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Off-resonance light scattering from low-temperature Bose and Fermi gases
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We study interactions of light with a sample of two-level atoms, with full inclusion of angular momentum

degeneracy, at temperatures and densities such that the quantum statistics of the atoms may have an effect.
Coupled propagation equations are given for light and matter fields, and plausible general simplifications are

enumerated. In particular, the motion of the atoms during the excited-state lifetime may often be ignored. The

propagation equations of light and matter fields are decoupled within the assumption that the detuning of the

driving light from atomic resonance is large, and the spectrum of scattered light is studied for ideal Bose and

Fermi gases. In addition to the expected image of the velocity distribution, the spectra contain qualitatively
distinct features that depend on the statistics of the atoms. This is because for bosons (fermions), those

scattering events in which an atom recoils to an already occupied state are enhanced (inhibited).

PACS number(s): 42.50.Vk, 03.75.Fi, 05.30.Jp

I. INTRODUCTION

Trapping and cooling of neutral atoms [1]is presently one
of the mainstreams of atomic, molecular, and optical physics.
Given the relentless progress toward higher densities and
lower temperatures, in the end quantum statistics of the at-
oms will have measurable consequences. Indeed, Bose con-
densation of a weakly interacting gas remains the holy grail
of cooling. Lasers are an integral part of many of these ex-
periments, and the question of the optical response of the
Bose condensate has come up [2—4]. The consequences of
the dipole-dipole interactions between the atoms in a degen-
erate gas [5,6] are another closely related area of research.
The main attraction here is the possibly nonlinear behavior
of the atomic fi=lds, "nonlinear atom optics" [5].

An extremely broad optical resonance has been identified
as a prominent characteristic of a Bose condensate [3,4].
However, the prospects of using the linewidth for the detec-
tion of Bose condensation are clouded by the fact that broad
resonances are commonplace in dense atomic samples, even
for the classical Maxwell-Boltzmann gas. In search of a more
unambiguous signature of Bose condensation, we have re-
cently [7] pointed out that the spectrum of light scattered
from a degenerate Bose gas contains distinct qualitative fea-
tures associated with atom statistics. In a dilute gas, the spec-
trum mirrors the velocity distribution of the atoms [8],
whereas in a degenerate sample photon recoil events that
take an atom to an already occupied state are enhanced by
the Bose-Einstein statistics. In the present paper we give a
thorough derivation arid discussion of this phenomenon. We
also carry out the corresponding analysis for fermions, which
turn out to display equally singular features in light scatter-
ing.

We begin in Sec. II with a formulation of the interaction
of a (possibly) degenerate atomic gas with light. The empha-
sis is on the observation that one may under conceivably
fairly common circumstances ignore collisions and center-of-
mass (c.m. ) motion affecting the excited atoms. Coupled
evolution equations for the matter and light fields, each quite

transparent, constitute the main result of our general theory.
Light scattering is treated in Sec. III. The main item is the

assumption of sufficiently large detuning of the laser from
atomic resonance. What should be meant by "large" is stud-
ied at length. A general expression for the spectrum of the
scattered light is derived, complete with the dependence on
atomic level scheme and on various light polarizations rel-
evant in an experiment. Next, in Sec. IV we present two
examples for an ideal (noninteracting) gas, one for bosons
and one for fermions. In a degenerate gas, the statistics may
cause dramatic qualitative changes of the spectrum, which
are highlighted.

A few concluding remarks are made in Sec. V. In particu-
lar, we discuss the relation of our theory to existing neutron
scattering methods, and ponder on the future paths opened
up by our research.

II. GENERAL THEORY

A. Hamiltonian

We first generalize and extend our previous models [3,7]
of many-atom systems interacting with light. The present
discussion also draws from the detailed formulation of quan-
tum field theory for atoms interacting with photons, as given
by Lewenstein et al. [9].

In order to have near-resonant optical transitions, the atom
has to have (at least) two internal energy levels. Since our
aim is to study light scattering, including angular distribution
and polarization, we also have to account fully for the
angular-momentum degeneracy of the energy levels. Our
complete set of internal-state kets therefore reads

( gm), ~em')) . Here g stands for the "ground" and e for
the "excited" level, the corresponding angular momenta be-
ing jg and j, , and m, m' denote the z components of angu-
lar momentum. We use n as the generic energy level label,
so that n = g or e. The frequency of the optical transition
between the levels g and e is denoted by coo, and d stands
for the dipole moment operator of the transition.
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The atoms are assumed to move in an arbitrary conserva-
tive potential V(r). The c.m. Hamiltonian for each atom
reads, in the position representation,

E+(r)= g g e a e' t ",
q

A COq

2eoV

H, = — V'+ V(r),

where m is the mass. In principle, the c.m. Hamiltonian may
be different for different internal states of the atom, but such
cases will not be considered here. At any rate, we are going
to ignore the c.m. motion of the excited atoms.

In order to manage the many-body aspects of the theory,
we introduce the conventional field operators for each inter-
nal state, P,„(r). It is occasionally convenient to utilize the
relationship between the field operators and atom creation
and annihilation operators. Thus, given an arbitrary orthonor-
mal basis of states in three-dimensional space, (uk(r))k, and
the annihilation operators for atoms with energy level u,
c.m. state k, and magnetic quantum number m, b z, we
have

(r)=g uk(r)b „, b k =] d r uk(r)P (r).

Until otherwise noted, the results of our general development
do not depend explicitly on the statistics of the atoms. How-
ever, anyone wishing to specialize to bosons or fermions
may do so at any stage by introducing the appropriate com-
mutator or anticommutator relations. These may be formu-
lated equivalently either for the atomic annihilation and cre-
ation operators or for the fields,

& .k,.~ .k ]=—lbk b„k 1==o,

Here V is the quantization volume. Without restricting the
generality, we assume that all vectors eq are real.

The Hamiltonian for the atom-field system finally
emerges as the integral over the quantization volume of the
Hamiltonian density Xcf(. r):

H= d rM(r), (6)

((gm~d. E~em') Pt

+(em ~d E~gm) P, , P )+.WF+ &i; +.W„+. .rW, „.
(7)

While writing Eq. (7), we have suppressed the dependence
on the position r in our notation. The first two terms refIIect
the energies, internal and center-of-mass, of the atoms in the
absence of electromagnetic fields. The c.m. Hamiltonian
H, as in Eq. (1) acts on the position argument of the field
to the right of it. The following two terms are for the atom-
light dipole interaction. It should be noted that the domain of
an index specifying the z component of the angular momen-
tum (here m and m ') may be different depending on whether
the index refers to the ground state or the excited state. Next,
~F is the Hamiltonian density for the free electromagnetic
field. We naturally have the corresponding Hamiltonian

o.'km «b «««k«««««] ~ ~ak n'k««'«m' «

f
HF= d re(r) A, g coqa aq.

or

[P. (r), P.. .(r') ].= [P'. (r), P', , (r')].= O,

[P. (r), P', , (r')].= a. .. , a(r —r'). (4)

The subscript + denotes the anticommutator, as appropriate
for fermions; the subscript —,the default, stands for the
commutator, and applies to bosons.

Angular momenta of the energy levels in a given atomic
species are all integers, or all half-integers. No contradiction
with the familiar spin-statistics theorem arises if one at-
tributes either the boson or the fermion character to the entire
atom. Optical processes in which a Bose atom turns into a
Fermi atom or vise versa, such as ionization, will not be
discussed here.

While dealing with light, we have found it convenient to
retain the plane wave representation for photons. The mode
index q incorporates both the wave vector q and the trans-
verse polarization eq, the mode frequencies are denoted by
coq, and the photon annihilation operator is aq . We write the
electric field operator as the sum of positive and negative
frequency components E+(r) and E (r) =

t E+(r)]t as
E(r)=E+(r)+E (r), with

Finally, ~, M~„, and .~, govern those interactions
of an atom with the electromagnetic field and other atoms
that cannot be accounted for when the atoms are modeled as
point dipoles, e.g. , effects of multipoles other than electric
dipole and electron exchange. These terms stand, respec-
tively, for the interactions of ground state atoms, interactions
of excited atoms, and interactions that involve ground state
atoms and excited atoms. Some of the prominent atom-atom
interactions, such as the van der Waals force, are already
encompassed by the dipole coupling. Nonetheless, as long as
care is taken to avoid double counting, van der Waals inter-
actions may be viewed phenomenologically as part of

. In this paper, WW g stands for any and all collisional
interactions of ground state atoms.

B. Quantum optics considerations

The Hamiltonian (6) covers a wide range of phenomena
including collisions between the atoms, formation and prop-
erties of an interacting Bose condensate, and interactions of
the gas with light. In this paper the focus is on optical phys-
ics, so we will have little to say about the collision terms
WYgg, WY~„, and, Xd,~. It should be noted [9—11], though,
that resonant dipole-dipole interactions, often the dominant



OFF-RESONANCE LIGHT SCATTERING FROM LOW- 3035

mechanism of collisions between a ground state atom and an
excited atom, are accounted for by the dipole interaction
terms shown explicitly in Eq. (7).

Our studies of the optical interactions of the condensate
are rooted in the established theory of quantum optics, as
summarized for instance in Ref. [12].First and foremost, we
always assume that there is a dominant frequency in the light
field 0, , which is nearly resonant with the atomic transition
frequency coo. The corresponding characteristic wave num-
ber k and wavelength X are defined as k=0/c= ceo/c and
X =2~/k.

Along the way we will make the rotating-wave approxi-
mation (RWA), in fact in two different versions. We prepare
for the RWA by writing the dipole operator as the sum of
raising and lowering parts d+ and d = [d+]t as
d=ti++d, with

The RWA dipole interaction is the integral of the density

~D'= —X (d. E 0, 0, +d
mm'

(13)

It is easy to integrate the Hamiltonian density to obtain the
Hamiltonian, then use the quantization rules (4) to find the
Heisenberg equations of motion for the matter fields. For
instance, we have

( Hc.m. += —i coo+
'

P, + —g d, E+Pg
fL j

em'.

d+= g em')d, (gm~, d„, =(em'~d~gm).
mm'

The goal is to find equations of motion for the tilded opera-
tors

vari/p E+ ~ri/E+ (10)

k

6mA, eo
'

On the other hand, studies of a Bose condensate with N&&1

atoms in a region of the size 8&) X suggest [3,4] that, instead
of the one-atom linewidth y, a collective linewidth estimated
as

(

2 ( 2ir/( (12)

that vary "slowly" in the Heisenberg picture.
In quantum optics, radiative damping of excited atoms

and the associated Lamb shifts are important considerations.
The well known expression for the linewidth of a transition
with the dipole moment matrix element W is

Here the last term stands for collisions, whatever follows
from .M„and, XW, g .

We make the following approximations in the equations
of motion of the excited state fields ///, „, :

(i) We ignore the collision terms.
(ii) We ignore the c.m. Hamiltonian.
We have in mind situations in which the density of the

excited atoms is low, so they do not collide among them-
selves. Also, resonant dipole-dipole interactions are already
incorporated in the dipole interaction with the field.

To justify omitting the c.m. motion, we first note that if an
excited atom only moves a small fraction of the wavelength
during its spontaneous lifetime, the motion has little effect on
the optical response. Thermal motion in a homogeneously
broadened gas, the usual outcome of modern atom cooling
methods, satisfies this condition even with respect to the one-
atom linewidth (11), let alone the larger collective linewidth
(12).

The second obvious condition is that the resonant dipole-
dipole interactions should not accelerate an excited atom
over a distance larger than about k/2~ during the lifetime
[13].Let us consider two aligned dipoles with the dipole
moment M~ at the distance r from one another and denote the
direction between the dipoles by n; then the interaction en-
ergy is

applies. In this paper we circumvent the QED issues of
linewidths and line shifts to a large extent, but we will gen-
erally use Eq. (12) when a linewidth is needed for an excited
atom.

C. Evolution of matter fields

We have encountered no problems when applying the
RWA to the equations of motion of the matter fields. For the
time being, we therefore implement the RWA by retaining in
the dipole interaction only those terms in which a photon is
absorbed and an atom is excited, and the reverse processes.
Terms with a simultaneous emission of a photon and excita-
tion of an atom, and the reverses of such processes, are ig-
nored.

3(n.~E~=
4~ear

The maximum force between two such dipoles is
F= 3W /2~@or . It is instructive to compare the conditions
that the displacement due to this maximum force be less than
X/2' using both the one-atom lifetime y

' and the collec-
tive lifetime I . Except for numerical factors close to 1, we
find

) i/4 y ) i/4
Rr) r)

~x

respectively, where
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(17)

is the frequency associated with photon recoil. For typical
dipole-allowed optical transitions ez- 10 y, so the first
condition from (16) permits about (27t) atoms per cubic
wavelength. The second condition allows for higher densi-
ties. Perhaps paradoxically, the second inequality is satisfied
with an increasing margin when the density is increased for a
fixed-size sample.

We proceed with the stated approximations, and introduce
the slowly varying quantities as in Eq. (10).The equations of
motion for the matter fields are

leads to mathematical and physical problems. In this section
we therefore address the evolution of the electromagnetic
fields starting from the full Hamiltonian (6). For future ref-
erence we document the analysis in somewhat more detail
than is necessary for the immediate purposes of the present
paper.

From Eqs. (5)—(8) one easily finds the Heisenberg equa-
tions of motion for the annihilation operators of the electro-
magnetic fields,

aq(t) = —iso a (t)

l q+ e~ g d r'e 'q' [d, Pt (r') P, (r')
mm' J

=i 8'iP, + —g d, E+Pg
m

i H, d=—gK d, P, i
—i ''P +—

I C

In Eq. (18a),

(18a)

(18b)

+d', ti', (r')(i, (r')].

It is now straightforward to integrate (20) and its Hermitian
conjugate, and insert the results into the definition of the
field, c.f. (5). This gives

eq
E(rt) = g (~e~e' q' ~' a~+ g e~

qmm
'

is the detuning of the light frequency from the atomic reso-
nance. While only the detUning needs to be kept in the equa-
tions for the excited state fields, there is no a priori justifi-
cation for dropping the c.m. Hamiltonian or,P-' collisions
from the equations of motion of the ground state fields.

In sum, we have analyzed the evolution of matter fields
under the assumptions that the density of the excited atoms is
low, and that the c.m. motion of an excited atom may be
ignored during the spontaneous lifetime. The familiar struc-
ture of the equations of motion for the probability amplitudes
in the standard two-state approach to quantum optics comes
through in the results, Eqs. (18). For the ground state atomic
fields, however, we have complications: both the c.m. motion
and the collisions are included.

—e ' q' ' ' "~ ' ' ])t('t (r't')p, (r't')+H. c.,

(21)

where we have introduced a convergence factor y such that

y—+0+ at the end of the calculations. The exponential pre-
ceded by the minus sign would have been absent within the
RWA.

In order to simplify Eq. (21), we study the subexpression

ice d

—i[q (r-r')-co (t t')])- (22)

D. Evolution of the light field

During our analysis we have noticed that when the elec-
tromagnetic fields are considered, the straightforward RWA

The standard tricks for doing the implicit sum over the po-
larization vectors eq and converting the sum over the wave
vectors q into an integral lead in to the following manipula-
tions:

—ic & q tqS= g q q —X —Xd ( [ e((~q~ ) ~~(' ' )] e~[q (~ —~ ) ~~(' ' )])

f
, X p') X p'] g3 (e([q (~—~') —~,(&—&')] e

—~[q (~—~') —~~(&—&')]~
16~ eo J

(23)
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The value of not having made the RWA emerges from Eq.
(23). Had we implemented the RWA, we would have to con-
tend with additional principal value terms. Carrying out the
indicated gradients would lead, e.g. , to a term of the form

we carry out the indicated derivatives, keeping in mind that
the ensuing 6 function divergence is to be ignored.

A bit of straightforward algebra gives

E+(r) = E~ (r)

When this is inserted into (21), integral over t' gives a result
proportional to 8(r —r') . Further integration over
r' produces a contact term, which entails that the electric
field at r has a contribution proportional to the matter fields
at the same point r. Now, for the correct form of (23), such a
contact term precisely cancels. All told, because we did not
make the run, we arrive at a simple and transparent result.
From now on we write

c 8'(~r —r'~ —c(t t'))—(d, x V)x V i,i, (24)
4mep

d r'K( d, ;r, r') P" (r') P, (r').

Since our assumptions have rendered the result instantaneous
in time, we have omitted the common time argument t ev-
erywhere in (29). The kernel K(D;r, r') is nothing but the
familiar expression [14] of the positive-frequency compo-
nent of the electric field from a monochromatic dipole with
the complex amplitude D, given that the dipole resides at
r' and the field is observed at r:

with the tacit understanding that the 6 function singularity
resulting from the second derivatives of 1/~r —r'~ is omitted.

Let us now resume the development of Eq. (21).All terms
that have been written explicitly on the right-hand side have
the dominant time dependence e ' '. We thus define the
displayed terms as making the positive-frequency part of the
electromagnetic field. The notation of Eqs. (10) and (24) then
give with

K(D;r, r') =
4mep

ikR

k (nxD)xn
R

+[3n(n D) —D] —
3

——
2
e'", (30)

iR R j

1
E+(rt)=K~(rt)+ g (d, xV)

4~op (31)

ikl r —r'I

xV d &',
~

&p (r't~)p, (r't„),r —r'

(25)

where

E+(rt) = g ( e e' &' '". 'laF q q q
q

(26)

is the free field that would prevail in the absence of matter,
and

In particular, R is the distance between the source point and
the field point, and n is a unit vector pointing from the source
toward the field point. As before, we write k=0, /c.

All told, we have arrived at the integral equation (29) for
light propagation in a sample made of a (possibly degener-
ate) atomic gas. The main assumption (28) essentially states
that phase coherence of light prevails over the entire sample.
We could have done perfectly well without this assumption,
but since we anticipate that it is usually valid and since it
simplifies the notation, we keep it. The final result is intu-
itively obvious. We could have obtained it simply by plug-
ging the dipole moment density (polarization) operator

td=t (27)

is the retarded time.
In all physical situations, the sample of matter interacting

with light has a finite size. We again denote the characteristic
linear dimension of the sample by Y. On the other hand, the
slowly varying matter fields have a characteristic evolution
time scale At. Henceforth we assume that

E(&cAt. (28)

Electromagnetic signals then travel across the sample in a
time much shorter than it takes the slowly varying properties
of the sample to change. We may therefore take the slowly
varying fields inside the integral at the same time, say
td=t —r/c. Next, we ignore the trivial overall propagation
delay from the source to the field point, r/c, and simply
write t in lieu of tz on the right-hand side of Eq. (25). Finally

P(rt) = g d, Pt (rt) P, (rt) + H.c.
tmm

(32)

into classical Maxwell's equations.

E. Concluding remark on theory

While the evolution of the matter fields and the light field
is governed by preeminently physical relations (18) and (29),
the problem remains that these are coupled equations: matter
affects light, and light affects matter. The entire coupled
Maxwell-Bloch equations, some c.m. motion, and a good
deal of collision physics are still embodied in our innocuous-
looking formalism, not to mention QED line shifts and
linewidths. Further progress is contingent upon finding fur-
ther approximations that break the theory into manageable
pieces.
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1. QED effects

An excited atom radiates a field that falls both on the
emitter itself, and on the other atoms. The self-field of the
emitter causes radiative damping and Lamb shifts; neighbor-
ing atoms are subject to super-radiant decay and resonant
dipole-dipole interactions.

As already noted, a plausible estimate exists [3,4] for the
collective linewidth of a Bose condensate, Eq. (12). It may
be shown easily that if the spatial density profiles were the
same, the collective linewidth of a homogeneously broad-
ened gas of classical Maxwell-Boltzmann atoms would be
just the same as the linewidth of a Bose condensate [15].In
the absence of any better alternatives, we surmise that the
same applies to fermions, with two caveats. First, although
this is not an issue for a low-density gas, even a low-
temperature Fermi gas need not be homogeneously broad-
ened. Second, given the c.m. potential V(r), temperature T,
and particle number N, the spatial distribution of the atoms
and the size of the sample 8 may be quite different for
bosons and fermions.

The line shift due to neighboring atoms qualitatively
equals the potential energy of the dipole-dipole interactions.
Here we offer two estimates.

We have already written down the near-field dipole-dipole
interaction energy (15), which could also be derived easily
from the field expression (30). Consider the potential of a
continuous spatial distribution of aligned dipoles on a simi-
larly aligned test dipole located at the origin, assuming the
number density of the dipoles n(r). The average over n in

(15) shows that the potential in fact vanishes for an arbitrary
spherically symmetric spatial distribution, including a distri-
bution with constant density.

Two ways to break the zero are evident, leading to our
two estimates. First, one might argue that the nonzero dipole-
dipole interaction energy depends in an essential way on the
discreteness of the dipoles. To the order of magnitude the
interaction energy of the test dipole is then estimated from
(15), where the nearest-dipole distance r related to the par-
ticle density n as r —n " is to be used. This gives

2
&(i)

4m@0
(33)

Alternatively, the dipole-dipole interactions retain the
1/r form up to a distance of the order X before retardation
sets in. We therefore only consider the dipoles in a sphere of
radius X around the test dipole, and expand the density
n(r) as a function of position around the test dipole. It tran-
spires that even a density gradient does not lead to a nonzero
averaged interaction energy, but one has to go to second-
order variations of density. Let us call the common direction
of the dipoles z and write a model with n(r)

III. LIGHT SCATTERED FROM A DEGENERATE GAS

A. Assumption of large detuning

In the present paper we decouple atomic and electromag-
netic fields with the assumption that the atom-field detuning
is large. While considering what "large" should be, we have
to discuss a number of physical features of a degenerate gas
at least qualitatively.

= n[ I + (z/8) ], 8 again being the characteristic size of the
sample. Integral over the dipoles in a sphere of radius X

gives

XII'nM'
p(2)

47reo
(34)

Recalling Eqs. (11) and (12), and once more dropping
dimensionless constants of the order unity, we have the com-
parisons between the dipole shifts and the collective decay
rate

(35)

If either one of our arguments is correct, for samples much
larger than a wavelength the dipole shifts are negligible in
comparison with the collective linewidth.

3. Saturation

One of the key assumptions of our theory is that the ex-
cited state fraction of the atoms is small. Existing estimates
on this count again help [3].For the present purposes these
may, perhaps, most profitably be recited as follows. Call the
saturation intensity of one atom I, [12], then for a given light
intensity the fraction of saturated atoms at exact atom-field
resonance is of the order

(36)

For ordinary spectroscopic continuous-wave laser intensities,
I-I, , saturation of the sample is expected to be insignifi-
cant, whether the laser is on or off the atomic resonance.

4. CLosing remarks about Large detuning

For a sample substantially larger than a wavelength,
8&) )i. , we may ignore QED linewidths and lineshifts as well
as multiple scattering of light whenever the detuning of the
laser from the atomic resonance is at least comparable to the
collective linewidth I:

(37)

Under such conditions saturation of the sample is typically
insignificant at ordinary spectroscopic laser intensities, and
even far above.

Of course, to reach our conclusions we have repeatedly
used semi-quantitative estimates made especially for the
Bose condensate. A purist's viewpoint should be that while
the neglect of QED effects, etc. , clearly are valid at large
enough detunings, the condition (37) applies specifically to a

2. /OpticaL thickness

For increasing detunings, the effective atom-field cou-
pling gets progressively weaker. This means that multiple
scattering of light in the sample is increasingly improbable.
Rudimentary estimates with the Bose condensate suggest
that the optical thickness at line center is of the order of unity
[3]. To have a genuinely optically thin sample, one has to
detune somewhat beyond the collective linewidth I .
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1Bose condensate. However, in view of the equality of the
collective linewidth for the Bose condensate and the classical
gas mentioned above, we are not overly concerned about this
1ssue. W((o)=e S(c0) e*, (43a)

calculated [12] from the Fourier transformation of a two-
time field correlation function as follows:

EF (r) = —,
' Fe;e'"'. (38)

For large detunings multiple scattering of light and QED
fields are negligible; in other words, the incident field domi-
nates inside the sample. Also, because the input is assumed
monochromatic (the same argument applies if the bandwidth
of the input is much smaller than

l
Bl), we may obtain the

steady state excited atom fields by simply solving Eq. (18a)
adiabatically. We have

B. Scattering at large detunings

It is an easy task to analyze the scattering of light in the
limit of large detunings, as specified in (37). For concrete-
ness, we assume an incoming classical plane wave with the
frequency 0, wave vector sc, complex amplitude F, and
complex polarization e;, so that

S; (cu) =K dt e'"'(E, (0)E,+(t)). (43b)

1 - .- - - 1
e—1 (el ie2) eo e3 e+1 (el+ ie2).

2
' '

2
(44)

Here e is a complex unit vector characterizing the polariza-
tion accepted by the detector, the indices i and j stand for the
(say, Cartesian) components of the tensor S, and K is a nor-
malization factor. The brackets denote the expectation value
over the quantum state of the field.

It now proves expedient to discuss the dipole moment
matrix elements a little further. Alongside with the Cartesian
unit vectors e123, we adopt the standard spherical unit vec-
tors

Fe; d,
P, , (rt) = —g ' e'"'P, (rt)

m
(39) The matrix elements may be written

When discussing scattering, we only retain the 1/R far
field of the dipole radiation in Eq. (30). Besides, we make
the standard 1/r expansion,

d, =W g (m'lorn)e*.
o.= —1,0, +1

(45)

We have introduced
40

~2eikr
Es (rt) = g nX(nXd, )e; d

mm'm"

X
~

d r'e ' "' P (r' t)f (r't). (41)

Here

A~= kn —sc (42)

is the change of the wave vector of light upon scattering.
The scattered field may be analyzed in many ways. One

may use lenses, polarizers, and other optical elements to
transform the field. Subsequently, one may set up photoelec-
tric devices to measure either the spectral properties or the
photon statistics of the light. Henceforth we concentrate on
the spectrum of light. We assume that enough time has
elapsed since the turn-on of the light to make the scattered
light field stationary. For completeness, we also allow for the
possibility that the measurement of the spectrum is preceded
by a selection of the polarization. The spectrum may then be

where r is the distance from the detector to a representative
point of origin in the sample, and everywhere except in ex-
plicit phape factors retain only the leading r term. With these
provisos, we obtain the first Born approximation for the scat-
tered field from (29),

(m 'I ~m) =(m ~1m ') —= (g, lg, m 'lg, ml ~)

as shorthands for the appropriate Clebsch-Gordan coeffi-
cients, and W is the reduced dipole moment matrix element
for the transition g~e; the matrix element that would apply
for a transition with unit Clebsch-Gordan coefficient. The
reason for the complex conjugate in Eq. (45) is that we want
a light field with the polarization e+1 to drive a transition
with m' —m=+1.

When analyzing the scattered radiation, one usually does
not stick the detector directly in the incident field. Corre-
spondingly, one only considers the scattered fields in Eq.
(43b). Some tedious but straightforward algebra remains to
sort out the inter-relations between the internal states of the
atom, the incident and the exit polarizations, and the obser-
vation direction. Using Eqs. (41) and (45), we obtain the
tensor S in the form

1
S(ro))= I(r) 2 g M ' '

2m mlm2 2 1

m3m4

X dt d rd r e'"'+'
J

1 2

x(Pg (ri0) P, ,(r10) 0g (r2t) 0, (r2t)).

(47)
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The numerical factor 1/2m reflects our normalization; we
have chosen the constant K in (43b) in such a way that the
integral of the spectrum over all frequencies and polariza-
tions gives the total radiation intensity. Next,

~ 2f14
/( )=327T 6pC r

M ' '(e;,n)= g (e,* e,)(m4o.4~M2)(M2~o. 3m3)
1 2

O l 02
0304

X[nX(nXe )][(e Xn)Xn]

X(m2~r2l~l)(Mllerlml)(e e') (50)

is the intensity scale, equal to the radiation intensity from a
linearly polarized dipole of magnitude Mat the distance r in
the plane that contains the dipole and is oriented perpendicu-
lar to the dipole. We have defined the Rabi frequency as

(49)

and the factor M /8 is basically the excitation probability
for each atom. Finally, the tensors M,

encompass the dependencies on the level structure of the
atom and on various directions of the experiment.

An extrapolation of the present experiments suggests that
the first experiments on degenerate gases will be carried out
with fairly small samples. However, these samples are still
expected to be much larger than the wavelength of light. In
our further development we therefore assume that the gas is
effectively translationally invariant. The correlation func-
tions such as those in (47) are then functions of r, —r2 only.
One of the position integrals can be done and simply pro-
duces the volume of the sample. In what follows we always
write the position integrals in Eq. (47) as

rid r2 e ( Pgm (rl ) Pg (r10) 0g (r t) Pg (r2t))

~V d r e ' "'(Pt (00)gg (00)ft (rt)(Pg (rt)).

We conclude with a comment on operator orderings, for
brevity only for bosons. In Eq. (29), the fields P and

commute, and may be put in any order. However, had
we reversed the order from the one shown in (29), the non-
commuting annihilation and creation fields in Eq. (47) would
have got swapped. This could lead to quite dramatic changes
in the final results.

The root of the dilemma lies in the adiabatic approxima-
tion of Eq. (39). As it often happens with approximations
carried out with Heisenberg picture operators, this one does
not preserve the commutators either. One way of putting the
situation physically is that the adiabatic assumption is good
for the components of the operators that evolve at frequen-
cies close to 0, but all frequency components are needed for
the correct commutators. A possible way to rectify the prob-
lem is to introduce quantum noise operators to uphold the
commutators, c.f. [16].However, in view of the upcoming
preeminently physical results of our formalism, we conclude
that we have chosen the right operator ordering in Eq. (47).
We have brought up the issue as a precaution, as it may
surface in more pernicious ways in other settings.

with a brief recap of the salient statistical mechanics of both
Bose and Fermi gases [17].

HO = A g ekbkmbkm (52)

with the dispersion relation for massive atoms ek
fi nk~ /2m. For a theory this simple, the time dependence of
the ground state fields is trivial,

A. Ideal quantum gas

In order to quantize we assume that the gas resides in a
cubic box of volume V, and use periodic boundary condi-
tions. The wave vector k is a good quantum number for the
c.m. motion of an atom. The relevant one-atom wave func-
tions are the familiar plane waves, uk(r) = V "e'"'. Since
our final scattering formulas only refer to ground state atoms,
we drop the subscript g. The Hamiltonian in the absence of
light is

IV. EXAMPLES
y (rt)= g e""' "'&bk,

V k
(53)

In this section we work. out two examples of light scatter-
ing, one for the jg=O~j, = j. and the other for the jg=-,'
~j,= —, transition. By virtue of the spin-statistics theorem,
these gases must obey the Bose-Einstein and the Fermi-Dirac
statistics, respectively. We assume a noninteracting, or ideal
and spatially homogeneous gas. For completeness, we begin

where bk are operators at the initial time of the Heisenberg
picture, defined here as t=O.

To describe the state of the gas, we use the grand canoni-
cal ensemble. Given the unperturbed Hamiltonian Hp, the
density operator is a mixture of simultaneous eigenstates of
all the number operators nk = b„bk . The expectation
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values of these operators are determined by the temperature
T (or P = 1/k~T) and the chemical potential p, ; we have the
familiar Bose-Einstein ( —) and Fermi-Dirac (+) occupation
numbers

1

P(& q-u) (54)

Strictly speaking the number of particles is not conserved in
the grand canonical ensemble, but in the thermodynamic
limit this may be ignored. We will equate the expectation
number and the actual number of atoms, denoting both by N.
The equilibrium density, of course, is n =N/V.

Computation of correlation functions such as those in Eq.
(47) boils down to computation of thermal expectation val-
ues of operator products of the type

2jg+ 1
n =g (1)

D
(58)

g nq h(k, m) —+ 3 d k nt, h(k, m)
k 2~

N,+ . h(0 m).2jg+1 (59)

It is these N, k=0 atoms that make the Bose condensate.

Physically, all atoms in excess of the density n go to the
ground state k=0 of the c.m. motion, which gives the k=0
density n, =n —n . The continuum approximation must be
amended to include explicitly the N, atoms in the ground
state,

Given the nature of the density operator, it is clear that a
nonzero contribution may only emerge if the annihilation and
creation operators pair up; either (k, , m, ) =(kz, mz), and

(k3 ms) = (k4, m4), or (k, ,m, ) = (k4, m„) and (kz, mz)
= (ks, m3) [18j. In both cases the commutation or anticom-
mutation relations may be used to reduce the surviving terms
into expectation values of products of number operators,
which may be deduced immediately with the aid of Eq. (54).

The final item is sums in statistical mechanics. One may
normally make the continuum approximation for the k
modes; whatever reasonably smooth function h, the replace-
ment

B. Bosons: j~=o—+j,=1
Our first example is atoms with a j~=O~j, =1 internal

transition. In this case, there are no magnetic substates to the
ground state, so we temporarily drop the index m from our
notation. The relevant polarization factor (50) may be calcu-
lated without difficulty. To simplify things further, we as-
sume a nonpolarizing detector. Thus, we choose two or-
thogonal exit polarizations e (also orthogonal to the
propagation direction n), and sum the spectra. The result is

1
M(co;r, n) = I~(r, n) V

27r

Vg nq h(k, m) —+ 3 d k nq h(k, m)2 7r
(55)

X d r'dt e'~"' "' l(n(00)n(r't)).

(60)

applies. Using h=1 as the function, one may express the
density of the gas as a function of temperature and chemical
potential, I,(r, n)= ~ I(r)(1 —~e;. n~ ) (61)

nkvd=

(2jg+ 1)g —(z), is the light intensity that would be radiated by one atom, and

where n(rt) = P~(rt) P(rt) (62)

( 27rA,
z =e~~,

l m~a7'I

2
g+(z) = dx

2
x ze 1)n+1 n

3/21+ze

nz
g (z)= g (57)

are the thermal de Broglie wavelength, fugacity, and the
proper functions for fermions (+) and bosons ( —). Con-
versely, one may solve fugacity as a function of density and
temperature from Eq. (56).

The significant exception to (55) occurs for bosons at low
temperature or high density. To keep the occupation numbers
(54) positive and finite, the fugacity is bounded: z c (0,1).
Equation (56) then seems to imply that there is a maximum
density for particles,

is the particle density operator for lower-state atoms. The
spectrum is the Fourier transformation of the density corre-
lation function, (r, t)~ (6,a; co).

The result (60) reflects scattering processes in which the
wave vector of the photon changes by Asc and frequency by
~; our implementation of the RWA entails that co= 0 experi-
mentally refers to the laser frequency 0, . The fractional
change of frequency upon scattering is normally negligible,

~
co~ &&0, , so that one finds the familiar relation between the

magnitude of the change of the wave vector and the scatter-
ing angle 0, 5 ~= 2~sin(8/2). The quantity 6 ~ may be var-
ied experimentally in the range (0,2~]. The spectrum of
scattered light may then be monitored for a fixed scattering
geometry.

If an individual atom with wave vector k in the gas took
up the photon recoil, the wave vector of the atom would
change by —Aa in a scattering event. Energy conservation
then dictates a change in photon frequency equal to
co= e&

—ei, ~„.To manage conservations of energy and mo-
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mentum, we introduce an effective recoil frequency and an
effective Doppler width corresponding to the change of the
wave vector Am,

fi(b, ir)

2m
COD = kiiT(h k)

(63)

These are the two most prominent frequency scales of our
theory. It should be noted that ~R and coo may be varied, to
some extent independently, by varying the scattering angle
and/or the temperature.

Given the notational preliminaries, for an ideal Bose gas
the spectrum (60) may be calculated easily from the expres-
sion of the atomic field (53). Skirting so far the continuum
approximation, we have

I

4

z,f) = (1,0.3)

(1,0)
(0.9,0)

(0.1,0)

0 1 2 3 4

I' A. k. A~i
~(~)=IiX ~ ~+~R t:nk+nknk —a ].

m

(64)

The result (64) is amenable to straightforward interpreta-
tion. If the effective recoil frequency ~R and the product of
two occupation numbers were omitted, the spectrum at co

would be proportional to the number of atoms with the ve-
locity component in the direction of the vector As& equal to
v =co/A~. This is precisely the underlying theory for Dop-
pler velocimetry of atoms [8]. The presence of the quantity
coR merely indicates that we are careful with the kinematics,
taking into account the recoil shift of the atomic transition
frequency.

The novelty of (64) lies in the product of the occupation
numbers. The product indicates that the scattering
k~k —Am is enhanced if the final state is already occupied.
This term is expected to be important whenever both the
initial state k and the final state k —Aa may have a signifi-
cant thermal population. It can be seen easily from the defi-
nitions (63) that this condition for significant degeneracy ef-
fects may be recast as

COD~ O)R . (65)

W(cu) =NI, F(ai;z), (66)

with

F(co;z) =
/2m. ~og (z)

—ln(1 —x+) +
x+ x

X [x+in(1 —x ) —x ln(1 —x+)] (67a)

x~ =g exp—
2 coo

(67b)

The normalization of F(co;z) is such that the integral over
ui would be unity if only the first term in the braces in (67a),
the direct contribution from velocity distribution, were re-
tained. On the other hand, if a fraction f of the gas is in the
Bose condensate, (59) gives

It remains to calculate the sums over k. In the absence of
a Bose condensate we use (55), and obtain

FIG. 1. Spectra of light scattered from a Bose gas with various
degrees of degeneracy, Starting from the bottom curve, the fugacity
and the condensate fraction are (z,f) =(0.1, 0), (0.9, 0), (1, 0),
and (1, 0.3). The offset co from the laser frequency is expressed in

units of the effective Doppler width coD, and the effective recoil
frequency is chosen as ~z = coD. The spectra have been normal-
ized to the same area, and vertical offsets have been added for
easier comparison. To regularize integrable divergences in the spec-
tra emerging at z=1, all computed spectra are convoluted with a
Gaussian with the root-mean-square width O. leo~ .

W(ui) =NI, (f[8( +oitu~)(1+na„)+ B(~—ui~)na„]

+ (1 —f)F(~'1)). (68)

We give representative spectra of the scattered radiation
from Eqs. (66) and (68) in Fig. 1. The natural frequency
scale is the effective Doppler width coD, so we use co/coL) as
the horizontal axis. We choose the temperature and the scat-
tering angle in such a way that cuR= coD. At z= 1, whether
there is a condensate present or not, the spectra develop in-

tegrable singularities. We have removed these by convolut-
ing all spectra with an "experimental resolution, " a Gaussian
whose root-mean-square width was arbitrarily chosen as
0.1coo .

At z=0.1 (n =0.04 n ) the spectrum is a Gaussian mir-

roring the velocity distribution, although shifted by —coR. At
z=0.9 (n=0.62 n ) small deformations from the Gaussian,
a sharper peak and a rising right shoulder, may be detected.
For z= 1, f=0 (n=n ) the peak at co= —cuR has grown
quite sharp, and a new peak has emerged at cu=+ cvR. At
z = 1,f= 0.3 (n = 1.42 n ) a Bose condensate is present. The
spectrum has two dominant peaks at co= ~ coR.

The feature at co=+ coR reflects the Bose-Einstein statis-
tics, in that a photon recoil taking an atom into an already
occupied state is favored. Two somewhat contradictory con-
ditions must be satisfied to observe such statistics effects.
First, the gas must be degenerate, i.e., the temperature must
be low enough and/or the density high enough. However, the
temperature must also be high enough that both the initial
and the final state of scattering are occupied, see (65). These
two aspects combine into a condition on atomic density,
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I 2m'(
(69)

In other words, the distance between two typical neighboring
atoms must be smaller than the effective wavelength
X' =2m/A~.

C. Fermions

Particles with half-integer total angular momenta are fer-
mions. A nontrivial degeneracy of the ground level is inevi-
table. We present results for the simplest example in atomic
systems, the level scheme jg= 1/2 ~j,= 1/2 .

Any combination of the polarizations of the incoming
light and of the polarizers in front of the detector may be
analyzed straightforwardly using Eqs. (47) and (50). How-
ever, for the sake of brevity we only take up the case when
the incoming light is linearly polarized, e;= e& =e, and the
detector is insensitive to polarization of the scattered light.
We denote the propagation direction of incoming light by
e3=e, , so that the angle 0 in the conventional polar repre-
sentation

(
X g 8' co+ co

flak Aal
nk(1 nt —a ).

m J

(72)

For this particular level scheme it so happens that scattering
is isotropic.

In the continuum approximation, the result is again of the
form (66), except that the one-atom intensity is now

tions between the internal states. The first term in (71b) char-
acterizes processes in which the c.m. motion of an atom goes
as k~k —Asc and the spin stays t', while in the fourth term
the spin also fiips: $ —& $. One might hope that such Raman
processes could bring with them an angular dependence of
scattering on the degeneracy of the atom, but at least in ther-
mal equilibrium at zero magnetic field such hopes are
dashed. When the occupation numbers are independent of
angular momentum, nk) =nkvd=

—nk, we have

n= e, sinOcosg+ e2sinOsing+ e, cos0 (70) 4,A
l, (r, n) = —

~ I(r), (73)

coincides with the scattering angle. The ground state atom
has two possible magnetic quantum states m = 1/2 and
m = —1/2, which we refer to as "spin up" and "spin down";
t' and J, .

The spectrum of the scattered light reads

and the new function F is given by

F(o);z) = ln( 1 +x+)
2vro)og (z)

P'(co;r, n) =I(r) ~ g 8 o)+o)R—
kk. Aa~

(71a)

[x+ln(1+x ) —x ln(1+x+)]
X+ X

(74)

Gk(n) = —,
'

[n„&(1—n„z t)(1+cos 8)

+ nkvd(1
—nk g„&)(1+cos 8)

+nkvd(1
—nk g„t)sin 8

+nkt(1 —nk g„))sin 8]. (71b)

The minus signs in Gk reflect Pauli s exclusion principle,
which forbids transitions to an already occupied state. An-
other difference from the j =0~j,= 1 case is the presence
of several sublevels, hence the possibility of inelastic transi-

For the Fermi-Dirac statistics, the fugacity does not have
an upper bound. When the temperature goes to zero (or the
density becomes infinite), the fugacity tends to infinity. The
result is the Fermi sphere with the radius equal to the Fermi
wave number kR= (6' NIV)": n„= 0(k~ k). Th—e result-
ing spectrum may either be derived as a limiting case from
Eq. (74), or directly for the Fermi sphere. The critical con-
sideration is the comparison between the Fermi energy (in
frequency units) eI;=fik~/2m and the effective recoil fre-2

quency o)~. For o)~&4eF, every recoil event takes an atom
out of the Fermi sea. The spectrum of scattered light reads

3%Ii
W(co) = X~

8 gEFMR

Goy+ 2'1—
4eF

, 0,

4 6FcoR
—2/eFmR-m+ mR-2/e~~R

otherwise.

(75)

This is a shifted image of the velocity distribution. On the other hand, for co&~4eF some recoil events would lead to an
already filled state in the Fermi sea, and are forbidden. The spectrum is
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6F
3NIi

~(~)= X&

, 0,

Q)R+ 2'
4 6FCUR

COg 2 g EFQJ g ~ Ct) ~~0

~a-~+24eF~~-~z

otherwise.

(76)

In the extreme case ~R&& ~F the spectrum turns into a triangle
that rises linearly from 0 when co decreases from 0, and then

cuts off abruptly at —2 geFcoR. These kind of line shapes are
once more a qualitative signature of atom statistics.

An example is given in Fig. 2. Here we choose the atom
density and scattering parameters so that eF = coR, and vary
the temperature to give fugacity the values z = 0.1

(k//T = 3.93 fi e„; dotted line), z = 0.9 (k//T = 1.05 fi eF;
dashed line), and z = ~ (T= 0; solid line). As the temperature
is decreased, the high-temperature Gaussian shape evolves
into a wedge consisting of a linear and a quadratic piece.

Just as for bosons, when the gas is degenerate, the veloc-
ity distribution of the atoms is modified from the Gaussian.
The change in the velocity distribution is rejected in the
spectrum of the scattered radiation. Moreover, if both the
initial and the final state for a recoiling atom may be occu-
pied, or eF coR, the Fermi statistics also directly influences
the spectrum through Pauli's exclusion principle. Interest-
ingly enough, the qualitative condition for such modifica-
tions is the same as for bosons: a density such that, on the
average, at least one atom resides in a cube of an effective
wavelength.

D. Bosons and fermions: Joint considerations

If the occupation numbers are independent of the mag-
netic substates, one may, in fact, derive from Eq. (47) a gen-
eral expression of the unpolarized spectrum for an arbitrary
input polarization e;:

M2
W(ru;r, e;,n) = W(n, e;)I(r) 2 g 8'~ co+/d~—

C=n oU, (79)

thermal expectation value involving the relative velocity U

and the cross section o., with the scale of the frequency
spectrum. The most relevant such scale is the effective recoil
frequency coR, so that the condition for the ideal-gas ap-
proximation to be passable is roc~ coR.

The quantity coR is expected to be in the neighborhood of
atomic recoil frequencies, coR-eR-100 kHz as a rule of
thumb. In the absence of experiments with low-density de-
generate samples, the validity of the ideal-gas model is an
unanswerable question, but we suspect that the ideal-gas as-
sumption will be one of the first casualties of real experi-
ments. In fact, the numerical parameters used in Ref. [3] and
a scattering length of a few nanometers would give
~c

The calculations of Sec. IV may turn out to be examples
of a method rather than predictions. Nonetheless, we point
out that our key scattering results such as Eq. (47) in no way
depend on the ideal-gas assumption. The question simply is
to obtain the relevant correlation functions for an interacting
gas, a staple problem in condensed matter physics. Our em-

E. Ideal gas

The examples of the present section were all based on the
Hamiltonian (52) of an ideal gas. We now inquire about the
validity of the ideal-gas assumption. A quick criterion may
be obtained by comparing the collision frequency of the
ground state atoms

Xnk(1 nk /, „). (77) = 0.1
= 0.9

Here the + and —signs apply to bosons and fermions, re-
spectively, and the angular distribution function W is given
by

W(n, e;)= g e M ' '(e;,n). e*.
e, mi, m2

(7g)

I /

/

/
/

/
r /

/
/

/

I
/

r
P

The sum over e stands for a sum of arbitrary two orthonor-
mal polarization vectors also orthogonal to n.

The result (78) tells us that our simplest boson and ferm-
ion examples have already captured the essential physics for
any level structure. Besides atom statistics, the only differ-
ence between different level schemes is the overall angular
distribution of the scattered light.

-10 0
Cd/EF

FKJ. 2. Spectra of light scattered from a Fermi gas with various
degrees of degeneracy. The effective recoil frequency is chosen
equal to the Fermi energy, co& = eF . The curves are parametrized
by the fugacity z, which for a fixed Fermi energy is a measure of
temperature.
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phasis here is on photons and so we rule such correlation
functions outside the scope of the present paper, but we plan
to return to probing of a true interacting gas in a future com-
munication.

V. CONCLUDING REMARKS

For an ordinary nondegenerate thermal gas, the spectrum
of scattered light is Gaussian, basically an image of the ve-
locity distribution. For a degenerate gas, the effects of statis-
tics fall into two categories. First, the velocity distribution is
modified, with attendant modifications in the spectrum. Sec-
ond, statistics may enhance or inhibit the recoil of an atom
during a photon scattering event, which leads to a direct
qualitative influence on the spectrum. The direct effects of
the statistics depend on the relative magnitude of the effec-
tive recoil frequency and the effective Doppler width. In an
experiment, this comparison may be controlled to a certain
degree by varying the scattering angle of light.

There are limits to the sensitivity of the spectrum to the
statistics of the atoms. For instance, while the spectrum of a
gas containing a Bose condensate may display two peaks,
these peaks would, in practice, evolve continuously as the
gas moves across the Bose condensation point. The spectrum
cannot pinpoint the precise onset of Bose condensation. In
addition to the macroscopic population of the ground state, at
the phase transition point the Bose gas should abruptly ac-
quire nontrivial phase properties in a process known as spon-
taneous symmetry breaking [19].Unfortunately, as far as we
can tell, the spectrum of scattered light is also totally insen-
sitive to such phases.

Our example theory was derived for an ideal, homoge-
neous Bose or Fermi gas, whereas a trapped, weakly inter-
acting gas is a more likely result of an experiment. The mo-
mentum distribution of a real (presumably trapped) gas is
broadened [20], both because of the uncertainty principle and
because of the interparticle interactions embodied in ~gg,
see Eq. (18b). Condensate features analogous to the 8 func-
tions in Eq. (68) should thus have a nonzero width. Never-
theless, as long as the sample is much larger than the wave-
length of the driving light, at least the width of the spectral
features imposed by the uncertainty principle remains much
smaller than ez.

Doppler velocimetry experiments, as in Refs. [8], serve as
a blueprint for the measurements of the spectrum of scattered
light. There apparently is no reason why the existing experi-
mental methods would not work on the scale of a photon
recoil eR. The problem really is to produce the degenerate
gas. At this writing there is no predicting which experimental

setups will lead to observable statistics effects. Perforce, one
cannot predict the actual parameters of the gas. While we
have offered some numerical estimates in [3], these are just
straightforward extrapolations of the present experiments.
Our theory needs to be refined as the experiments proceed.
For instance, the ideal-gas treatment may prove to be an
oversimplification.

Neutron scattering [21]has been used to measure the con-
densate fraction in the quantum Quid He for quite a while,
see [22] and references therein. Now, with the assumption of
large detuning, we have eliminated adiabatically the excited
state atoms. This amounts to introducing an atom-field inter-
action equivalent to the neutron-nucleus contact interaction
responsible for neutron scattering. Conversely, it is instruc-
tive to delineate the differences between neutron scattering
and light scattering. Neutron scattering in He is carried out
at large momentum and energy transfers and probes short
spatial and temporal scales, over which the atoms are effec-
tively free. Neutron scattering therefore misses any and all
correlations in the atomic motion, and just yields the velocity
distribution. The direct qualitative effects of the statistics are
not accessible. On the other hand, in light scattering the spa-
tial resolution is of the order of the effective wavelength
X'. If the typical interatomic distance is less than X', direct
statistics effects make their appearance.

In Ref. [23] a loose principle was introduced, according to
which the absence or presence of phenomena associated with
particle statistics depends on whether the particles could or
could not be distinguished in the given situation. Remarkably
enough, here we have another example of the principle: The
onset of direct statistics effects in light scattering occurs at
densities such that the resolution of a probe based on light
would no longer suffice to tell an atom from its nearest
neighbors.

Two types of optical degeneracy effects are known at
present: the enormous linewidth of a Bose condensate [3,4],
and the spectral features discussed in [7] and in the present
paper. We regard the search for the optical manifestations of
spontaneous symmetry breaking as a high-priority item. It is
not even known if any such phenomenon can exist, but we
hope to have laid the foundation for the eventual settlement
of the question.
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