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A superradiance theory is developed for two identical hydrogenic ious (four states each) in a microtrap, as
in recent experiments. The ious oscillate (micromotion) due to the trap's radio frequency (rf) electric quadru-

pole field. One signature of superradiance is a deviation of the two-ion average upper state decay rate y from
the one-ion value y. A master equation is derived, giving a fractional change in the upper state lifetime

y/y —1=sinkR/2kR [Jo(z)—2J, (z)+. . . ]cosC&, where k=2m/X, k is the emission wavelength, R is the ion-
ion distance, J„(z) is a Bessel function of integer order n, and z= ka, a is the iou amplitude of motion, and
4 is the two-ion relative phase due to the preparation. In the Lamb-Dicke regime, a(k, Jo(z) = I and thus

superradiance is not influenced significantly by ion motion. This damped sinusoid is diluted by the factor of 2

due to destructive interference. Superradiance vanishes in the absence of coherent preparation, e.g. , with
inversion, as indicated by the time evolution of the two-ion dipole correlation function. Fringes and a beat at
the rf are predicted in forward scattering, the most elementary form of optical free induction decay.

PACS number(s): 32.80.Pj, 42.50.Ar, 42.50.Fx, 42.50.Md

I. INTRADUCTK)N

The inspired article of Dicke entitled Coherence in Spon;
taneous Radiation Processes [1]contains in the Introduction
the most elementary example of superradiance, the case of
two neutrons. Assuming one neutron in an excited spin state,
the other in the ground state, and a distance separating them
far less than the radiation wavelength (R(&)t), he argues that
the rate of magnetic dipole radiation is either 2 y or 0 where

y is the rate of decay for one neutron. Notwithstanding the
conceptual simplicity of two-particle superradiance and the
desirability of observing this elementary process, these ex-
periments have been elusive until recently [2]. The purpose
of this article is to develop superradiance theory to interpret
the current optical observations of two ions in a microtrap
[2].

Previous experiments have been restricted to many-atom
samples where the atom-atom distance is much greater than
the radiation wavelength (R~&X), the regime known as su-
perfluorescence. Typically, the initial condition is a popula-
tion inversion, measurements having been performed in the
far infrared [3], the near infrared [4], and the microwave
region [5].The literature of N-atom superradiance theory for
N)2 is not reviewed here because it is extensive. Instead,
we cite a few of the early references [6—10] and the excellent
review by Gross and Haroche [11].

Following Dicke's article, numerous superradiance theo-
ries of two identical atoms appeared, most of them assuming
two-level atoms [12]. Stephen [13] and Hutchinson and
Hameka [14]utilized the radiation damping theory of Heitler
[15] finding a two-atom damping rate and a Lamb-like shift
as a function of the atom-atom distance R. Power then dem-
onstrated that the two-atom damping rate can be obtained far
more simply by first-order perturbation theory [16]. These
calculations assume that the atoms are stationary, but later it
was shown that the relative motion of the two atoms can
reduce or even extinguish superradiance [17,18].A third and
more powerful approach is the master equation, the equation

of motion of the reduced density matrix which contains the
damping rates and frequency shifts at the outset [6,19].

Also, these theories implicitly assume that the two atoms
interact instantaneously, ignoring that a photon emitted by
one atom cannot propagate and excite a second atom faster
than the speed of light c (Einstein causality). Indeed, Fermi
[20] and subsequently others [21,22] showed that the second
atom is excited by the first with a retardation time t=R/c.
Recently, Fermi's result was disputed and a new analysis led
to a causality paradox [23]. However, this statement
prompted a response where the authors [24], using relativis-
tic quantum field theory, find no paradox invalidating Fer-
mi's retardation time. Milonni and Knight [25] generalized
this problem to the case of multiple traversals where the
retardation is t= nRlc, n being an integer; in the absence of
retardation, their formalism reduces to the Stephen [13)
result.

When two atoms are sufficiently close, R(&k, and are
driven continuously by an external field, superradiance and

FIG. 1. Schematic of a planar Paul trap made from conducting
sheets, after Brewer, DeVoe, and Kallenbach [28]. Typically, the
radius of the central hole is 80 pm. The origin of the coordinate
system has been translated from the central hole to avoid clutter.

1050-2947/95/52(4)/2965 (6)/$06. 00 2965 1995 The American Physical Society



R. G. BREWER 52

macroscopic quantum jumps are predicted in spontaneous
emission [12,19,26]. Randomly alternating long periods of
brightness and darkness are expected as in earlier studies of a
single three-level atom; e.g. , see [27].

In this article, we derive a master equation for two Ba+
ions in a microtrap, following recent experiments [2]. The
ions are coherently prepared and radiate freely thereafter.
The microtrap [28], shown in Fig. 1, reduces the ion-ion
distance to R =2X, the region where superradiance begins.
The ions can be made to lie either in the trap's x —

y plane of
the central hole or along the z axis by applying a static and a
radio frequency (rf) electric quadrupole field across these
electrodes. Oscillation of the ions at the rf induces sidebands
in their spontaneous emission with most of the energy being
in the unshifted or central frequency due to laser cooling
[29].This is the Lamb-Dicke regime [30] where the ion mo-
tion does not significantly affect superradiance, unlike earlier
calculations [17,18].Another difference with earlier work is
that the Ba+ ion being hydrogenic has four relevant states
instead of two. All these considerations are included in the
master equation derivation.

II. ZERO-ORDER WAVE FUNCTIONS

This superposition is responsible for the interference de-
scribed in this article and can be viewed as an exchange of
excitation. This exchange is a parity operation and for Fermi
particles requires that the wave function be antisymmetric.
The antisymmetric wave functions below, Eqs. (2.1)—(2.4),
predict a superradiance signal with a phase that appears to
agree with preliminary observations [2]. Reversing the sign
produces symmetric wave functions and a phase error
of m.

Wave functions in the weak field regime can be generated
[32] by using the angular momentum lowering operator

j =j~ /jy ln

j ljm)=~&(j+m)(j m+1)lj m 1)

where j=ji2 or J. We now label the state of each ion
(e=1,2) by Ia,) or Ib,) in the S state, corresponding to
m =1/2 or —1/2, and similarly by Ic,) or Id, ) in the P state.
The following two-ion wave functions result assuming an
initial wave function and then applying the lowering opera-
tor:

Before developing solutions to a master equation, we gen-
erate zero-order wave functions for two Ba+ ions, following
recent superradiance experiments [2]. The two-ion states of
1nterest in weak field are P i&2 S»2 and S1/'2 Si/'2 where in
the one-ion (jm) representation j=l+s. The P&&z P»z2 2

state may play a role also, but we neglect it here since its
faster decay is not observed as yet [2]. At ion-ion distances
of an optical wavelength, the ions weakly perturb each other,
and thus in zero-order they act independently and their
angular momenta ji and j2 commute. The two-ion angular
momentum J=j,+j~ gives rise in this (jj) coupling scheme

to a two-ion (JM) representation. Since jt= jz=-,', there
are four ways of combining (mlmq), namely,

(-,', —,'), (-, ,
— ), ( —

—,', —
—,'), and ( —

—,', —,'), and these corre-
spond to the two-ion triplet (J= 1, M = 1,0, —1) and singlet
(J=o, M=O) states. Hence the two-ion electron ground
and excited states each consist of a triplet and a singlet sub-
state.

For the two-ion electronic ground state, the total wave
function is a product of an angular momentum and an orbital
wave function, Eqs. (2.5)—(2.8). The angular momentum
eigenfunctions are well known [31] and are of the form of
Eqs (2.5)—(2.8) while the orbital factor is a product of two
spherical harmonics for the two S states. Here, it is unnec-
essary to antisymmetrize the total wave function because the
electron clouds of the two ions do not overlap.

In discussing the two-ion excited state, imagine that
ground-state ions are in the path of a light beam during the
preparative stage so that either ion, but not both, can be
excited. A wave function of the form P(1,2)
=1/+2[ P,&z(1) S»z(2) —P»z(2) S»z(1)] expresses the
potential for either ion (1,2) being excited, a superposition of
the two possibilities, and our inability to know which one
was excited. Similarly in emission, one cannot predict which
ion will emit. Of course in a measurement, the apparatus
introduces uncontrollable phase factors that destroy the su-
perposition, and then it is possible to say which ion emitted.

1
Il)=l1, l)„,= (lctaq) —la~cd)),

2
(2.1)

2) —= 1,o)„,= l(ld tax) —laid~)+ lclbz) —lbtc~)).
(2 2)

1
13)—=

I
1 —1),.= (ldtb~) —bid~)).

2
(2.3)

14)= I
o.o), , = l ( —ld tap)+ la, d2)+ IC lb2) lb lC2)),

(2.4)

I5)—= ll 1),= ala@), (2.5)

1
l6) —=

I
1 o)„= (la lb~)+ lb la»),

2
(2.6)

(2.7)

1
IS&=—IO,O)„= (lalb~) —

I
b t)a).

2
(2.8)

For example, applying the above lowering operator,
J

I
1,1)~,=A. +2I 1,0)~, , and since J =j, +jz, we have

the relation J
I
1,1)„=(fi/+2) (ldta2) Iald2)+ clb2)

—b, c~)), which gives Eq. (2.2). Repeating the operation
gives Eq. (2.3), and a change of signs in Eq. (2.2) yields Eq.
(2.4), the wave function being antisymmetric and
J =J,=O. The above wave functions are orthogonal, lin-
early independent, and normalized, and lead to matrices of
dimensionality 8 X 8.
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III. THEORETICAL FRAMEWORK

A. Hamiltonian

To derive a master equation, we adopt the Hamiltonian

XY~= —,

'/igloo

g S',+fig to„b)",bt, +fig g, i„S,+, bi, e.'" "(')
e= 1,2 Jk6

+ H.c. (3.1)

The first term is the two-ion energy, the second the electro-
magnetic energy of the field at wavelength X. , and the third
the two-ion-field energy of interaction. The operators for a
single ion undergoing a transition k) —+ ll) are

where the time-average separation of ions 1 and 2 is
R = f'

1 t 2 and 4 is the two-ion relative phase acquired in0 0

the preparative period at t=O Eq. uations (3.4) also apply
when the ion-ion axis is collinear with the trap z axis. Thus
the micromotion itself can determine 4. The secular motion
can be included as well, but it is neglected here because of its
lower frequency. A quantum mechanical treatment of the
ions motion [35], without using a pseudopotential, is com-
plicated and unnecessary in the present theory. This motion
introduces sidebands in the spontaneous emission with a
Bessel function distribution characteristic of the Lamb-Dicke
regime [30] where the amplitude of motion is less than the
wavelength of light, a& k. This follows in the derivation by
expanding the third term of Eq. (3.1) as

s:i,=(II)&kl)./ ki slk, =(ski,)*.

"„,=-,'(lk)&kl-I/) &II)„ iz costit g ng ( )
intit (3.5)

which obey the commutator [s+,s ]=2s' where 6=1,
s —= s —

p, *, and p, is the unit dipole vector. Taking the sums
S—= Xqtsz& and 5'= XI,Is«over all transitions of a given ion
yields the equations

~ ~ ~ ~ ~

S;= (le) &alk+ ld) &al + le) &bl
—ld)&blk), .

2 2
(3.2a)

s', =(Ie)&el+ ld)&dl —Ia)&al —Ib)&bl), . (3 2b)

which obey the commutator [S+,S ]= 2S' with
5—= S—. X«p, z, . Since each state of an ion can emit on two
transitions, each state is counted twice in 5, which explains
the factor of 1/2 in the first term of Eq. (3.1).

The field raising (bt) and lowering (b) operators can be
written as a vector, b= be, for example, where the polariza-
tion e= e1+ e2 consists of two orthogonal unit vectors

e, = ( —cos0cosg, —cosOsing, sin6l),

e2 = (sinttt, —cosset, O),

where z = k. a. The condition a(k ensures that most of the
energy radiated resides in the central frequency correspond-
ing to the Jo(z) term.

B. Master equation

Using the Hamiltonian Eq. (3.1) and the expansion Eq.
(3.5), we derive a master equation [6,36] which can be writ-
ten compactly as

d . 1

d
= —

~z l ~oX [s', P]+ 2 2 r,", (I:s, ,P s,', ]
/J E'0'

+ [S...PS, , ]) (3.6)

and contains one-ion (e= e') and two-ion (eW e') terms
where the labels i,j are a shorthand for the indices i = kl and
j=lk' of the one-ion matrix elements of 5— in a two-ion
representation. When kW k', the transition matrix product

g,g results in a frequency shift through a virtual transition,
but when k=k', damping occurs, allowing us to use i in
place of ij. In this article, frequency shift terms are ne-
glected. The one-ion decay rate is then of the form

the propagation vector k making angles 8 and @ with the z
and x axes [33].Thus the dot product, the third term of Eq.
(3.1), when squared gives l~ el or

„2"
rkl f 2 I/ «el'Igklk I' 2 J.'(z) ~.

n= —oo
(3.7)

2
1 A A

(e, +e2). . (i ij) =-,'(1+cos 0),
2

(3.3a)

I(e, + e, ) kl'= sin'e (3.3b)

for circularly and linearly polarized light.
We assume in the third term of Eq. (3.1) that the two ions

oscillate harmonically about their common center at a fre-
quency A, the rf of the trap. This classical motion [34] (mi-
cromotion) occurs in the radial plane of the trap with a van-
ishing axial motion, due to laser cooling, and is given by

where Ip, ki el is given by Eq. (3.3), the sum Zx is to
be replaced by the integrals ffp„dcttdA, with p„ the density
of final states and the differential solid angle
dA, =sin8d8dg [15], J„(z) is a Bessel function of integer
order n and argument z=k. a, and the delta function 6' „
=8(tito —t0i, +.nA) defines the resonance condition of a
moving ion with an optical sideband of order n. Here, the
Bessel function sum is factored out of the angular integral
because it varies slowly with z in the Lamb-Dicke regime,
and we assume that z=k.a=ka. The total one-ion decay
rate of an upper state Ik) to all lower states Il) in sidebands
of order n and frequency co is

r, (t) = r, + acosAt+ Ctlk,

r2(t) = r2 acosQt, —0

(3.4a)

(3.4b) 2 rki'= r 2 ~'.(z)l =,+.ti= r,
l, e n = —Qo

(3.8)
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where y is the Einstein decay rate of a single ion and the
sum of the Bessel function squared is unity [37]. As an

example, for the upper state 1), Xl, yk",

1 11 22 1 11 22 11 22=
2 [y, s+ y, s+ r( y, 6+ y, 6+ y', s+ y, s) ], the first two terms

corresponding to a linearly polarized transition. The last four
terms correspond to two circularly polarized transitions in
the two-ion representation with a total transition probability
equal to that of the single circularly polarized transition in
the one-ion representation. For either representation, the total
one-ion decay rate is y. Also, the one-ion decay rate is the
same whether the ion is stationary or moving. Each one-ion
emission event involves one sideband and one lower state
from the distribution, but in a measurement of the upper state
lifetime, the sum of the individual decay rates is the relevant
quantity.

The effect of two-ion interference on the decay rate is

rkl' =2~(f + &(~ ~~)l( kl el'gkl~, glkx, (3 9)

+2

1

Skl 1 (Slkl) 2 0

1 0

1

—+2

—1

1

1 0

Skl2 (Slk2)

0 —1

+2

(3.14)

where the columns span the states l5) —l8) and the rows

l
1) —l4), and the indices 1,2 label the two ions.

Applying these matrix elements in the master equation
gives diagonal and off-diagonal equations of motion

K(o, col, ) =cos(k R+lI1) g ( —1)"J,(z)8„

dI kk = —yk(R) p (3.15)

—sin(k R+ lI1)
Pkl

[ 2 yk(R) + 1 ~o]Pkl ~dt
(3.16)

x Jo(z)Jl(z)cos(Ar)(280+ 81+ 8 1)+
(3.10)

y'= r X ( —1)"J.'(z)l =,+.n, (3.1 1)

12 21 (
yk l cT yk l o. (3.12a)

~ sinkR coskR sinkR ~

kR (kR) (kR)
(3.12b)

where only the leading terms are shown and k R=kRcosO.
The sink. R term contains a beat at the rf in forward scatter-
ing and is discussed below. Changing the sum to two inte-
grals as before and integrating K( 0, co), the sink R term van-

ishes, but the cosk. R term yields

rl(R) = r —P y'

r2(R) = r+ (P —q) y'.

y3(R) = y —py'

y4(R) = r —(p+ q) y'

(3.17a)

(3.17b)

(3.17c)

(3.17d)

where yk(R) is the total decay rate of the upper state lk)
to all lower states ll), the sum of one- and two-ion rates,
Eqs. (3.8), (3.12), and (3.13). These equations apply, as we
shall see, following a coherent preparative period that estab-
lishes an initial condition with induced dipoles p„,(0)40
that radiate coherently. We then find for the four upper states
that

for circularly polarized emission, and

12 21 (
ykl~= ykl~=P y (3.13a)

coskR sinkR ~

(kR)2 (kR)'i (3.13b)

for linearly polarized emission, the indices o. and vr labeling
the two cases. In the limit of motionless ions, lim, oy' = y
and with Eq. (3.8), we recover one- and two-ion decay rates
corresponding to calculations of two two-level atoms [19].
The total decay rate, being a sum of one- and two-ion terms,
exhibits constructive or destructive interference depending
on the signs of the two-ion terms. The signs are determined
by the two-ion operator products of the master equation,
which we now consider.

The one-ion raising and lowering operator matrix ele-
ments for the states of Eq. (2.1)—(2.8), written as 4 X 4 sub-
matrices, are

Each upper state decays to three lower states via one linearly
and two circularly polarized transitions, the latter exhibiting
an important two-ion interference. Thus in Eqs. (3.17a) and
(3.17c) the interference is destructive with the q terms van-
ishing whereas in Eqs. (3.17b) and (3.17d) the interference is
constructive. It is the q terms that will give an observable
superradiance signal due to the leading term sinkR/kR in Eq.
(3.12b).

IV. PREDICTIONS

A. Second-order dipole correlation

Superradiance requires that the transition dipoles be cor-
related with a fixed relative phase. We calculate the second-
order correlation defined by the quantum mechanical average

(Skl,Slk, , ) with k4 e' [36]. Multiplying both sides of the

master equation by these matrix elements and taking the
trace yields the equation of motion
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0.10

0.05—

small R limit, lim~ oy=-, y, which is a subradiance peak
rather than the superradiance peak of earlier theories
[1,13,14,16,19].We can write this decay rate as the fractional
change in the lifetime f= y/y —1,

f 0.00-

slnkRf= [Jo(z)—2J,(z)+. . . ]cos4, (4 4)

-0.05—

—0.10
0.0

I

0.5 1,0
R (pm)

I

1.5 2.0

FIG. 2. Fractional change in the two-ion upper state lifetime vs

the ion-ion distance, f vs R of Eq. (4.4). Here, for Ba+, k=0.49
p, m, g = 0.5, and 4 =0.0. 1

y =y —2J y' (4.5)

which is plotted in Fig. 2.
Consider now the two cases of either linearly or circularly

polarized transitions being prepared. Imagine the two ions
confined to the microtrap's radial plane, and aligned along
the x axis, taken to be the axis of quantization. A pulse of
laser light, a m/2 pulse, propagating along the symmetry axis
of the trap, the z axis, prepares linearly polarized transitions
with its electric vector parallel to the x axis and circularly
polarized transitions with the electric vector parallel to the y
axis. The corresponding decay rates are

d(s„+„s,„,, )
dt

= yk(Skl Slk ')

with the obvious solution

(4 I)
(4.6)

(s„+„(t)s,„,, (t)) =(s,'„(0)s,„,, (o))e-~ '. (4.2)

This says that the two dipoles are correlated only through the
preparation which provides an initial condition at t = 0. In the
absence of this preparation, the correlation will vanish in the
transition ~k) —+

~
l) and the two-ion contribution to the decay

rate yk will vanish also. When all possible transitions are
coherently prepared, Eqs. (3.15) and (3.16) apply with yk
given by Eq. (3.17). In the other extreme when no dipoles
are correlated, y&~ y, the one-ion decay rate. We also pre-
dict that superradiance will not be observed when the popu-
lation is inverted, since the dipoles vanish.

where y', q, and p are given by Eqs. (3.11), (3.12), and
(3.13). The p term, being of higher order in I/R than the q
term, is typically one order of magnitude smaller. Thus we
predict that a 90' rotation of the pulse's plane of polarization
changes the superradiance contribution to the decay rate
from a value that is nearly maximum, Eq. (4.6) versus Eq.
(4.3), to one that nearly vanishes.

In a real measurement, the count rate a photomultiplier
detects is of the form of Eq. (4.7a) below but with dy„es-
sentially given by Eqs. (3.7) and (3.9) integrated over the
viewing angle. The time dependence of the decay is given by
pkk(t), Eq. (4.7c) below, which refiects the reduction in
population due to all sources.

B. Superradiance lifetime

One signature of superradiance is the deviation of the
two-ion upper state spontaneous emission lifetime from the
one-ion value. We now consider examples corresponding to
different initial conditions. For the case of all transitions be-
ing coherently prepared, we find from Eqs. (3.12), (3.13),
and (3.17) the average upper state decay rate

1
4

slnkR
y= —g yk= y —

t J(')(z) —2J, (z)+ . . . ]cosC.
41 =i

(4.3)

The cos4 term and the negative sign preceding sinkR set the
phase. The latter is a result of the excited-state wave func-
tions Eqs. (2.1)—(2.4) being antisyrrunetric, in agreement
with experiment [2] and the two ions being Fermi particles.
The —,

' factor dilutes the superradiance because one-half of
the transitions interfere constructively and the other half de-
structively. In the large R limit, lim~ y= y, the one-ion
decay rate is as expected for ions that do not interact. In the

'dekko

dt dykpkl (t), —(4.7a)

C. Free induction decay

Inspection of Eq. (3.10) shows the possibility of a beat at
the rf 0, due to two-ion coherent emission, one ion emitting
at the carrier frequency 60 and the other at one sideband

1. This assumes the two ions are coherently prepared and

properly aligned. The beat term is a maximum in forward
scattering when the ions are aligned along the trap z axis
with 0=0 and the phase angle 4=0. The beat vanishes
when the ions are in the radial plane of the trap, as in the
preceding section, with 0= m/2 and 4=0. In contrast, one
ion cannot produce a beat because it cannot emit on two
sidebands simultaneously, but radiates only on one sideband
at a time, as a similar calculation shows.

The population decay rate of state ~k) due to two ions on
the z axis scattering light in the forward direction about
0=0 in a differential cone angle d0 is
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d y&= 2 d 8 y[cos(kR+ tIi) ( y'/y) —2sin(kR+ ill)

X Jo(z)Jt(z)cosset+ ], (4.7b)

pkk(r) = pkt(0)e (4.7c)

The rate dyk is the differential form of Eq. (3.9) summed
over both ions and all lower states l), assuming cohererent
preparation. To order d 0, only the circularly polarized tran-
sitions contribute, the linearly polarized being of higher or-
der does not. The term pkk(t) is the solution to Eq. (3.15)
with yt. given by Eq. (3.17). Equations (4.7) show a damped
modulation, the depth of modulation being typically 15%, in
agreement with recent observations [2]. We note that this
forward scattering is the most elementary form of optical
free induction decay [38].Previous studies involved a many-
atom sample where the off-axis scattering is completely de-
structive while for two ions the off-axis interference is only
partially destructive. In both cases the full coherence is pre-
served in forward scattering. Another difference is that the
master equation is more fundamental than the phenomeno-
logical Bloch equations used in earlier theories.

5(O, R) = —,'(sin(0)(l+cos 8)+ sin (8)

X [ I —
—,
' cos(kRcos 0)])e (4.8)

The derivation follows from the differential form of the one-
and two-ion decay rates and resembles that of Eq. (4.7). The
correspondence between transient and steady-state solutions
is discussed elsewhere [40] and results in an independent
validation of this theory.
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D. Fringes

Spatial interference in forward scattering is predicted also.
This is the transient analog of recent steady-state measure-
ments [39] which we will use here as a model. Assume the
ions are aligned along the y axis and are prepared by a pulse
of linearly polarized light with kR&) 1. The normalized scat-
tering rate into a differential solid angle at a scattering angle
0 is
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