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In this paper we investigate the spectra of complex scaled two-dimensional Hamiltonians. More specifically,

we compare the spectra of the two-dimensional Hamiltonians to those of underlying one-dimensional ones and

find that phenomenologically the spectra also of nonseparable two-dimensional Hamiltonians can be under-

stood as a direct sum of one-dimensional spectra. Moreover, certain parameters describing a string or string

curve can be easily carried over to two dimensions. Furthermore, we address the connection to the emergence

of coherent-dissipative structures and argue that no specific form of interaction is necessary for the latter, since

in almost every case enough eigenvalues are available to fulfill the necessary quantization conditions.

PACS number(s): 34.10.+x,03.65.Nk, 11.55.Fv, 11.55.Bq

I. INTRODUCTION
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[t and t' are so-called transition points, i.e., points, where

q (z) is zero], where the functional form of q(z) depends on
the order of approximation used. In first order it is given by
(we use atomic units throughout, so A, = 1)

q(z) = g2 p, [E V(z)], — (2)

where E is complex [for physical reasons Im(E)~0] and

V(z) is the analytical continuation of the potential into the
complex plane (p, is the mass of the system). Higher-order
approximations can be found using either higher-order WKB
approximations or the phase integral method [12].The string
curves represent a generalization of the strings, especially
since certain parts that are of interest here are mass indepen-
dent (see [1] for more information). Additionally, we argue
that they are connected with the rnicrocanonical unimolecu-
lar rate constant.

In Fig. 1 two typical string curves for one-dimensional
double-barrier single-well potentials are depicted. Up to a
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Franques, 1, Universitat de Barcelona, E-08028 Barcelona, Spain.

In two recent papers [1,2] we have investigated the reso-
nant part of the spectrum of one-dimensional Hamiltonians
via the WKB approximation and the complex scaling method
[3—8]; the original references are [9—11].In order to facili-
tate the following discussion we will briefly restate the ter-

minology, the concepts, and the main points of [1] and [2].
For reasons that will be clear later on, we are less interested
in the set of discrete (complex) eigenvalues (i.e., the string),
but more interested in the curve connecting these points: the
string curve. The latter is defined most easily within the
framework of the WKB —or phase integral —approxima-
tion [12], and has been given by Korsch earlier [13]
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FIG. 1. Two of the most common string curves: (a) a smooth
string curve and (b) a wiggly string curve. Indicated in the figure
are the detachment point ("dp") and the localization threshold
("lt") See the text for further .details.

certain point, which we called detachment point, the string
curves stay very close to the real axis while after it they
move rapidly away from the real axis. Then comes a portion
of the string where the imaginary energy rises with real en-

ergy just as one would expect. From a certain point on,

namely, the localization threshold, the situation is reversed.
In Fig. 1(a) one sees that the imaginary energy grows with

dropping real energy in a very smooth fashion. In Fig. 1(b),
on the other hand, one sees a more complicated dependence
of real and imaginary energies. We called the portion of the
string up to the localization threshold the regular part of the
string, while the portion following is called irregular. The
irregular part of Fig. 1(a) is for obvious reasons called
smooth, while that of Fig. 1(b) is called wiggly as is custom-

ary in the literature [13—18].In [1]and [2] we showed that at
the localization threshold the localization properties change:
Before the localization threshold one has, as is to be ex-
pected, localization within the attractive region of the poten-
tial, while after it ("after" referring to quantum numbers

higher than that of the localization threshold) localization is
greatest beneath the barriers.

Furthermore, we introduced in [19] the concept of irre-
ducible units of a potential. There and in [1]we showed that

every potential can be decomposed into certain parts, which
serve as generators for the spectrum, i.e. the complete dis-
crete spectrum of the Hamiltonian can be expressed as
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are equal and whose imaginary parts are equidistantly dis-
tributed in the complex energy plane, one can show [20] that
the corresponding second-order (fermionic) density matrix
exhibits (nondiagonalizable) Jordan blocks, which are the
mathematical representation of the coherent dissipative
structures. The theory has been successfully applied to many
phenomena in physics, wherever quantum correlations (may)
play a role. (For an introduction see the review [21] and
furthermore [22—27].)

The question of concern to us now is to find out —using
admittedly a somewhat simplistic ansatz —what conditions
have to be met in order to find a distribution of eigenvalues
like that mentioned above. So, apart from the interesting
topic of determining resonant eigenvalues for one and two
dimensions we have an additional interest in the general be-
havior of the eigenvalues under a change of, e.g. , potential
parameters or the analytic form of the potential. To this end,
we start in one dimension and indeed one might say that
there we are able to get a good idea of the behavior (see [1]
and [2]).Then we turn to two dimensions in order to realize
the differences from and the similarities to the one-
dimensional case.

Numerical results have been obtained by the CSFGH
method [28,29] in the one-dimensional case and by a method
developed by us [30] based on a idea by Eckert [31] for
two-dimensional problems. It might be appropriate to com-
ment on some general features of such calculations in order
to enable the reader to appreciate the results presented. One
might say that the numerical spectrum we obtain consists of
three contributions: the resonances, which are our main con-
cern, the representation of the continuum and general nu-
merical errors due to finite basis sets, and numerical integra-
tion of the numerical basis sets. Of these, those eigenvalues
of the Hamiltonian matrix that represent continuum functions
are the easiest to suppress. This is because we choose as a
basis a set of resonant wave functions, which are in turn
eigenfunctions of two arbitrarily chosen one-dimensional
cuts through the potential surface. Those eigenfunctions
naturally are solutions to a differential equation with a
boundary condition that is incompatible with continuum so-
lutions and therefore if the space of basis functions consists
only of the former, we will not get a representation of the
cut. If, on the other hand, we choose as a basis set a direct
product of continuum solutions, we find the cut, but no reso-
nances. Therefore in the figures that will be shown here, one
will find no cut because we concentrated on finding reso-
nances.

The group of continuum solutions together with that of
the numerical artifacts is in any case more or less easy to
distinguish from the group of resonances by the latter's prop-
erty of being invariant, in the exact case, under a change of
the angle 0, which is the angle of the complex rotation. Now,
in the case of finite basis sets it is known that the complex
eigenvalues exhibit so-called 0 trajectories (see, e.g. , [32]).
The better the basis set, though, the less the eigenvalues de-
pend on the angle. In our calculations the dependence must
be very small considering the size of the basis-set and the
numerical approximations involved. Nevertheless, there are
always portions of the spectrum (especially in the vicinity of
the cut) that are numerically very difficult to obtain with
certitude. Therefore we do not introduce a cutoff of that sort:

If the eigenvalue changes less than the cutoff under a rotation
of, e.g. , 0.1 rad, then we will call it stable, but instead we
display in the main figures (Figs. 3 and 4) the numerical
spectrum at two different angles in order to show graphically
the effect of a change of 0. This means that wherever the
diamonds (0=0.3) and the pluses (8=0.4) do not overlap,
there is a certain uncertainty that we find resonances. Only
where they "exactly" coincide can we talk justly of reso-
nances.

Obviously, the quality of the results depends on the basis
set chosen. The convenient property, though, of the method
used here is that the basis set is determined directly by the
problem, i.e., in one sense we have an optimal basis set. This
is counterbalanced by the fact that we use a numerical basis
set, i.e., we introduce errors by having to use a numerical
integration scheme and by the finite accuracy of the numeri-
cal basis set. Nevertheless, this method seems to give the
best results known to us in this context using the lowest
number of basis functions.

II. TWO-DIMENSIONAL HAMILTONIANS: RESULTS

Before we start to investigate the transition from one to
two dimensions, the appropriate choice of potentials should
be discussed. Fortunately, our investigation in the one-
dimensional case ([1,2]) showed that apart from the high
quantum number behavior the concrete analytical form of the
potential does not show any effect on the phenomenological
form of the string curves. In other words, in [1]and [2] and
also in [19],we investigated the spectrum of (a) polynomials,
(b) polynomials times an exponential damping factor, (c)
polynomials times a Gaussian damping factor, and (d) tran-
scendent functions times an exponential and a Gaussian
damping factor. In all cases we found the same general struc-
ture, if for a moment we neglect the irregular part (if any).
Therefore, since in the two-dimensional case numerical limi-
tations lead to the fact that we will be mainly considering the
regular part (or even only part of that), the question of using
or not using a Gaussian or an exponential damping factor is
rather unimportant. Naturally, in the high quantum number
limit, i.e., after the localization threshold, this changes the
situation completely: In cases (a) and (d) above, the string
curve does not even have a localization threshold (though for
different reasons; see [1] and [19]) and therefore does not
have an irregular part; in case (b) we find a smooth part and
in (c) a wiggly irregular part. But again, since we cannot
hope to describe string curves due to two-dimensional poten-
tials to such an accuracy that the resonances position will be
invariant under a substantial change in the angle 0, the gen-
eral appearance of the part of the two-dimensional spectra
under consideration will not depend on the particular choice
of damping. Furthermore, we showed in [1] and [2] that the
concepts introduced also do not depend on the specific
choice of potential family, i.e., e.g. , exponentially as well as
Gaussian damped potentials both have a detachment point
(even the same for the same height of the potential). Only the
numerical values of, e.g. , the localization threshold depend
on that feature.

To this end we show in this paper only potentials with a
Gaussian damping in order to more easily compare the fol-
lowing separable to the nonseparable potentials.
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FIG. 5. Spectra of V~ (top) and V& (bottom) for constant
0=0.3 rad together with the numerical one-dimensional spectra.
Pluses stand for the two-dimensional spectrum, diamonds for the
one-dimensional spectum in the x direction, and squares for the
one-dimensional spectrum in the y direction. For explanations see
the text.

FIG. 6. Spectra of V6 (top) and V7 (bottom) for constant
0=0.3 rad together with the numerical one-dimensional spectra.
Pluses stand for the two-dimensional spectrum, diamonds for the
one-dimensional spectrum in the x direction, and squares for the
one-dimensional spectrum in the y direction. For explanations see
the text.

For V4 and V5 we used 625 (=25 ) basis functions and
for V6 and V7 we used 225 (=15 ), found by solving the
one-dimensional problems keeping either x or y at a constant
value. This value was chosen such that the "maximal" po-
tential resulted, i.e., one with maximal depth and height. The
one-dimensional problems were solved using the complex
scaled Fourier grid Hamiltonian method [29] with a grid of
601 points. These were reduced to 201 (Gaussian) integra-
tion points and two-dimensional basis functions were formed
by direct product of the sets of one-dimensional functions
[30].

Turning now to V4, a two-dimensional double barrier,
one finds a number of slightly shifted strings that show the
typical curvature. We expect this potential to have a localiza-
tion threshold, although this point is not numerically acces-
sible to us. The stability under rotation is, for the first strings,
satisfactory but only from a real energy of about 7 hartree on.
One reason for that is that the neighborhood to the cut and
some of the points shown are not resonances in our sense
because they are covered. Additionally, we know by experi-
ence that eigenvalues of simple Gaussian barriers are not
particularly stable, much less so than that of other potentials.

Since the solutions to one-dimensional problems directly en-
ter the calculation, we are not surprised to find a lower sta-
bility. This effects also the determination of the detachment
point, which in this case is not possible. But looking now at
Fig. 5 we see that the two-dimensional strings are very simi-
lar to the one-dimensional one corresponding to V4(x, C); in
fact, one may view the two-dimensional spectrum as consist-
ing of strings of the latter type being shifted according to the
eigenvalues of V~(C', y), i.e., the spectrum is phenomeno
logically the same as the one of a separable V
=

V4~Y c+ U4~ c, a result that quite generally seems to be
true. Additionally, the string corresponding to V4(x, C) is a
upper limit for the strings of the two-dimensional potential;
this also supports for the statement above. Let us stress that
quite naturally this is only qualitative since, e.g. , the strings
are not shifted slightly to lower real energies, as would be the
case for the separable potential mentioned above; but, as we
are here more interested in a qualitative description, this is a
minor point.

The potential V5 differs from V4 in that it does not enable
barrierless tunneling; movement is restricted in every direc-
tion. The numerical stability is much better than in the
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former case; cf. Fig. 3. The stable regime extends to about
Im(E) = —4 hartree, which stems from the fact that only the
lowest resonances are included in, the calculation. One ob-
serves rather clearly a detachment point at the expected en-
ergy (the lowest barrier height) and we observe again the
typical curved strings, which again leads to the assumption
that this potential will also have a localization threshold. Re-
markable is that this spectrum also seems to consist of par-
allel shifted strings, but this time parallel to the imaginary
energy axis. Figure 5 shows the reason for this behavior: One
sees there that the strings belonging to the two-dimensional
potential start above the lower string belonging to the one-
dimensional potential V(C,y). This is not very surprising
since resonances below the lowest barrier height are very
near the real energy axis and the detachment point of the
two-dimensional potential and of that of dimension greater
than one coincide. The first approximately ten strings are
now shifted parallel to the imaginary energy axis; upon
"crossing" the next string the pattern changes quite clearly.
One can track this down to the following. A string can be
decomposed into three parts, which have somewhat different
properties: the part up to the detachment point, the part be-
tween the detachment point and the localization threshold,
and the irregular part following the localization threshold.
Returning now to the two-dimensional spectrum, one ob-
serves that resonances near the real energy axis are, to first
order, composed of one-dimensional resonances, which are
(both) below the detachment point. The ten strings men-
tioned now are due to one-dimensional functions of which
one has an energy below and one an energy above their
corresponding detachment point. The rest of the strings are
the result of one-dimensional parts with energies above both
barrier heights.

The other two examples are rather in line with the above
statements. In the case of V6 we find again a detachment
point that corresponds to the lowest bamer height, which
here is a local minimum beneath the barrier; see Fig. 4. As
expected, the particles are "looking" for a minimal energy
path to escape and lifetimes are drastically reduced when
such a path is open. The spectrum consists of shifted strings
more or less parallel to the imaginary energy axis, similar to
V& of Fig. 2. That the strings stop at some real energy is here
naturally caused by the finiteness of the basis set. We do not
expect a localization threshold here because the potential is
not bounded along one direction.

The picture we get from V7 is very similar to that of
V2, see Figs. 4 and 2. We find again parallel shifted strings
whose distance seems to get smaller if not as strong as in the
case of V2. But the structures are not as regular and a cor-
relation between the one- and two-dimensional strings like in
the case of V4 and V5 in the sense of maximum-minimum
principle does not seem to be possible.

difficult task. As we know from experience, a crucial param-
eter in the stability of such calculations is the number of
eigenvalues found. In one dimension we found that the num-
ber of representable complex discrete eigenvalues depends
more or less only on the basis set size. Comparing now the
numbers shown here with the typical number of eigenvalues
in the one-dimensional case, one realizes the difficulties one
has to face.

In spite of that, we hope to have convinced the reader that
the concepts of detachment point and localization threshold-

can easily be extended to more than one dimension. We
found, as in the one-dimensional case (see [2] for details),
that the detachment point corresponds to the lowest "es-
cape" possibility, i.e., the lowest barrier height. Furthermore,
we showed that the strings belonging to nonseparable poten-
tials are phenomenologically similar to those that correspond
to separable potentials, i.e., one gets a good idea of the two-
dimensional spectra when considering the spectra that belong
to reasonable one-dimensional cuts of the potential. Insofar
as we can extend the building block principle, we know what
features the one-dimensional spectra will have and from that
we can derive a qualitative picture of the two-dimensional
spectra. There are of course special features connected with
the non-separability, but for a qualitative discussion the
above procedure is sufficient.

Let us now address the connection to the theory of coher-
ent dissipative structures (for a somewhat detailed descrip-
tion see [21]).As mentioned, the formal representation of the
correlated structures are Jordan blocks in the second-order
density matrix, which can arise under specific conditions.
The most important is that there is a (minimal) number of
states with the same real energy and equidistant imaginary
parts of the energy, i.e., for a coherent dissipative structure to
emerge, we have to have a situation where we find for a
given real energy (or rather within a certain real energy in-
terval, which is given by the energy-time uncertainty rela-
tion) more than one resonant state.

The above condition now is rather difficult to fulfill in the
one-dimensional case; the only reasonable candidates are
the wiggly strings of Gaussian type of potentials [V(x)

2= P(x) e ', where P is a polynomial]. In the two-
dimensional case this situation is completely reversed. We
have shown that in higher dimensions the number of reso-
nances with almost the same real energy greatly increases. If
one imagines now resonances for dimension 6, which is the
dimension of the reduced second-order density matrix, one
realizes that they will almost densely fill a certain portion of
the complex energy plane. We conclude from this that the
above condition does not request a specific interaction be-
tween the particles, but rather that for every potential we are
able to find the situation requested. The authors are well
aware of the rather qualitative character of this study, but
nevertheless hope that it stimulates a discussion.

III. SUMMARY AND DISCUSSION

Some points can be learned from the above. First of all,
one has to admit that because of the great number of reso-
nances in the two-dimensional case, an investigation like in
one dimension is beyond our possibilities. Calculating two-
dimensional spectra of the quality shown or better is still a
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