2, and p3, are obtained from the
inverses of the definitions of u&, u2, and u3 given by Eqs.
(Al).

Several other schemes were explored before the present
one was obtained. The main selection criteria used to differ-
entiate between the results of these various schemes included
satisfaction of the lossless-case constraint p&+ p2+ p3=1
and comparison of the predicted values of p3 after the SIT
2~ pulse had passed through the two-level atom medium.
The predicted value of p3 = p3o after the passing of the pulse
proved to be a sensitive measure of the numerical dispersion.
Errors in the residual levels of the electric-field and polariza-
tion terms prevent a complete return to the ground state from
the inverted state in the 2~-pulse case. The predictor-
corrector scheme not only produced the smallest errors in
these terms, but also required the least amount of discretiza-
tion. The choice of P /200 for the discretization was made to
give very accurate results. Acceptable results have been ob-
tained with a specification of Az=k/50 for many of the
cases we investigated.

[1]R. W. Ziolkowski and J. B. Judkins, J. Opt. Soc. Am. B 10,
186 (1993).

[2] R. W. Ziolkowski and J. B. Judkins, Integrated Photonics Re
search Post Deadline Papers, 1992-(Optical Society of
America, Washington, D.C., 1992), pp. 50—51.

[3] R. W. Ziolkowski and J. B. Judkins, Integrated Photonics Re-
search Technical Digest, 1993 (Optical Society of America,
Washington, D.C., 1993), pp. 128—131.

[4] R. W. Ziolkowski and J. B.Judkins, Radio Sci. 2S, 901 (1993).
[5] R. W. Ziolkowski and J. B. Judkins, J. Opt. Soc. Am. B 11,

1565 (1994).
[6] P. M. Goorjian and A. Taflove, Opt. Lett. 17, 180 (1992).

[7] P. M. Goorjian, A. Tallove, R. M. Joseph, and S. C. Hagness,
IEEE J. Quantum Electron QE-2S, 2416 (1992).

[8] R. M. Joseph, P. M. Goorjian, and A. Tallove, Opt. Lett. 1S,
491 (1993).

[9] C. V. Hile and W. L. Kath, Integrated Photonics Research
Technical Digest, I993 [3], pp. 308—311.

[10] S. Radic and N. George, Opt. Lett. 19, 1064 (1994).
[11]S. A. Basinger and D. J. Brady, J. Opt. Soc. Ann. A 11, 1504

(1994).
[12] R. P. Feynman, F. L. Vernon, Jr. , and R. W. Hellwarth, J. Appl.

Phys. 28, 49 (1957).
[13]G. L. Lamb, Phys. Lett. 25A, 181 (1967).



3094 ZIOLKOWSKI, ARNOLD, AND GOGNY 52

[14] D. Burnham and R. Chiao, Phys. Rev. 188, 667 (1969).
[15]J. A. Fleck, Jr. , Phys. Rev. B 1, 84 (1970).
[16]G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).
[17]J. C. Eilbeck and R. K. Bullough, J. Phys. A 5, 820 (1972).
[18]R. A. Smith, Proc. R. Soc. London Ser. A 362, 1 (1978).
[19]H. A. Haus, Rev. Mod. Phys. 51, 331 (1979).
[20] A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York

1967), pp. 149—156, 371—3g2, jg8 —405.
[21] P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics

(Cambridge University Press, Cambridge, England, 1991),pp.
156-172.

[22] P. W. Milonni and L. E. Thode, Appl. Opt. 31, 785 (1992).
[23] L. C. Bradley, J. Opt. Soc. Am. B 9, 1931 (1992).
[24] R. J. Temkin, J. Opt. Soc. Am. B 10, 830 (1993).

[25] P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York,
1988), pp. 243-260.

[26] A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).
[27] A. D. Buckingham and M. B. Dunn, J. Chem. Soc. A 1988

(1971).
[28] E. B. Graham and R. E. Raab, J. Appl. Phys. 69, 2549 (1991).
[29] E. B. Graham and R. E. Raab, Philos. Mag. B 64, 267

(1991).
[30] R. J. Hawkins and J. S. Kallman, Opt. Quantum Electron. 26,

S207 (1994).
[31]A. E Siegman, Lasers (University Science Books, Mill Valley,

CA, 1986), p. 292.
[32] F. T. Hioe and J. H. Eberly, Phys. Rev. A 25, 2168 (1982).
[33] P. K. Aravind, J. Opt. Soc. Am. B 3, 1025 (1986).


