
PHYSICAL REVIEW A VOLUME 52, NUMBER 1 JULY 1995

van der Waals and retardation (Casimir) interactions of an electron or an atom
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We use the quantized surface mode technique to evaluate the interaction V of a "particle" (an
electron or an atom) with two sets of plane parallel walls of arbitrary thicknesses and arbitrary
permittivities; one set is on one side of the particle and the other set is on the other side. It is shown
that a set of walls on either side of the particle can be treated as a single wall with an efFective
reQection coefBcient 'R, a function of the frequency and the angle of incidence of an incoming plane
wave. The two sets of walls have thereby been efFectively reduced to one wall on each side. Using a
modi6ed version of the standard image technique —the locations of the images are the usual ones,
but the strengths are modified —one 6nds that the closed form for V can be reexpressed as a sum
of interactions of the set of images on a given side with the wall on the other side. Taking various
limits (thin walls, thick walls, metallic walls, dilute media) reproduces many known interactions
and also provides a number of results not previously obtained. The latter results enable us to
give quantitative estimates of the error incurred in approximating a wall of finite thickness by a
wall of semi-in6nite thickness or approximating a wall with large permittivity by a wall of infinite
permittivity. In an attempt to make the paper user friendly, we provide a tabulation of many of
the short-range (van der Waals —like) and long-range (retardation) interactions now known, with
equation references.

PACS number(s): 31.30.Jv, 03.70.+k, 12.20.—m, 77.90.+k

I. INTRODUCTION

There have been many studies of the interactions of
two plane semi-infinite parallel walls [1—3]. Our primary
interest will be in the interaction with a wall or walls
of an electron or a (polarizable) atom (or molecule), for
separations ranging &om a few Bohr radii to distances
where retardation effects must be considered. One-wall
cases include the interactions of an atom with an ideal
wall [4], an atom and a semi-infinite dielectric wall [5] (ob-
tained &om the interaction of two semi-infinite dielectric
walls by having one of the walls describable as a dilute
gas of atoms), an electron with an ideal wall 6], and an
electron with a semi-infinite dielectric wall [7 and with
a seini-infinite dielectric permeable wall [8].

We will consider the interaction of an atom or an elec-
tron, placed between two walls, with the walls. The walls
are separated by a distance l and have thicknesses dq and
d2 and (frequency-dependent) permittivities si and E'2.

The three regions separated by the two walls have per-
mittivities e4, es, and es. (See Fig. 1. The odd labeling
of the e's is a consequence of an effort to use some of the
same notation used in previous publications. ) All per-
meabilities are taken to be unity. By appropriate choices
of the various thicknesses and e's of the Ave regions, we
reproduce all of the results noted above and we also ob-
tain some additional results. For example, for d2 ——0
and e5 ——e3, the two-wall system reduces to a one-wall
system, while dq ——oo gives a semi-infinite wall. We will
examine various limits in detail. Of particular interest

are conditions under which, to a given accuracy, a wall
can be assumed to be infinitely thick, or a perfect con-
ductor. The interaction when one or both of the walls
have a permittivity close to unity often assumes a rel-
atively simple form. Various results, including those of
general types and those in certain limits, are summarized
in the tables near the end of the paper. The results ob-
tained can be most easily interpreted in terms of effective
reHection coefficients [9]. This interpretation allows one
to extend the results to an arbitrary number of layers
of arbitrary thicknesses and permittivities. The multi-
layered results should be of interest for some systems in
condensed matter physics and in biology.

E4

FIG. 1. The surfaces of the 6ve media are parallel to the
xy plane. The center plane of medium 3 is at z = 0. The
system whose interaction is to be determined is characterized
by its polarizability o. and is positioned at z in medium 3.
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To lowest order, the approximation under considera-
tion, the electron or the atom is affected by the field
between the plates, but does not affect that Geld. The
determination of the interaction is therefore reduced to
the determination of that Geld. We choose to make that
determination by using the very effective quantized sur-
face mode technique [10]. (The quantized Fresnel mode
technique [11],used in Refs. [7,8], is also a powerful tech-
nique, though the treatment of evanescent modes, modes
propagating parallel to the surface of the walls and de-
caying exponentially in the outer regions, may require
some further attention. )

It may be useful to collect at this point some comments
on a few of the more frequently occurring symbols. Many
will be defined more precisely below. Subscripts D, M,
17, at and el denote dielectric walls, metallic (ideal) walls,
dilute walls, atoms, and electrons, respectively. The sub-
script o. denotes a polarizable system, an atom or an
electron, and V denotes an interaction. o. in the text
refers to the system, while o. in an equation represents
the frequency-dependent electric dipole polarizability of
the system. Thus VD, L1, is the interaction (over and
above that of one set of walls with another set of walls)
of system o, , placed between two sets of walls, with the
two sets. The symbols r, R, 7Z, 8, and P, with any
subscripts or superscripts, are related to reflection coefB-
cients. The superscript A denotes a state of polarization
of the electric Geld and the subscripts 1 through 5 often
refer to a particular one of the five walls generally under
consideration; /1 and It2, however, refer to the distances
between n and walls 1 and 2. ~, for any symbol A, de-
notes the value of A at zero frequency. e is a permittivity
and the superscripts vdW and ret on a potential V de-
note (short-range) van der Waals —like and (long-range)
retarded interactions.

Throughout, we use the standard approximation of as-
suming that walls have perfectly well-defined plane sur-
faces. This approximation would not be adequate if the
object with which it interacts an electron, an atom, or
a second wall —were within perhaps two or three Bohr
radii, but we limit our considerations to rather larger
separations. A nearby object does of course acct the in-
ternal structure of a wall. The adequacy of the model for
the present level of experimental accuracy will be com-
mented on very briefly at the end of Sec. IV.

where JV = (2vrku/L )1~2 is the normalization factor,
with L the length of the normalization box in the x and
the y directions, and k = (k, k„) is the propagation vec-
tor in the 3:y plane. [q denotes k and one of the two pos-
sible polarizations of the electromagnetic field. The fields
are quantized and conform to the surface mode boundary
conditions. ] a and a~ are the usual creation and annihi-
lation operators, respectively. The z-dependent functions
satisfy the wave equations

d fq~ —K fq~ ——0, (2.3)

2
—K.g, . = 0,

z
(2.4)

where j = 1, ..., 5 denote one of the five regions and

2

K . = k —
6& ((d )—2. (2.5)

fJ 0 fJ gJ Kzz + PJ —K~z
92 2 2 f, = 0,

(2.6)

with B4 ——A5 ——0 as required for the surface modes.
Using V' x E~ = i(~/c)B~, we find

fJl
g = Z

—
)8z g„= 0, (2 7)

The boundary conditions associated with the mode J are
that f+ and df +/dz are continuous. Applying these con-
ditions to the solutions (2.3) at z = —d1 —l/2, —l/2, l/2
and l/2 + dz, we obtain, after some simple but lengthy
algebra,

fq and gq are functions k and u. We label the two inde-
pendent states of the Geld by the superscript J for the
mode with the polarization of the electric field perpendic-
ular to the plane formed by k and the z axis and by the
superscript

~~
for the mode with the polarization parallel

to the plane formed by k and the z axis. For simplicity of
the mode description, we choose the coordinates system
in which k is parallel to the x axis. For the perpendicular
mode, we then have

II. QUANTIZED SURFACE MODES 1 —q, q, ~=o, (2.8)

The vacuum fluctuation fields can be determined for
the system deGned above. For our purposes we need con-
sider only the zero-point energy associated with the sur-
face modes, namely, those modes that are exponentially
decaying in the outer regions, that is, for z ( —d1 —l/2
and z ) l/2 + d2. In general, the electric and the mag-
netic Gelds of the surface mode q can be written in the
forms

E~ = ilute'" +'"""[a~f~(z)e ' —atf'(z)e' ], (2.l)

where

with

J 3 —2K1d1
qJ P13 P14 —Kz l

1 —pi pi e-2Kld1
13 14

(2.9)

(2.1o)
J A —2K' dg

P23 P25e Ic.i-
—2K2d2

23 25

+'"» [a g (z)e ' + atg*(z)e' ], (2.2)
K —K„

Pmn= K +K (2.11)
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The subscript wiv in Eq. (2.8) denotes the allowed quan-
tized frequencies of the perpendicular mode for fixed k.
Introducing

(2»)

G~ =—G~(~) —= i —q~iq2~, (2.12)
The boundary conditions for the parallel mode are that
ef, and df, /dz are continuous. Similar to Eq. (2.12), we
have

we rewrite Eq. (2.8) as

(~sr) = 0. (2.is)
Gll = Gll(~) = 1 q~~q~~ (2.22)

The electromagnetic energy associated with the mode
q = (k, uriv) is the zero-point energy Ruiv/2, that is,

where Qi and Q2 are defined in the same way as Qi andII II J

Q2+ in Eqs. (2.9) and (2.10), except for the p of Eq.
(2.11) being replaced by

0
1 J

J 2
&n Km &mKn

eK + ~ K„ (2.23)

(2.14)

where ~0) represents the vacuum photon state and the
subscript uN indicates that the expression in square
brackets is to be evaluated at one of the frequencies deter-
mined by Eq. (2.13). Notice the factor d(ew)/dw rather
than simply e in the above expression; see Ref. [12] for
an explanation. Direct evaluation of Eq. (2.14), with the
aid of the boundary conditions, leads to

G' (~iv) = 0, (2.24)

A3B3 =— k2c2

c2Ks(dG~~ /des)
(2.25)

and

Furthermore, in analogy to Eqs. (2.13), (2.17), and
(2.18), we have

) dz /~ '+2m, //f„d(d
= 2. (2.15)

All 13 =— (2.26)

There is a term to term correspondence between the in-
tegral (2.15) and

dG~ .dK, dG+ ~ (u) de~ ) dG~
'+&~

I

du) .- d(u dK~ c2K~ q2 d(u ') dK,.
III. FORCE PER UNIT AREA BETWEEN T%'0

ARBITRARY SETS OF WALLS

We can directly verify that

c'Ks(dG~/der)

(2.i6)

(2.17)

We will first calculate the total zero-point energy per
unit area V/L associated with the quantized surface
modes discussed in the preceding section and then evalu-
ate the force per unit area I"/L between wall 1 and wall
2) using

In arriving at Eq. (2.17), we used the boundary condi-
tions, expressed the coefFicients A and B in terms of
A3 and B3, and factored out A3 B3 in evaluating Eq.
(2.15). As and Bs are related through

d (Vl
L2 dl (L2p

(3.1)

The total energy of the system is simply the sum of the
zero-point energies of the surface modes,

A3~

(q~) (Q. ).~. (2.18) (3.2)

Analyses similar to those presented above can be ap-
plied to the parallel mode. For this mode, we have, for
the electric fields, f„=0,II

Since the sum over k in the above expression is actually
an integral, we make the replacement

and

—AII e~j + + BII ~j +
) (2.19) ) ~

~

—
~

dk =
~

—
~

2~kdk (3.3)
f L)t' (Ll'
(271 ) (27r) 0

and rewrite Eq. (3.2) as
1 dfzII

ik dz

and, for the magnetic fields, g = g = 0 andII II

(2.20)
V
L2 4' dkk ) M~+)

N N
(3-4)
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To perform the sums over N, we consider the general-
ized argument theorem for a complex function H(u) that
is analytic on and inside a closed contour C

In particular, we have ss ——p and Ks ——~esp(/c. We
rewrite Eq. (3.8) as

d~H(u) = ) piv H(~~) —) ppH(u) p))
G'(u))

C N

(3.s)

where G(cu) is analytic and has no zeros on C and is
analytic inside C except for poles. The prime on G(w)
represents the derivative with respect to the argument u
and the contour integral is counterclockwise. ~~ and u~
denote the positions of zeros and poles, respectively, of
the function G(w) inside C. p~ is the number of zeros at
~N and p,J is the number of poles at u~. In applying Eq.
(3.5), we set H(ur) = w, let G(u) be the functions defined
in Eqs. (2.12) and (2.22), and choose as the contour the
full imaginary axis (ioo to —ioo) plus the right semi-
infinite circle. On noting that the contribution from the
right semi-infinite circle vanishes and that G and G~~ do
not have poles inside |,we can reexpress the energy per
unit area in Eq. (3.4) as

~ s2 27t 2C3 0 1

R
X

i +
i 1 —Ri~R2+ 1 RIIRII)

'

with

~A ~A —~e3p(l /c
)

where 'R1 2 are defined as

A —2~F3 s 1(di /c
~A 13 14

] pA pA ~
—2~E3Slgdi/c '

13 14

—2~e3s2(d2/c
~A 23 25

A pA ~
—2~3s 2 gd2, /c '

23 25

with

(3.12)

(3.13)

(3.14)

(3.is)

V
I,2

(G&' Gli' )
Gll

(3.6)
Sm Sn

rmn = )s +s
&nsm —&msn

rmn =
&nSm + &msn

(3.i6)

4Vr2

OO

d( lnG (i() + lnGII(i()

In the last step we introduced the variable change ~ = i(,
performed partial integrations, and used the fact that G
and Gll are even functions of ( and vanish as ( oo.
Using

= 2Ksqi Q~, (3 7)

with A denoting 3 or ll, we find the force per unit area
given by Eq. (3.1) to be

A
1~1 [di —+cm —~13)

A&2 l~, ~- —r.s

(3.17)

(3.i8)

The force per unit area given by Eq. (3.12) is then sim-
plified and reads

The above result is valid for two parallel walls with arbi-
trary thicknesses and permittivities. (The force between
two dielectric slabs of finite thicknesses in a symmetric
one-dimensional mode was evaluated previously [13].) In
the limits d1, d2 —+ oo) R1 and B2 reduce to

L,2
dkk d(Ks

Q& Q2 Q&q~
It'

(1 Q&iq2& 1 qllqll)
' (3.8)

L,2
di, d2 moo

h

2K C

X -L -L 3 —1 2~eg p(L/c~13~23) (3.i9)

where the variable change u = i(, though implicit, is
understood in the above expression.

The expression (3.8) may be rearranged in a form that,
in certain limits, reduces to some known results. Follow-
ing Lifshitz [5], we introduce a new variable p, defined
by

(3.9)

(„II „II q
—&e2~3pt'&/~

~13 23 J

which is the force per unit area between two semi-infinite
walls derived earlier [15]. For metallic walls, risrzs ——1
for A = J or ll, the integrals can then be done, and one
arrives at

We have, accordingly,
E vr hc
A 72O /4 ' (3.20)

where

K~ =
~Epsom c

(e,
s' =

I

—' —1+p'

(3.10)

(3.ii)

the Casimir result. Correction associated with finite con-
ductivity have been obtained [14].

The result (3.19) can also be rearranged in an equiva-
lent form with a double variable contour integration [5].
This rearrangement is also applicable to the general ex-
pression (3.12). After doing so, we have
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Re der~ ~3
27' c p I 0

(
+

(1 —R R, 1 ~II~II)

2OO )
r

I
dip'

(3.21)

oo) and the former is surrounded by the same medium
(e3 ——e4), the force per unit area becomes

L2
d1 ~p, d2 ~OO

+1 ldx 0 (2~&3sl(dl/c)
1 —T13

R2ld, 0 - (2vtess2(d2/c)
TA

2

and Eq. (3.12) simplifies to

(3.22)

(3.23)

L2
Q~ 2~Q

(3.24)

We note here that an approach based on the Presnel mode
description [7,11] would directly lead to the result (3.21),
in which the integration of p over the range (0, 1) rep-
resents the contribution of the traveling Fresnel modes
while the integration over the imaginary axis represents
the contribution of the evanescent modes. Moreover, we
note that R12lg —;are the reflection coefficients of a
plane wave incident at an angle 0 = cos p from the
medium 3 onto wall 1 (with wall 4 behind it) and wall
2 (with wall 5 behind it), respectively. This feature was
recognized previously [9] in the case of interaction be-
tween two semi-infinite walls, where the relevant reflec-
tion coeFicients are Ty 2 and is to have been expected
in the present context. We have performed the cumber-
some algebra leading to the above equations not simply
to confirm that expectation but also to obtain explicit
expressions for 'R12, those expressions are necessary if

'7

we are to be able to estimate the accuracy of an approx-
imation in which a wall of finite thickness and/or large
permittivity is taken to be semi-infinite and/or a per-
fect conductor. The analysis also makes it clear that, for
the present purposes, the reflection coeKcient is the only
relevant property not just for two walls but for any num-
ber of walls. Assume, for example, that regions 2 and 5
are replaced by three regions, labeled 2, 5, and 7, with
region 7 extending to infinity. Region 2 would then be
treated as was done above, while regions 5 and 7 would
be treated as regions 2 and 5 were treated above, that is,
by replacing them by a single region with the appropriate
effective reflection coefBcient; the analysis of the three-
region problem would thereby be reduced to the analysis
of a two-region problem.

As another limiting case we assume that the two walls
are very thin and are immersed in a common medium
(E'3 —e4 = es); Bi and B2 defined in Eqs. (3.14) and
(3.15) can then be approximated by

hd1
Vr2C4

E3 dp (3.25)

2 —2~eg pal/c ~ 13 23 13 23
XP 81e + 2 0

(1 —r~ 1 „II )
In the above discussion, "thin" and "thick" are relative

to other parameters in the problem. The separation of
the walls l serves as the primary criterion, though other
parameters, such as e~, also play a role. Some analysis in
this regard will be offered in the following section.

IV. INTERACTION BETWEEN TWO SETS
OF WALLS WITH A POLARIZABLE SYSTEM

IN BETW'EEN

A. General result

A spherically symmetric, polarizable system with po-
larizability n(ur) is placed at the position z between wall
1 and wall 2, that is, in region 3. The simplest situ-
ation is that for which e3 ——1, in which case n(cu) is
the polarizability of the system in isolation. Formally,
the analysis does not change form if e3 g 1, though one
must now know n(u) for the system embedded in the
dielectric; at least for e3 —1 small, one would often be
able to make a reasonable estimate of the correction to
the value of n(u) in isolation. We will therefore proceed
with e3 arbitrary. Furthermore, we will allow system o.
to be an atom or an electron, since the analysis is ini-
tially of the same form for either case. Before obtaining
the Anal results, however, we must sharply distinguish
between the two cases. Thus, for example, for n far from
either wall, its interaction is dominated by contributions
from very low frequencies and the polarizability n(~) of
an atom can be approximated by n(0) = n0. This ap-
proximation cannot be made for an electron, however, for
which o.o is infinite. Furthermore, the center of an atom
is fixed, while the location of an electron whose interac-
tion is being determined is not. For the above reasons,
in the study of electron interactions we will always ulti-
mately set e3 ——1. Other than for ideal walls, we will
further restrict our attention, in studies of an electron,
to long-range interactions.

In the dipole approximation —in which the size of the
system is neglected —the interaction between the particle
and the walls can be expressed as

1 2
d ~ ~5 5/2 d 2 —2~e3Pgl/cpp 8182e

c p 1 VD D ) (0I ——',n(~)&,'I0). (4 1)
TJ TJ13 23

(1 —F13 )(1 —r23 )

II II

13 23

( P13 )( "23 )-II II

If one wall is thin (di 0) and the other is thick (d2

The wall-wall interaction is unaffected by the introduc-
tion of the polarizable system, which is affected by, but
does not affect, the field between the walls. Kq in Eq.
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(4.1) represents the quantized electric Beld given in Eq.
(2.1). The mode analyses in Sec. II enable us to replace
the sum of modes in Eq. (4.1) by

Ref. [2] and the references therein. ) With the variable
change introduced in Eq. (3.9), we reexpress Eq. (4.9)
as

) +) (4.2)
VD, ~, = d((es n dp

2&C 0 1
(4.10)

Straightforward evaluation of Eq. (4.1) yields

OO

&D, D, = ——

+)- II

(
II )~fll~&

N

(4.3)

where

(4.11)

(4.12)

lfs I' = l&, ,
sl' =— (uI~

c'K, (dG~/d~)
(4.4)

with

2qJ qJ (q L —2Ksz + q L 2Kaz) (4.5)

and, from Eqs. (2.19), (2.20), (2.25), and (2.26), we find

~1~]~

c Iis(dGII/d(d)
(4.6)

with

~
1+ &

~

(qll —2R3s + qll &~a
)

( 2Ãzc~ )
Es~' )

(4.7)

Substituting Eqs. (4.4) and (4.6) into Eq. (4.3), we ob-
tain

where f3 and f3 are defined and discussed in Sec. II.
From Eqs. (2.6), (2.17), and (2.18), we find

with

b = 2~esp(z/c. (4.13)

Although the two sets of walls we considered in the above
derivation consist of two layers of media each, the gen-
erality of the result (4.10) can be extended to multilayer
walls. It was pointed out in Sec. III that R& 2 repre-
sent overall reBection coefFicients of the two-layer walls.
For multilayer walls, we may simply replace the two-layer
7Zi ~ in Eq. (4.10) by the corresponding multilayer 7Z, ~i z.
Note that the 'Ri z defined in Eqs. (3.14) and (3.15) are
expressed iteratively; the 'R~i

z of an (n + 1)-layer wall

could be expressed in terms of the 'Rz 2 of an n-layer
wall and the 'R~i

2 of a semi-infinite one-layer wall.
The general expression (4.10) encoinpasses some well-

known results and some not previously obtained. Various
limits of the general results obtained above will be elab-
orated upon in the following.

To obtain the interaction with only one set of walls,
we let d2 ——0 and e3 ——~5, we then have 'R~ = 0 and Eq.
(4.10) reduces to

VD, D, =
2c

OO
(d I

dkk ) a(~)
K3G+

(4.8) Vi), = — d(( es n dp
27t c o

(4.14)

~J + (y 2 2q~() —2~3P(l1/c

As we did for Eq. (3.4) in Sec. III, we perform the sum
over K by using the generalized argument theorem (3.5).
Using the same contour C as de6ned earlier, we obtain

where 7Zi is defined in Eq. (3.14) and

tg ———+z
2

(4.15)

&D, D, —
27i c d(n(i() (4 9)

(We point out here that the straightforward use of the
argument theorem in the derivation of VD, D, , as well
as its use in the derivation of I"/L~ in Sec. III, is not
mathematically rigorous. We will not concern ourselves
with the related technical details involved. For an expla-
nation of this inadequacy and the way to avoid it, see

is the distance between the system o. and the nearest
of the single set of walls. The general result (4.10) for
two walls can be reexpressed in a form with a sum of
terms almost identical to the result (4.14) for one wall
interactions. Using the fact that

we rewrite Eq. (4.10) as

(4.16)
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(4.17)

) R-L(R1-~&)n + (1 2p2)~ll(~IIRII)~
n=O

) R L(R.L~ L)~ + (I 2p2)RIIPZII~II)~
n, =O

—2~F3pal+ /c

where

l„+ =
I

n+ —
I

l +z( 11
2)

(4.18)

are the positions of the multiple images of the system
o. formed by the two surfaces at +l/2. [Note from Eq.
(4.15) that li ——lo .] The first term of Eq. (4.17) is
independent of the position z. The second and third
terms are in the same form as that of one-wall interaction
(4.14), with li replaced by l+ and n by the correspond-
ing a('R~i'R2~)". Therefore, we may view the interaction
between a and two sets of walls as a sum of interactions
between a(R~1'R~2)" at corresponding image positions and
one set of walls. (See Fig. 2.) We will examine this rela-
tion in certain limits, where the expression (4.17) can be
simplified. Consider a special case in which the left wall,
denoted by the subscript 'V, is semi-infinite and consists
of a dilute medium (di ——oo, ei —1—:bi (& 1), the right
wall is metallic (e2 ——oo), and the system n resides in a
vacuum (es ——1). We then have

zy-plane

—l/2 0 z

~ll

~J

l+z

(~ll) 2

J)2

21+ z

(+II)n

(a')"

nl + z

(n + l/t2) + z = l+

FIG. 2. By a comparison with Eq. (4.14), each term
in the first infinite sum in Eq. (4.17) can be interpreted
as the interaction of a system identical to the true polariz-
able system with a wall. As seen by the nth system, the
fields, with polarization vectors characterized by J and
are reduced (by virtue of multiple reflections) relative to the
n = 0 system by factors (p )" and (p )", respectively, where

= 'Ri R2 exp( —2es p(l/c). The nth system is located at
nl + z and the surface of the semiin6nite wall with which it
interacts is at z = l/2; the separation between the nth system
and the wall is therefore (nl + z) + l/2, or l+. We indicate
the locations of the systems and of the surface of the wall and
the reduction factors for the fields. A similar interpretation
applies to the second infinite sum in Eq. (4.17).

Ri I dr mco, cx l, cs ——1
4p

(1 —2p2) bi
4p2

II'R2I„= „=1——l.

'~1
I &a ~co,ca leg ——, 1

J'R, I„„1 —1, (4.19)

Through order bi, the sum in Eq. (4.17) reduces to a
sum of Gnite terms

OO

dR'cr
27CC O

—2pgl/c 2 2 —2pglo /c
yC (4.20)

2 4+ P
(

—2pt'lc /c + —2pgl~ /c)
2p2

&Z&oD =, dQ'&S ~ dp
me

(4.21)

R+ —R+ cosh(2vz/l)

All (1 —2p2)RII cosh(2vz/l)

1 ~ll'

where

The first term is z independent. The second term rep-
resents the interaction between o. and the metallic wall.
[See Eq. (4.44) below. ] The last term can be interpreted
as the interactions of the dilute medium with n (lo is
the distance between n and the surface of that wall) and
with the image of n in the metallic wall (li is the distance
between the image and that surface).

If the walls closest to o. are both metallic, that is, if
ei ——e2 ——oo, n('Ri'Rz) reduces to just n. Then the
sums in Eq. (4.17) bear a direct resemblance to the stan-
dard image interpretation. We will further discuss this
in connection with the evaluation of V~ qM later in the
section. The form given in Eq. (4.17) provides a simple
picture of the origin of VD, D, , but for computational
purposes one would normally use Eq. (4.10).

If walls 1 and 2 are identical (di —d2 = d and ei ——

e2 = e) and the regions 3, 4, and 5 are filled with the
same medium (es ——e4 ——es), the general form (4.10)
reduces to
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1 pA ~ —2vsd/p/
(4.22)

Correspondingly, we approximate any quantity depend-
ing on e and e3 by its static value

with A(e, es) = Ap ——A(ep, 5so). (4.28)

v = ~esp(L/c,

63s —Epr )
63S + 6p

(4.23)

(4.24)

A in our analysis may represent s, 7Z" and r" and later 8
and P. Making the above approximations in Eq. (4.21)
and changing the variable from ( to v [see Eq. (4.23)],
we obtain the retarded interaction for a wall-atom-wall
system

s=
I

——1+p'
I)E'3

(4.25)
with

d(( es a dp
27) C 0 1

(4.26)

Equations (4.22)—(4.24) are just simplified versions of
Eqs. (3.13)—(3.16).

For a polarizable system interacting with only one wall,
the general expression (4.10) can be greatly siinplified.
(The extension to one set of walls is straightforward. )
We may either set d2 ——0 and e3 ——~5 or let L = oo, and
we also have e3 ——e4 = e. Either approach gives

Rp e —7Zp e cosli(2vz/l)

1 —R 80

(4.30)

2

0 0(1 2p )~II e
—v cosh(2vz/l)

1 —XII g
—2v

2

0

There are two limits of special interest. For thick walls
(d ~ oo), 7Z" defined in Eq. (4.22) approaches r" and,
accordingly, 7Zp" in Eq. (4.29) can be replaced by rp", that
1s)

where 7Z and 74~~ are defined in Eq. (4.22) and l is
defined in Eq. (4.15).

In the following subsections, we will apply VD D of Eq.
(4.21) and V D of Eq. (4.26) to an atom and then to an
electron. Various limiting results, some known and many
not previously obtained, will be discussed.

ret A co!0 3 dP & II

VDatD I&~ao =
sy2

dvv 4 @("o ~ "o).
1 p'

(4.31)

2svd 'P

(4.32)

For thin walls (d 0), 7Z" can be approximated by

B. Wall-atom-wall interaction

5 ~ 5( )0= Ep, E'5 ~ 55(0) = esp) cl ~ cl(0) = ctp.

(4.27)

VD tD from Eq. (4.21) is valid for arbitrary l and z
(for IzI & l/2). [We assume that di ——d2 = d, ei

and Es = E4 = E5, necessary conditions for the
validity of Eq. (4.21).] As noted earlier, we will allow the
medium in which the atom resides to have a permittivity
e3 other than unity. For the atom, whose center is fixed,
the result would seem to be formally correct if one uses for
n(tu) the polarizability in the presence of the dielectric.
The retention of es, for cs g 1, would presumably be an
improvement for e3 —1.

There are two limits of particular interest, the first
when L/2 + z—the distances of the atom from the walls-
are both large and the second when l is small. VD to,
under the former condition, gives the long-range retarda-
tion interaction, while under the latter condition it gives
the short-range interaction of the van der Waals type.

For the long-range case, the contribution from frequen-
cies near zero dominates. Thus the permittivities of the
walls and the polarizability of the atom can be approxi-
mated by their static values

(4.33)

where @, which depends only on ep/Esp, is given by

II

v)= dp — 2+(1 —2p )
1 —~0 II

(4.34)
1 P0

Carrying out the integration over v we obtain

37tccxpd ( 1 1 )
DatD I~ p 5/2 I L5 L54~esp 4 i 2)

(4.35)

where li ——lo and l2 ——lp [defined in Eq. (4.18)] are
the distances of the atom &om the left wall and &om the
right wall, respectively. Since the interaction of an atom
with a thin wall is weak, it is hardly surprising that the
interaction of an atom with two thin walls is the sum of
independent atom-wall interactions.

Note though that the individual terms in Eq. (4.35)
fall off as 1/li and 1/l2, while for metallic walls or thick

Since 'R0 is a small quantity, we can simplify the inter-
action (4.29) to

2ACO!0d
o = —

&&2
vP dvv e "cosh(2vz/l),

0
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dielectric walls a retarded wall-atom interaction falls ofF

as the fourth power of the separation [4,15]. Corrections
of order d/ll and d/l2, which account for the different
dependence on the separation, are to be expected from
consideration of the effective thickness of the wall, the
thickness which contains the atoms whose (long-range)
contributions to the retarded interactions dominate. The
effective thickness for a thin dielectric wall is the actual
thickness d, but is proportional to l (with a coefficient
small compared to unity) for a thick dielectric wall. A
more formal analysis of the correction associated with a
wall of finite thickness will be presented in Sec. IVF.

In contrast, for the short-range case (l small) signif-
icant contributions come from the region v 1 in Eq.
(4.21). [Consider Eq. (4.22) for B". The exp( —v) factor
is very small for v &) 1, while the 1 —exp(2~eqs(d/c) or
1 —exp(2vsd/pl) factor vanishes as v 0.] v 1 cor-
responds to p c/(~es(l) )& 1. Then, for e/es of order
unity, we can use the approximation 8 p, which leads
to

3hd (1 lb
VDatD Id~0 16 I l4 + l416m (g 2p o

n (es' —e')

(4.41)

E'M oo, XII m 1 (4.42)

The interaction (4.21) then reduces to

26
VM~M = dQ' es n

7i C
(4.43)

e —p e "cosh(2vz/l)
X

e —2D

[Just as for the long-range retarded interaction for thin
walls, given in Eq. (4.35), the short-range result for thin
walls is the sum of independent atom-wall interactions
and the interactions difI'er from those for thick dielectrics
(or metals) by corrections proportional to dl/l and d2/l. ]

In the case of idea/ walls we have the limiting values

R =0,

with

—2vd/l
x~~ =e—= ~~

1 P2e —2vd/l ' (4.36) recall that the subscript M denotes a metallic wall. Cor-
respondingly, the one-wall interaction Fiq (4.1.4) reduces
to

(4.37)
7l C

2 —2~F3P(l 1 /c

vd QT 26
VDatD l

dvv
n He cosh(2vz/l)
es 1 —8 e

(4.38)

Furthermore, for thick walls (d -+ oo), 8 in Eq. (4.38)
can be approximated by P according to Eq. (4.36).
Therefore, we have

vdW
VBatD ld-+~ ls (4.39)

P is simply the reflection coefficient for a plane electro-
magnetic wave traveling in a region with permittivity e

incident normally on a semi-infinite medium with per-
mittivity @3. A similar interpretation can be given to 8
for a medium of thickness d. Making the above approxi-
mations, changing the variable from p to v in Eq. (4.21)
and keeping only the leading l term (which is the term
associated with the factor —2p2), we obtain the short-
range van der Waals interaction for the wall-atom-wall
system

(4.44)

2h
VMS

M7-
TT'C

dg' es n
e

—2D

dip
e —2P' (4.45)

OO

P g (
—2~cap(l» /c + —2~cap(l /c)

n=O

where the l+ are defined in Eq. (4.18). Apart from the z-
independent term, that containing v, VM M is just a sum
of interactions between o. at its multiple image positions
and a single wall [compare with VM in Eq. (4.44)].

For the long-range interaction, we use the approxima-
tions (4.28) in (4.43) and change variables from ( to v.
The integral over p can then be easily performed. For
the resulting v integral, we use

The two-wall interaction (4.43) can be reexpressed in a
form similar to (but simpler than) Eq. (4.17) by expand-
ing [1—exp( —2v)] in the p exp( —v) cosh(2vz/l) term.
One obtains

n Pe "cosh(2vz/l)X—
es 1 —P2e

e2& 1

vr4

240
(4.46)

On the other hand, if the walls are thin (d 0), g can
be approximated by

2 cosh(2vz/l) 4 3 —2 cos (vrz/l)

sinh(v) 8 cos4(7rz/l)
(4.47)

2vd P vd (es —e )
1 —P2 2l

(4.40)

The integral over v can then be performed and the inter-
action (4.38) reduces to

and find

7f' Acclo 1

~4»2 360
~3O

or, equivalently,

3 —2 cos (7rz/l)
8 cos4 (7rz/l)

(4.48)
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ret 3hcnp 7r4 . f 1 1 )
4+ 4 . 449

135l4 (l+ l
— )

yvdW
Dat

7r 1
Gvv c d( —8*, (4.54)

The second version is most easily derived from Eq. (4.45),
once again using (4.28) and changing variables from ( to
v [see Eq. (4.23)]; it is interpreted as a sum of image
interactions. Apart from the trivial (formal) generaliza-
tion from e3 ——1 to e3 arbitrary and a reinterpretation of
o.p as the zero-frequency polarizability of the atom when
within the medium, Eq. (4.48) is a result previously de-
rived [16].

For the short-range interaction, we change variables
from p to v in Eq. (4.43). The approximations allowed
under the assumption that t is arbitrarily small are much
more readily understood by a physical argument than by
a mathematical analysis. Thus, for I 0, the time of
fiight cannot be relevant and we can let c ~ oo. The z-
independent first term in the square bracket in Eq. (4.43)
vanishes as c —+ oo and in the second term the integration
limits on v, ~as(l/c to oo, can be replaced by 0 to oo,
the difFerence vanishing as c ~ oo. We thereby obtain
the nonrelativistic van der Waals —like result, with the
characteristic l behavior,

3Aco!p&a.~�l~-=—
~16ml1�~

dp p+(1-2~') p",p'-
(4.55)

vdW
VD.~ ld~

47rl1

cl Es —E

E3 C3 + 6
(4.56)

while for a thin wall (d 0), they become

3&co.'pd

s 3/24rl. li6 ps

shd
167rl41

&Z't l~-p =—

&8'.~ l~-p = O, C2 623

4636

(4.57)

(4.58)

where 'Rp and 8* are defined in the same way as 'Rz of
Eq. (4.22) and 8 of Eq. (4.36), respectively, except that
l in Eqs. (4.22) and (4.36) is replaced by li, the distance
between the atom and the wall defined in Eq. (4.15). For
a thick wall (d -+ oo), Eqs. (4.53) and (4.54) become

l M cm =
s T(z/l) d(—

6 3
(4.50)

with

T(z/l) = 2 cosh(2vz/l)
dVV

sinh(v)
(4.51)

As for the retarded interaction, the short-range inter-
action of Eq. (4.50) is a trivial formal generalization
(from es ——1 to es arbitrary, but with the reinterpre-
tation of the polarizability not simply at zero frequency
but at all frequencies, for the atom vrithin the medium)
of a previously derived result [16]. Corresponding to
Eq. (4.48) in the long-range case, V~~~~ can be reex-
pressed, on evaluating T(z/l) by writing 1/(2 sinh v) as
exp( —v) + exp( —3v) + . , as

d(( ~s~ n 2 —2~F3P( l 1 / c

(4.59)

Replacing e3 and o. by their zero-frequency values and1/2

integrating over ( and then over p we obtain

vrhere g is given in Eq. (4.34). While the interactions
(4.55) and (4.56) for a semi-infinite wall have been stud-
ied [15],the results (4.53) and (4.54) for the finite wall [in-
cluding the results (4.57) and (4.58) in the thin wall lim-
its] have not been available previously. Equations (4.53)
and (4.54) can be used to deduce the Casimir and van der
Waals interactions between two atoms; following Lifshitz
[5], one simply takes the vrall to be a dilute gas of atoms.

For an ideal wall, a direct reduction of Eq. (4.26) using
the limiting values (4.42) gives

d( —,

which is a sum of wall-image interactions.

(4.52) 3ACO.'p
Mat 487rjt1e3p

Integrating over p and letting c —+ oo gives

(4.60)

C. Wall-atom interaction ~vdW
Mat ~1 (4.61)

Analyses parallel to those leading to the results for the
wall-atom-wall system can be applied to the much sim-
pler expression (4.26) for the atom-vrall system and the
results are simpler as well. Here we record the corre-
sponding long-range and short-range results

The result (4.60) is well known [4 and the result (4.61)
for es ——1 has also been studied [6 .

D. Wall-electron-+eall interaction

ACO! p
Dat 427rl1~3P

dVV
dp
p4

x 'Rp +. (1 —2p )7Z

(4.53) We now. consider an electron between two identical
walls; in line with an earlier discussion we set ~3 ——l.
Substituting polarizability of a free electron, associated
with its time-dependent displacement generated by an
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electric field of frequency ~ [with u in n(ur) = —e2/m, ~2
replaced by i(]

Zll =8—8
2p2' (4.71)

n(i() =
2

m (2

VDelD
he

xmec
dpO

into the general expression (4.21), we obtain

(4.62)

(4.63)

which ensures the convergence of the p integral of the sec-
ond term in Eq. (4.70). This is achieved at the expense
of having to evaluate an additional contribution VD, lD II
given in Eq. (4.68). To analyze VD, iD II we first follow
the procedure of double contour integration mentioned
in Sec. II and rewrite Eq. (4.68), valid for the short- and
the long-range cases, as

where

B" —R" cosh(2vz/l) 2
Rii cosh(2vz/l)+ 2p'

A=i, ll
1 —All

(4.64)

2OO ) 0

d((
1

Be "cosh(2vz/l)
X

1 —82~ —2v

2he2
VD, lD II —— Re

R'me C

2OO )
)1

dpi''

(4.72)

2 Be "cosh(2vz/l)
82 —2v (4.65)

where 8 is defined in Eq. (4.36). As will be seen below,
the decomposition given in Eq. (4.65) avoids the diver-
gence mentioned above; adding and subtracting the term
involving 8, the contributions from 0 and from the 8
terms separately converge. Accordingly, we may rewrite
the wall-electron-wall interaction (4.63) as

VDelD VDelD, I + VDelD, II q (4.66)

The last term in 0 needs special attention, for it could
seem to cause the p integrals to diverge if analyses parallel
to those used for the wall-atom-wall interactions were
used. To bypass this di%culty, we follow a procedure
used previously for a similar situation [7] and introduce

In the long-range case, we use the approximation (4.28).
Since 80 is real, we can neglect the contribution from the
p integration along the imaginary axis. After changing
the variables from ( to v [see Eq. (4.23)] and performing
the integration along the path 1 to 0, we obtain

yg ret
"DelD, II

2he2

arm cl
Bpe cosh(2vz/l)

dvv 4.73
1 —8 c0

[In. obtaining Eq. (4.73), we have also performed a con-
tour integration down along the positive imaginary v axis
(ioo to 0), then along the positive real axis (0 to oo), and
then along the upper-right one-quarter infinite circle (oo
to ioo).] Combining the results (4.69) and (4.73), we
obtain the total long-range wall-electron-wall interaction

with

VDelD, I
he2

jt mac
dpO, (4.67)

DelD

with

he2

7t.mecL
—C ('R, 7Z", 8o), (4.74)p'

VDelD, II = 2he

7t mec
z Be "cosh(2vz/l)

1 —82e

(4.68)

28pe "cosh(2vz/l)
C R, 'R, Bo =8o—

1 —8 c0
(4.75)

VD,~D I given by Eq. (4.67) can then be treated in the
same manner as that used for VD tD in Sec. VI B. In the
long-range case, we use the approximations (4.28) and
obtain

For thick walls, VD', lD can be simplifj. ed for one can re-
place 'Rp~ and Bp in Eq. (4.75) by r p and Pp, respectively.
[See Eqs. (4.24) and (4.37) for the definitions of r" and
P.] As a result, we have

where

egret
"DelD, I

he2

am, cL2

GP——00,
p2

(4.69)
VDelD 12i~oo

he

vrme c
dp

4'("o "o &p).p'

(4.76)

00 —— 7Zp e —7Zp e cosh(2vz/l)

1 —R~'e —'
0

(4.70)

( VZ" e-.
+2p'

1 7ZII e

B,e-.
cosh(2vz/l).

[See Eq. (4.28) for the meaning of subscript zero. ] We
note from Eq. (4.36) that for p oo with

he2d (1 11
VD.iDld-o =

I ls + ls4~m c qli l2)
(4.77)

For thin walls, we can use the approximations (4.32) and
(4.40). Then, following a procedure similar to that lead-
ing to Eq. (4.35), we obtain
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2Po , + s, &

dp '
~ +

P 1 J 2

2 sp 7'p /p
II

+
II1 —r0

2Pp

1 —Po2
(4.78)

+MelM = 2'
vrmec

OO e
—2v

dp
1 —e—2v (4.79)

2e cosh(2vz/I)
1 —2v

For ideal walls, we use the limiting values (4.42) and
rewrite the interaction (4.63) as

V
Vo, D,
Vo o
Vg~M

Vo,
VD

VM~

Conditions and definitions
arbitrary
63 E'4 65 ) d1 d2 d) E1:'E2 E

= OO) Ci ~ 1) E'2

= E2

d2 = 0)63
d2 ——0, e3

dg ——0, ei
=64=65) di
= OO) 63 = E5

= d)6i

Eq.
(4.1o)
(4.21)
(4.2o)
(4.43)
(4.14)
(4.26)
(4.44)

TABLE I. Summary of some general results for the inter-
actions between a polarizable system a and one wall (or one
set of walls) or o, and two walls (or two sets of walls). The
conditions of validity and definitions are specified.

The second term in the above expression is associated
with the second term in Eq. (4.64) with a double contour
integration applied [5]. This term can now be treated in
the same manner as that used in arriving at (4.72). After
doing so, we reduce Eq. (4.79) to

e'(X * VZ'1" e*)

= 28o + Ro + 7Zo 2p (7Zo 8o) (4.87)

2he2
VMelM-

XmeCl2

1 cosh(2vz/l)
dvv +e2 —1 2 sinh(v)

(4.80)

For a thick wall we have

2
ret "e I

&Zild - = — l2C'(&o &o &o)2' me cl
&

(4.88)

Using which was previously obtained [7]. The result for a thin
wall is

dvv 7t

e2v —1 24

cosh(2vz/l)
dvv

sinh(v) 4 cos2 (7rz/1)
'

(4.81)

(4.82)

he d
vs.'old-o =

47tm ct
(4.89)

+ilfelM = he2 1 1—+
7rm, ct2 12 4 cos2 (7rz/t)

we recover the known result [6]

(4.83)

TABLE II. Summary of the van der Waals and retardation
interactions for wall-atom-wall, wall-electron-wall, wall-atom,
and wall-electron systems in cases of finite, thick, and thin
walls. The conditions of validity and definitions are specified
in Table I. e3 is understood to be equal to unity for interac-
tions involving an electron. References for the known results
are included.

E. Wall-electron interaction

Substituting Eq. (4.62) into Eq. (4.26), we have the
interaction between an electron and a wall

he2
VD.l =—

2vrm, c3 (4.84)

~J * + (1 2+2)~11* e
—2Pt'lt/c

Similar but simpler analyses than those used above for
the wall-electron-wall system can be applied to the wall-
electron interaction (4.84) for various limiting results,
which can also be deduced from the corresponding wall-
electron-wall results by taking the limit l ~ oo. Without
further discussion, we record the long-range interaction

Interaction
Voaco
&aata ld~~
cato

l
d-o

Voel D
1 DelD ldwoo

&aero ld-o
VMatM

VMe&M

Vo t
+Dat ld-+oo

&stat ld-o
Vo~
&a.t ld~
&aei ld-o

van der Waals
(4.38)
(4.39)
(4.41)

(4.5o)
(4.83)'
(4.54)
(4.56)
(4.58)

(4.60)
(4.90)

Retardation
(4.29)
(4.31)
(4.33)
(4.74)
(4.76)
(4.77)
(4.48)
(4.83)"
(4.53)
(4.55)'
(4.57)
(4.85)
(4.88)
(4.89)
(4.61)'
(4.9o)'

he2
dvve

where

VD.'l =—
2vrm clg

x C '('Rp, 7Zp11, Bp ),

dp
p' Reference [16].

Reference [6].
'Reference [5].

Reference [7].
'Reference [4].
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where P in Eq. (4.89) is given by Eq. (4.78). The known
interaction for an ideal wall [6] [I + (dlli)]'

(4.93)

VMei = he2

47tm~c l
(4.90)

can also be obtained.
The various results obtained in this section are sum-

marized in Table I for those of general types and in Table
II for those in special limits.

F. Approximating a wall of Qnite thickness
by one with d = oo

g P P(1 P2) e zvdil— (4.91)

where we expanded, retaining only the leading d-
dependent terin. Integrating over v in Eq. (4.54) we
And

Vvdw
Dat

1

n 1 —P2

I~ + (~i~~)l' )

In the above analyses of walls of finite thickness d, we
obtained simplified limiting results for d 0 and for d
oa. We gave a qualitative discussion below Eq. (4.35) of
the difference between a thin wall and a wall with d oo.
It can be very desirable in the design and analysis of
experiments to have a more quantitative estimate of the
effects of having walls of finite d. We now give a few
such estimates, but in a very limited context. We begin
with the obvious remark that the effects of a wall are
determined by its permittivity as well as by its thickness;
an ideal wall of any d can be taken to have d = oo, while
a dilute wall would have to have d very large if it is to
approximate a wall with d = oo. We first look at the
one-wall interaction given in Eq. (4.54).

Far the short-range (li 0) wall-atom interaction, 8,
defined in Eq. (4.36), can be approximated by

If the fractional error is to be less than 10%, we must then
have d ) 1.2lq. The lower bound on d will be somewhat
reduced if c3 and ~ are rather different.

A similar analysis can be applied to the long-range
(ti oo) wall-atom interaction (4.53). We find the frac-
tional error in replacing replacing V& i by VD i ~d +
given in Eq. (4.55) ta be roughly

1

[(1+(d/li)]
(4.94)

For an error less than 10%, the lower limit of the thick-
ness is about d ) 0.8lz. Applying the above analyses
to the wall-electron system, we find that, for the retar-
dation interaction, the thickness should be greater than
3.2li. The lower bounds on d/li may be a bit low. Thus
l» 0 implies that l j is much smaller than any rele-
vant characteristic length, which here is d. The result
d ) 0.8li for the long-range case is particularly suspect.

It was pointed out earlier that the interaction with two
walls can be viewed as a converging sum of interactions
with only one wall. [See Eq. (4.17) and the relevant
discussion. ] Hence the above analysis regarding the min-
imum thickness of the wall can be readily applied to the
two-wall interactions. The analyses and bounds given
above serve only as rough estimates on how thick a wall
should be if it is to be considered as a thick wall. For
accurate bounds and for bounds useful over the full inter-
action range, numerical calculations can be performed.

Some results on the defi.ection of atoms moving near
the surface of a wall and subject to the nonretarded I
interaction were obtained about 20 years ago [17]. More
recently, much more accurate results were obtained [18]
for atom-wall separations in both the nonretarded and
the retarded (l ) domains. These results are in very
good agreement with the theoretical predictions.

The first term in Eq. (4.92) is the thick-wall result V& tw

given in Eq. (4.56). If es and e are of the same order, in
which case P is af order uiuty, then the fractianal error
made in replacing V&~tw by VD t ~d~ is of order
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