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We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic

molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-

dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an

electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-

Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of
vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, 5~1
GW/cm . We also discuss the possibility of experimentally observing this transition.

PACS number(s): 33.40.+f

I. INTRODUCTION

The theoretical and experimental investigation of dynami-
cal chaos in atomic and molecular, mesoscopic systems, and,
in particle, physics, is of considerable current interest (see
[1—17] and references therein). Under certain conditions,
such systems can be described by model Hamiltonians pos-
sessing only a few degrees of freedom. In this low-
dimensional situation, the conditions of transition to dynami-
cal chaos are well understood at the classical level [1,18,19].
At the quantum level of description, such systems are usually
considered in the quasiclassical region of parameters [2—12].
Quantum motion in parameter regions for which classically
chaotic behavior occurs is called "quantum chaos. "For ex-
ample, in quantum nonlinear optics, a transition from "regu-
larity" to "quantum chaos" is often invoked to describe the
dynamical and spectral properties of Rydberg states of atoms
and molecules interacting with an external resonant field, or
taking into account the interactions among various internal
degrees of freedom [2—12].

We consider the problem of investigating nonintegrable
optical systems that are initially populated in the ground
state, or are weakly excited. In this case, one does not need
to prepare atoms or rnolecules in a Rydberg state. This ap-
proach is also used (see, for example [12,13]), in studying
the interaction of weakly excited molecules with a resonant
external field.

In the present paper we determine the conditions for tran-
sition from regular motion to dynamical chaos in a system
consisting of a diatomic molecule driven by a circularly po-
larized resonant ir field. We describe the molecule's dynam-
ics at the classical level. The quantum description will be
considered separately. The transition to dynamical chaos in
this system is found to be due to the overlapping of
vibrational-rotational nonlinear resonances (NR's), under
rather moderate intensity of the external radiation. Moreover,
in this system the transition to chaos appears at rather small
molecular excitation energy. Thus, there is no need to pre-
pare the diatomic molecule in a Rydberg state. The model we

consider consists of a diatomic molecule with one vibrational
and two rotational degrees of freedom. This molecule has a
dipole interaction with an external resonant ir electric field,
which is taken to be circularly polarized. Thus, the system
we consider has 3.5 degrees of freedom. In this system, non-
linear resonance occurs between the external resonant ir field
and the vibrational degree of freedom. The appearance of
such NR s in nonlinear classical Hamiltonian systems inter-

acting with an external resonant field is discussed in detail in,
e.g. [1,18,19].The quantum analog of NR was introduced in

[20], and studied for various quantum systems in

[13,17,19,21] (see also references therein). Different aspects
of nonlinear dynamics of vibrational-rotational degrees of
freedom in diatomic molecule, interacting with the external
resonant field, are also considered in [22—24].

A NR is usually characterized by two main parameters
[18]:its width in action (An), „, and the frequency of slow
phase oscillations near its center, ~p&. We assume that the
value of the constant of interaction W of the molecule with
the external field is sufficiently small that the condition
cop&& 6) is satisfied, where co is the frequency of the resonant
ir field. At the same time, the following conditions also can
be satisfied: &upi, 0- p, where 0 and y are the angles of the
molecule's rotation. In this case, vibrational-rotational NR's
appear. These NR's are well isolated at W(W„, where
W„ is a certain critical value of W. In this paper we show
that W„corresponds to the value of the intensity of the ex-
ternal ir field at which 5„—=cEply n- 1 GW/cm . For
W~ W„, the NR's overlap significantly, and the dynamics of
the molecule become chaotic over most of its phase space
volume. It is important to note that when considering Ryd-
berg states of diatomic molecules, the electron degrees of
freedom can also be involved in the resonant dynamics even
at small amplitudes of an external field. Actually, at the field
intensities of the order 1 GW/cm, even nonresonant inter-
action can perturb significantly the electronic states of a di-
atomic molecule. We shall consider these two problems else-
where.
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It is convenient to introduce the following dimensionless
variables

n =II@, l =L/6, (2.2)

x.=&l(d Ho/dI )I/2ru. B=& (dHo/dL )

FIG. 1. Diatomic molecule in the spherical system of coordi-

nates (r, 8, q&) . The resonant ir electric field is circularly polarized in
the (x,y) plane; cot is the phase of the electric fie1d.

One of the main results of this paper is the following. We
show that the transition to chaos due to overlapping of the
vibrational-rotational NR s appears in a diatomic molecule
even for the ground state in the case of a circularly polarized
resonant ir field and at rather moderate field intensity. We
believe this circumstance suggests considering the system
(diatomic molecule)+(circularly polarized resonant ir field)
as a promising candidate for investigating the transition to
dynamical chaos in molecular systems under weak initial
excitation.

In Sec. II we describe the model and introduce the Hamil-
tonian, which describes its slow resonant dynamics. Sec. III
is devoted to the analytical consideration of the resonant dy-
namics, which is nearly two dimensional. We show that the
initial Hamiltonian reduces in this case to the Hamiltonian
for the motion of a charged particle driven by an electromag-
netic wave I Ij. Section IV considers an isolated NR. Section
V concludes with the results of numerical calculations on the
transition from regular motion to dynamical chaos and dis-
cusses the possibility of experimental observation of this
transition.

II. DESCRIPTION OF THE MODEL

To describe the dynamics of a diatomic molecule driven
by a resonant ir field, we shall use a basis model that consists
of two point masses m

&
and m2 interacting through the po-

tential U(r), where r= ri —r2 is a radius vector connecting

masses m, and mz. The potential U(r) depends only on the

modulus of the radius-vector r—= IrI, and has a minimum at
the point r = r0. It is natural to describe the dynamics of the
molecule in the center-of-mass reference system with radius-

vector R = (m ir i+ m2r2)/(m, +mz). It is known that in this

system of reference (R = 0) a diatomic molecule can be de-
scribed effectively as a single particle with a reduced mass

p =mim2/(mi+m2). Then, in a spherical system of refer-
ence, a diatomic molecule is characterized by two angles 0
and y, and by r =

I "i "21 (see Fig. 1).
The vibrations of the molecule along the r direction are

described by using the action I and phase 6. The rotational
motion in angles 0 and y is described using the angular
momentum L. In this case, the unperturbed Hamiltonian has
the form

( iu, = dHo /dI)

In this paper we shall consider only the classical dynamics of
a diatomic molecule driven by a resonant ir field. In spite of
this, the variables (2.2) are useful for comparison with the
corresponding quantum dynamics, which will be considered
in a separate paper. In dimensionless variables (2.2), the un-
perturbed Hamiltonian (2.1) takes the form

Ho( n, I ) = fi, ru, n —fix, ru, n + Bl (2.3)

To construct the interaction Hamiltonian, we introduce the

vector of the dipole moment d of the molecule, and the vec-

tor of the external resonant electric field E(t), given by

d = d(r)(sin &cosrp, sin&sing, cos8), (2 4)

E(t) = (E.(t),E,(t),E,(t)) (2.5)

It follows from (2.4) that the dipole moment of the molecule
depends on the value of r. We express r in the form

r= r0+
26ft

cos6,
PM~

(2.6)

where 6 is the phase of the molecule's vibrational oscilla-

tions along the radius r, and is canonically conjugate to the
action I. Using (2.6), we express the dipole moment d(r) as
follows

267l
cos6, (2.7)

where d0 =—e,ffr0.
Using Eqs (2.4) and (2.5) allows us to express the Hamil-

tonian for the interaction of the molecule with the resonant

field E(t) in the form

2fL7l

X cos6[E,(t) singcosy

+ E (t) sin8sinfp+ E,(t)cos0]. (2.8)

The unperturbed Hamiltonian, which describes the one-
dimensional oscillations and two-dimensional rotations of
the molecule, is expressed as
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i
2 2Ho(I, 6:,p0, 0;p„,i') = co„l x—,cu,I + z pz+

2p, ro ~
sin0 l

BH p
6P @ P, l"osln 0

—=H("'+ H'"'
0 0 (2.9) These equations possess the integral of motion

where p z= p, r00, p = p, rosin 0j, and x, = fix, .2 2 2

The rotational part of the unperturbed Hamiltonian in
(2.9) can be written in the form

H'"'= L2/20 0 o with L =p, ro(0 +sin Op ).
(2.10)

In what follows, we consider only the case of a circularly

polarized electric field E(t), which rotates in the plane (x,y)

E(t) = Eo(cosset, singlet), (2.11)

(2.12)

In this case, the resonant Hamiltonian takes the form

Next, we introduce the resonant Hamiltonian, which de-
scribes the dynamics of the molecule on a time scale large
compared to 1/~. This Hamiltonian corresponds to neglect-
ing rapidly oscillating terms -exp(~2icot). We assume that
the frequency of the external field co is resonant with the
molecule's oscillation frequency co, (ai=co, ) and signifi-
cantly exceeds the rotational frequencies with respect to 0
and y, that is,

p~ —I= const= fik, (2.IS)

which has a simple physical meaning. Namely, in the reso-
nant approximation, the photons of a circurlaly polarized ex-
ternal ir field simultaneously excite both a vibrational and a
rotational degree of freedom with the same number of
quanta. In the quantum case, the integral (2.15) corresponds
to the operator Q=L, kata, —where L,= —i68IBili, and
a~ and a are the vibrational creation and annihilation opera-
tors, respectively. So, the quantum case obeys the following
selection rules: El=1, Am=1, An=1, where l, m, are ro-
tational quantum numbers, and n is a vibrational quantum
number. Using the integral (2.15) allows us to introduce a
new effective resonant Hamiltonian which depends on the
following canonically conjugate variables:

fi(cu, —co)n kx, cu, n Bp B(k+n)
AA fit fi csin 0

(2.17)
W

Qnsin icos P.

t/i= 6+ y —cut, n =Ilfi;and . 8, p =pe/6.
(2.16)

In the variables (2.16), the Hamiltonian (2.13) takes the form

2 2H=co, I—x, cu,I + 2~ p~+
2 p, ro ( sin 0(

In writing the effective Hamiltonian (2.17), we have intro-
duced the following dimensionless notations

e,ffE0

2

2I
sinOcos(6+ ~p

—cot).
(2.13)

w= O, t, W= e,F0 (2.18)

The Hamiltonian (2.13) implies the following equations of
motion

where 6A is a normalization energy. The Hamiltonian (2.17)
describes the slow (resonant) dynamics of a diatomic mol-
ecule driven by a resonant circularly polarized electric field.

BH e,ffE0

2

2I
Sin &sin( 6+ ip

—

Oft�

),
(2.14)

III. RESONANT PERTURBATION THEORY

For convenience, we choose the normalization energy in
(2.17) as

8H e,ffE0=co —2x co I—
BI 2p MeI

fiA=1 cm (3.1)

&& sin icos(6+ y —cot),

p cos 0 eeffgo
2

Pg= =
2 3 +

P FOSln 0

2I

This choice of fi, A corresponds to an energy = 1 K, which is
a characteristic excitation energy of the rotational degrees of
freedom.

Small oscillations in 8

X cosOcos(6+ q&
—cot),

BH
pq=

2I
sin &sin( 8+ ip

—cut),
P COe

The case of small oscillations in 0 in the vicinity of
0= ~/2 can be considered analytically. Then, the motion of a
molecule is close to the two-dimensional (2D) case on the
(x,y) plane considered in [12]. We shall show that in the
case of small oscillations in 8, the effective Hamiltonian
(2.17) can be reduced to the Hamiltonian for the dynamics of
a charged particle driven by a sinusoidal electromagnetic
wave [I].
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Consider 0= ~/2+ e (lel&& 1). Then, an approximate ex-
pression for H,« follows from (2.17). Namely,

2
k,0 ff n —con —A~ J+ aesop

H, ff A, (co, —tp)n —6 x, cp, n +B(k+n) +Bp

W ~np+B(k+ n p) e — [cos( p+ e) + cos( p —e) ].
&& g J2I(k~p)sin(~2lg).

/ = —oo
(3.10)

(3.2)

The variation of n is assumed to be small in the vicinity of
n p (In the following n p is a number less then, say, ten).

We introduce new canonical variables J and P for the
rotational motion in 0, as

The canonically conjugate variables in the Hamiltonian

(3.10) are (n, P and (J,P) .

IV. AN ISOLATED NONLINEAR RESONANCE

Following [I], we introduce a slow phase P and an action

J, given by

where

A~J=Bp +B(k+np)2e2, (3.3) P= ~ 2 lpga
—7r/2, J=J+ 2lpn, (4 1)

n, =2Blk+n, l. (3.4)

2J

The variable @ canonically conjugate to the action J, is re-
lated to e by

where (n, p) and (J,p) are new canonically conjugate vari-
ables. The number l=lp specifies a given resonance. The
substitution (4.1) transforms the expression for H,« in (3.10)
into

2k,—H,«= n —tpn —A~(J —2lpn)

lk+ np[
(3 5)

It is easy to see that
l 8(p, e)/8(J, P) l

= 1, so the transforma-
tion to J and P is canonical. The Hamiltonian H, fr (3.2) is
expressible in the new variables as

H, ff=A(cu, cp)n —Ax,—cu, n +B(k+n) +I), J where

+ee4p g Jq~(k~p)cos[P —2(l —lp)P],
/= —oo

(4 2)

I'

+ cos (P—
lk+ npl

W~p
cos~ P+

(3 6)

p= $2(J—2lpn)/MA~. (4.3)

Averaging over the fast phase @ gives an effective Hamil-
tonian, which describes the dynamics in the vicinity of an
isolated nonlinear resonance associated with the number
l=lp

Using the formula

i(p+zsinp) ( ) i (f+mp) (3.7)

k
( —H, ffP ) = n —tpn —A~(J —2lpn)

+ 8 e 4' pJ2 ( (kip )cos (//. (4.4)

we derive from (3.6) for H,«

H, ff= [fi ( tp, ~p) + 2Bk]n —(Ax, tp B)n + A ~J—
It follows from (4.4) that the value

J=J+2lpn (4.5)

W ~np

2 X J2i(~)cos( t/
—2l 4).

/= —oo

2J/lk+ npl (3.8)

is an integral of motion. We estimate the parameters of the
lpth resonance. For this, we expand the expression in (4.4) in
the vicinity of the nonlinear resonance, which is defined by
the equations

The substitutions

P= P+ m/2, &3= A, (cu, —cp)+ 2Bk, ee4p= W~np/2,

(3.9)

k, /2M =fi,x, co, B, k~ = $2BM, p=—$2J/MA~,

reduce the Hamiltonian (3.8) to the same form as the Hamil-
tonian for the motion of a charged particle in a sinusoidal
electromagnetic wave [1],namely,

k,—no+ 2lo J=Jp, P=Po=
2Jp

MA
(4.6)

( —H ff ) = (An) +ee+pJ21 (k„pp)cosP, (4.7)

Using (4.5) and (4.6), we have from (4.4) the resonant
Hamiltonian, which coincides with the Hamiltonian describ-
ing the dynamics of the pendulum,
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where An=n —no. Thus, the resonant dynamics described
by the Hamiltonian (4.7) is effectively one dimensional and

integrable. The stable stationary point is P= m. The unstable

hyperbolic stationary point corresponds to c/c=0 (or 2m).
The frequency of slow phase oscillations in the vicinity of
this stationary point is given by the expression

V. RESULTS OF NUMERICAL CALCULATIONS

As an example to illustrate the theory developed above,
we consider here the diatomic molecule GeO, which has the
following parameters [12]:

fico, =985.8 cm ', fi(co, —co) =15 cm

coph I
«+oJ2c,(/ci p) k, /I l

'" (4.8) Ax, co, =4.2 cm

The width (An), „of the nonlinear resonance is usually de-
fined as the distance between two separatrixes [1,18].For the
Hamiltonian (4.7), we have

(5.1)8=0.48 cm ', do=3.28 D, ra=1.62 A,

p, = 13.1 amu,

(An) „=4cophM/k, . (4 9) driven by a resonant ir field of intensity:

6'n =2MB /k, . (4.10)

Using (4.9) and (4.10), we find the Chirikov s criterion for
resonances to overlap [18]:

(An) „2coph

Bn
(4.»)

Now we derive the conditions under which the loth nonlinear
resonance described by the Hamiltonian (4.7) can be re-
garded as isolated. First, we estimate the distance Bn be-
tween neighboring resonances associated with the numbers

lo and lo~ 1. We have from (4.4) and (4.6)

S=cE /8M=2. 5 —25 GW/cm,

A~ = 10.606, (5.2)

which corresponds to W=3.39—10.72 cm
Using the results of the previous section, we derive the

following estimates (in the approximation of isolated nonlin-
ear resonances) for the primary resonance with lo = 0, and for
two secondary resonances, with lo= ~ 1. As an example, we
take the integral k=8 in (2.15). We have in this case, for
lo=0, k=8

no =3.0483, co h
=2.549' W, (An),„=1.37~W,

When K((1, the resonances with l = l o and l = l0+. 1 interact
weakly and they can be considered as isolated. We may now
present the main resonance parameters in the original nota-
tion. The frequency of phase oscillations is given by

for lo = 1, k=8,

neo'l=0. 782, co~hi=0. 306/WJo, (An)~',l„=0.164v WJo,

(5.3)

coph /Wool J21,(2 g»o /&. )(«,co.-~)
l

(4.12) (AJ)~,l„=0.33/WJo, 0~=8.43.

(An)
Xe COe

(4.13)

The width of loth resonance according to (4.9), is given by
the expression

for lo = —1, k=8,

no
' =6.86, co h =0.404/WJo,

(b, n) t,„'~ = 0.217/WJo. (5.4)

6'n =
6Xe COe B (4.14)

Using (3.9), the expression (4.10) can be written in the form En a numerical experiment we constructed the Poincare map
by plotting the points of the dynamical trajectory at the mo-
ments of time when they cross the plane 0= m/2 with posi-
tive velocity, 9)0. As follows from the Hamiltonian (4.7),
and from the formulas

In deriving these expressions, we have used the condition,

(An), „(&no.
P= P—2lo@, 9—m/2= $2J/~ k+ no~ sin@, (5.5)

In this section, the oscillations in angle 0 in the vicinity of
0= 7r/2 are assumed to be small (~e~(& I). According to
(3.5), this assumption leads to the following restriction on J

under the conditions of an isolated nonlinear resonance, the
crossing points of a dynamical trajectory with the plane
0= ~/2 are described by the equation

2J(~ k+ no~ (4.15)
H fro (b, n, P) = const (5 6)

In addition, the conservation law (4.5) implies

(5J),„=2lo(b,n) (4.16)

The approximation considered in this section p= po (4.6)
also requires the following condition to be satisfied:
(4J) „(&J.

and form an invariant curve. In the numerical experiment,
the equations of motion were solved corresponding to the
Hamiltonian (2.17). Figures 2(a) and 2(b) show the Poincare
map for the cases (5.2) and (5.3), respectively. According to
Figs. 2(a) and 2(b), the motion at the chosen parameters
shows satisfactory agreement between the theoretical esti-
mates (5.2) and (5.3), based on the isolated resonance ap-
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FIG. 2. Regular dynamics. The Poincare map on the plane
(n, P) of the dynamical trajectories corresponding to the Hamil-

tonian (2.17), upon crossing the plane 8= vr/2 with positive 0. Pa-
rameters are given in (5.1); W= 1, k = 8, p e(0) = 0, and

8(0)=1.2; (a) the primary resonance (lo=O); (b) The secondary
resonance (lo= 1).

proximation, and the results of the numerical calculations.
Figures 3(a) and 3(b) show the dependences 9(t) and pz(t)
for the regular dynamics, at the center of the primary reso-
nance. As one can see, the approximation of small oscilla-
tions (a(& I) is violated in this case.

Note that there exists a significant difference in the de-
scription of a diatomic molecule interacting with a circularly
polarized resonant ir field using the 2D approach [12] (when
0=7r/2), and the 3D approach considered above. Indeed,
using the variables (I,6;p„,y), when a circularly polarized
resonant field is applied to a diatomic molecule one sees that
only the primary nonlinear resonance with l0=0 can be re-
alized in the 2D approach (see [12]). In the 3D approach
considered above, additional nonlinear resonances with
l0=0 appear in the system, which are connected with oscil-
lations in the 0 degree of freedom. As will be shown below,
overlapping of the resonances with lo=0, ~ 1 can lead under
the condition S~S„-1 GW/cm to chaotic dynamics of
the molecule in the classical description.

We now present the results of numerical calculations un-
der the conditions for transition to the dynamical chaos to
occur in the system of "(diatomic molecule)+(resonant cir-
cularly polarized ir field). " In Fig 4(a), the primary reso-
nance with lo = 0 and the biggest secondary resonance with

Io = 1 are shown at k = 0. In this case, the interaction constant
W is rather small (W= 0.05), and the resonances essentially
do not interact. As 8' increases, the interaction between the

FIG. 3. Dependences of //(r) and pe(~) for regular dynamics, at
the center of the primary resonance, (a),(b) W= 1, k= 8, (c) depen-
dence 8(r) for one of the chaotic trajectories, W= 1, k=0. Param-
eters are given in (5.1).

resonances becomes more significant. Figure 4(b) shows that
for W=0.5, the resonances presented in Fig. 4(a) are partly
destroyed, and a portion of phase space is filled with a cha-
otic trajectory. The transition to fully developed dynamical
chaos is demonstrated in Figs. 4(c) and 4(d), for W~ l.

In conclusion, the results of the numerical calculations
show that the critical value of the intensity of the external
resonant ir field (at which the transition to the dynamical
chaos should be expected), is of the order S„=1 GW/cm .
When S~S„, the resonances are significantly destroyed
and most of the motion in the phase space is chaotic. As
shown in [12], if a diatomic molecule is approximated by a
20 model, the transition to the dynamical chaos due to in-
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FIG. 4. Transition to dynamical chaos upon overlapping of nonlinear resonances. The Poincare map is shown in the plane (n, lit) of the

trajectories corresponding to the Hamiltonian (2.17), upon crossing the plane 0= m/2 with positive 8. Parameters are given in (5.1); k=0;
(a) W=0.05; (b) W=0.5; (c) W= 1; (d) W=4.

teraction of vibrational-rotational resonances can be expected
only in the case of a linearly polarized resonant ir field, and
at rather large resonant ir field intensities of =25 GW/cm .
In the 3D diatomic molecule model considered in this paper,
the transition to chaos arises for the circularly polarized ir
field even at rather small values of the initial population.
Thus, this system has an advantage over Rydberg atoms and
molecules driven by a microwave field in that the transition
to dynamical chaos can be realized without a preliminary
excitation into the region of high-lying energy levels. These
circumstances allow one to consider the system "(diatomic
molecule)+(resonant ir field)" as a promising candidate for
investigating the transition to dynamical chaos in molecular
systems interacting with coherent radiation. One possibility

for observing the transition to chaos experimentally could be
to study the frequency spectrum of radiation of the system
"(diatomic molecule)+ (circularly polarized resonant ir
field. " In the region of S-S„aqualitative modification of
the frequency spectrum should be observed. Namely, for
S&S„the frequency spectrum will have well resolved lines.
However, for S)S„, the frequency spectrum should
broaden, thereby indicating the transition of the system to
dynamical chaos.
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