PHYSICAL REVIEW A

VOLUME 52, NUMBER 4

OCTOBER 1995

Retardation effects and angular coefficients in double photoionization
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Retardation effects on the cross sections for double photoionization of He(!S,) targets are studied at photon
energies above 1.0 keV. The dipole asymmetry parameter B is examined first and the importance of correlation
in the final and initial states for this quantity is examined. The effects of retardation on the electron angular
distributions are studied and the range of validity of a first-order retardation correction is evaluated. Finally, by
using a simple model to calculate the total cross section, the contribution of retardation on the double ioniza-
tion 2" is calculated and it is found that the ratio of double to single photoionization, including retardation,
remains the same as when the dipole velocity approximation is employed.

PACS number(s): 32.80.Fb, 32.30.Rj

I. INTRODUCTION

The double photoionization of helium is one of the sim-
plest processes in atomic physics that requires the solution of
the Coulomb three-body problem. In this process, the three-
body interaction is manifested in a transparent form because
one photon interacts mainly with one electron, while charged
particles interact with all the electrons in the atom.

While the three-body continuum problem is still an unre-
solved problem, great progress has been gained in recent
years on the intermediate- and high-energy dynamics of this
process. Levin et al. [1] have measured the high-energy ratio
R=0*"/o" of double to single ionization with the use of
synchrotron radiation for photon energies up to 12.0 keV.
Many theoretical calculations have been performed for the
photoabsorption process, all in accordance with the existence
of an asymptotic limit for this quantity with a value of
1.67%. These predictions are based on different methods,
namely, (i) in the asymptotic or shake method [2-4], the
ratio is obtained as a subtraction from bound-free transitions
with only consideration to ground-state correlation and by
using a closure relation; (ii) in the many-body perturbation
method [5], contributions of the different diagrams of the
process, representing a perturbative expansion of the
electron-electron interaction, are evaluated in lowest order;
and (iii) in the ab initio method [6—8], the use of actual
approximations for the two-electron continuum wave func-
tion are considered. In a previous article [6] we considered
the use of the ab initio method for helium targets; the appli-
cation for two-electron atoms was also considered [9].

The high-energy region is characterized by the fact that
the ratio R=0¢*"/o™ is nearly constant and a beginning is
assigned at about 3.0 keV. Measurements in the intermediate-
energy region have also been performed [10]; this region
extends far above the threshold and connects with the high-
energy region.

Although very different in nature, all three methods out-
lined above have in common the use of the dipole approxi-
mation for the radiation field. It is well known that this ap-
proximation is not automatically justified at high photon
energies. When considering angular distributions, retardation
effects could be maintained even down to threshold [11]. It is
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the purpose of this work to study in some detail the depar-
tures of the calculations done in dipole approximation from
those where retardation is considered. Before including retar-
dation, we shall present dipole results of the angular distri-
butions to test the importance of correlation in the final and
initial states. Dipole calculations were already performed in
our previous work [6], where we have shown that in the
dipole velocity approximation the cross section o> could be
calculated with different models for the double-continuum
state, giving similar values for photon energies above 1.0
keV (this feature is also realized when using the acceleration
form of the dipole operator [3,7], but not in the length form
[6]). It has been shown, however, that Compton scattering
dominates ionization above 6.0 keV [4,12,13]. Our study, in
consequence, will be restricted to energies between 1.0 and
6.0 keV, where experimental verification is more feasible.

In Sec. II we present a brief description of the theory and
the approximations adopted for the wave functions. In Sec.
IIT A the asymmetry parameter $ calculated in dipole veloc-
ity approximation is presented and compared with other
theoretical predictions. In Sec. III B the evaluation of the
retardation effects on angular distributions is considered and
the first-order retardation correction for the differential cross
section d>0?"/de,d), is examined. Finally, in Sec. III C
we use a simple model to evaluate the contribution of retar-
dation on the total cross section o>*. Conclusions and pros-
pects are outlined in Sec. IV.

II. THEORY

The process that we consider is the impact of one linearly
polarized photon on He(!S) atoms in their ground state. The
photon polarization € is assumed to be on the z axis, while
the photon momentum Kk, is taken to be directed along the x
axis (see Fig. 1).

The photon energy E,, and the ground-state energy of the
helium atom E, are related to the ejected electron energies
€; and €, through the conservation law E, +E,
=€+ €,=E;, where we have defined E as the total final
energy of the process. The basic matrix element of the pro-
cess including retardation (RET) is given by
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FIG. 1. Coordinate system used in the discussion of retardation
effects showing the photon polarization vector €, the photon mo-
mentum k,,, and the momentum of the observed electron k .

Trer(Ki Ko |K,) = (¢ |e ¥ 1V +e™ 2V, ), (1)

where ¢ (K, ,K;|r;,ry) is the final double-continuum-state
wave function and ¢;(r;,r,) is the initial ground-state wave
function.

The basic observable of the double-photoionization pro-
cess is the fivefold differential cross section (5DCS)

&’ orir (4 2) kyk,
C

_— = — “la. 2
dEldQIdQZ Ey |e TRET(kl kaIkp)l ’ (2)

where €; is the energy of one of the electrons whose mo-
mentum k; subtends an element of solid angle d{); and the
quantities labeled with 2 refer to the other electron. In Eq. (2)
the final-state wave function is assumed to be normalized to
the & function in the momentum space. Atomic units are
used (A=m,=ay=1).

Integrating the SDCS over the angles of electron 2 leads
to the triple differential cross section (3DCS)

3)

d3U2RET:j Q d®o'ker
dEldQI zdeldQIdQZ ’

In the dipole (DIP) approximation the 3DCS does not depend
on the angle ¢, so it is usually referred to as a double
differential cross section (2DCS) d%a’p/d € sin6,d6, [14];
alternatively, another approach uses the 2DCS given by
d*a’sipld e sinb,d 0,,, where 6, is the asymptotic angle
between vectors k; and k,, which have a closed-form ex-
pression [6], thereby reducing the number of integrations of
the SDCS if the total cross section is calculated. When retar-
dation is considered the former simplifications do not hold
and a total cross section o> demands five integrations,
which is a formidable task if complex wave functions are
employed. Formulas in the dipole approximation have been
given in Ref. [6]; however, the dipole velocity formulation is
simply obtained from the previous equations by setting
k,=0 and thus

Tpw(k;,ky) =T ger(k; . ky |k, =0). 4)
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In this article we will restrict our dipole calculations to the
velocity form of the 7" matrix.

The bound state wave functions employed are of the Hyl-
leraas type [15] and of the multiconfigurational type [16] and
shall be denoted as GS1, Hylleraas type, E.,.=33%; GS2,
Hylleraas type, E ,,=96%; and SH, Multiconfigurational
type, E o= 98%. The double-continuum wave functions are
approximated by the product of three Coulomb waves (C3
model) and by the product of two Coulomb waves (C2
model). The C3 model satisfies the correct asymptotic
boundary condition [17]; it is given by

¥k K1y ,1y) :3¢12¢;|(ZT;r1)¢;2(ZT ;T2)
XD7(&12,kp25T12), (5

where ¢ (Z;r)= wﬁ(r)D_(f,k;r) is the Coulomb con-
tinuum wave function, zpﬁ(r) =exp( ik-r)/(2m)3? is the
free plane wave,

D (& Kkir)=N(€),Fi(ié,1,—ikr—ik-r) 6)

is the Coulomb distortion, N(§)=exp(— w&/2)T'(1—1€) is
the Coulomb factor, é= — uZ/k is the Sommerfeld param-
eter, and u is the reduced mass. As usual, we denote
rp=r =1y, K=~ ~K)/2, §,=—Zr/k,, &=~ Zylk,,
§1,=1/(2ky,), and Z;=2 is the helium nuclear charge. In
Eq. (5), 7,=(1 +P12)/\/5, where P, is the exchange op-
erator.

The C2 model is also referred to as the independent-
particle approximation because no interaction between the
two electrons is incorporated, it is given by

dea(ky K|y, 1y) =70 (Zrir) i (Zrir).  (7)

This set of wave functions lets us turn on and off the corre-
lation in the final and initial channels [18]. For example, we
can construct the C2-SH approximation (C2 and SH used as
final and initial wave functions, respectively) having a small
(large) correlation in the final (initial) channel; on the con-
trary, we can construct C3-GS1. Due to computational com-
plexity we have not considered C3-SH; however, C3-GS2 is
instead the best approximation that we can employ incorpo-
rating correlation in both channels. _
The photon plane wave exp(ik,-r) was incorporated into
the programs previously developed by us that evaluate the
5DCS in closed form when the C2 model is employed [19]
and numerically when the C3 model is used [6]. The evalu-
ation of the double integral of Eq. (3) over d{), requires a
high number of grid points (6, ,¢,) due mostly to the peaked
structure of the SDCS for photon energies higher than 1.0
keV. A grid with a minimum of Ny, XN, =150 points was

employed for these calculations.

III. RESULTS
A. Asymmetry parameter 8 in the dipole approximation

Before proceeding to tackle the influence of retardation on
angular distributions, we first want to show the substantial
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FIG. 2. Asymmetry parameter 3 calculated in the dipole veloc-
ity approximation for three different photon energies: E,= 1.0 keV
(solid line), 3.0 keV (dashed line), and 5.0 keV (dotted line) using
(a) C2-SH states and (b) C3-GS2 states. The solid dots (@) in (b)
are the results obtained in Ref. [8] at 2.8 keV.

sensitivity of the asymmetry parameter 8 to the wave func-
tions employed. In the dipole approximation the 3DCS is
given by the formula [8]

d3 2+ 1 2+

Opip dopp

ded,  am de, L1 TAle)Py(cost)], (8)

where only the parameter 3 enters for the description of the
angular distributions. Calculations of the 3DCS at different
angles 6; permits extracting the value of the asymmetry pa-
rameter.

In Fig. 2 we show our calculated asymmetry parameter
B with the C2 model [Fig. 2(a)] and with the C3 model [Fig.
2(b)] for three different photon energies E,= 1.0, 3.0, and
5.0 keV, using highly correlated ground-state wave functions.
Note that since the velocity gauge was employed,
oG =0" for E,=1.0 keV [6,20]. For 1.0 keV the limiting
behavior of the asymmetry parameter is 8—0.1(1.98) as
€;—0(Ey), although the behavior of this quantity differs in
some form depending on the value of the electron energy
€;. For higher photon energies the situation is clear:
B—0.0(2.0) as €,—0(Ey). The physical meaning of these
limits has been explained previously [8]: when €,=0 the
slow electron is produced by a shakeoff process and emerges
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FIG. 3. Asymmetry parameter 8 calculated in the dipole veloc-
ity approximation at a photon energy of E,= 3.0 keV using the
approximations indicated in the figure.

into the continuum isotropically by an s—s transition for
which 8=0; when €, = E the fast electron absorbs the pho-
ton and acquires one unit of angular momentum from the
zero angular momentum of the bound state, the angular dis-
tribution (d302DTP/deldQI) is of the form cos26;, as in the
single photoionization of an s subshell electron [21], and so
B=2.

A comparison of the 8 curves of Fig. 2 for a given photon
energy shows that the differences in using the C2 or C3
model are not very substantial except for a given range of
energies €;, depending on the photon energy considered. For
example, for 1.0 and 3.0 keV the main differences occur for
€,=0, where the C2 model predicts a positive 8 value while
the C3 model a negative one. At 5.0 keV, the main substan-
tial differences are at nearly equal electron energies, where
the C2 model predicts a relative maximum while the C3
model a dip minimum. It is of interest to compare the behav-
ior of the asymmetry parameter for the case €,=0. When the
C3 model is used, B is negative at nearly zero electron en-
ergy, which reflects that the final-state correlation is still im-
portant for the case €,=0 and E;— o°; the uncorrelated final
state C2 gives a positive asymmetry parameter for €;=0,
although for E£,= 5.0 keV the ground-state correlation alone
produces a negative 3 value for €;=0.

Figure 2(b) shows also the result obtained by Teng and
Shakeshaft [8] at E,,= 2.8 keV. These authors have consid-
ered a correction of the C3 model based on a short-range
correction factor determined by orthogonalization with re-
spect to the initial bound state ¢;(r,,r,). Clearly, this cor-
rection alters the angular distribution especially for the case
of nearly equal electron energies, although the low and high
electron-energy limits are conserved. A correction for the C3
model could be necessary, even at high energies, because this
model accounts correctly only for the asymptotic form of the
wave function. However, a correction that alters the angular
patterns could only be sustained by experimental verifica-
tion. The theory to be compared with the experiments should
also include effects arising from retardation, as will be
shown in Sec. III B.

In Fig. 3 we present the asymmetry parameter 8 for a
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photon energy of 3.0 keV and where the correlation in the
final and initial state has been turned on and off. The main
feature of these results is that whatever the final or initial
states considered for the calculation, the limits 8—0.0(2.0)
as €, —0(Ey) are, nevertheless, obtained. The use of C2-
GS1 states produces nearly a straight line. This approxima-
tion is the only one for which an analytical evaluation of the
asymmetry parameter was found possible to manage (see
Appendix A) and it could be expressed in the form

Bu(€1)= ——“———2'//'2 ©)
w € =
(RN D

where the expressions for the quantities .-Z and .% are given
in Appendix A. The subscript w is introduced to indicate that
this approximation introduces a weak correlation in the final
and in the initial state. As properly stated in Ref. [8], when a
weak correlation is introduced in both channels, the follow-
ing relation holds:

B.(€ /Es=0.5)=1.0 (10)

for any final energy £, although the converse is not true: for

. example, we have obtained B(€;/E;=0.5)=1.0 using the
C2-SH models at E,=12.0 keV (not shown in the figure).
Finally, it must be emphasized that when a high correlated
ground state is used (solid lines) the C2 and C3 models do
not produce remarkable disagreements even in the asymme-
try parameter 3, which is supported by the fact that in the
velocity form of the 7 matrix the error introduced in the final
state diminishes as Efl [3].

B. Retardation effects on angular distributions

The angular distributions given by the 3DCS in the dipole
approximation depend only on one parameter B, as given by
Eqg. (8). This makes the analysis simpler than when retarda-
tion is considered. Also, in the dipole approximation, the
3DCS does not depend on the azimuthal angle ¢; and be-
cause of its functional dependence on the Legendre polyno-
mial P, there is a magic angle (6,=54.73°) where the in-
tensity is independent of the angular distribution. The
following relation holds:

d‘TDIP —d d30’DIP
de de dQ,

(6,=54.73°). (11)

In Fig. 4 we present our calculations of the 3DCS at the
magic angle in the dipole velocity approximation and with
retardation taken into consideration, for E,=1.0 keV with
C2-SH states and with C3-GS2 states. It has been scaled by
the factor 4 77 because in the dipole case it coincides with the
differential cross section dopp/de; . Calculations with retar-
dation at forward (¢;=0°) and backward (¢;=180°) scat-
tering show deviations from dipole calculations. For brevity

we shall  denote  d 0 ip(0°)=d o%n/dedQ (6,
=54.73°,¢,=0°) and a similar notation for
d3 o (180°).

For a low- energy electron (e;=0) retardation plays a mi-
nor role and d3(7 (0°)= =d3c> RET(180") as in the case of
the single ph0t010mzat10n close to threshold. However, for
higher electron energies the differences could be substantial.

o
|
@

4m d°0"" /de 0, (Mb/eV)

FIG. 4. 3DCS as a function of the energy of an electron calcu-
lated at the angle @, =54.73° for a photon energy of 1.0 keV. Solid
line, dipole velocity approximation; dashed line, calculation with
retardation at forward (¢;=0°) scattering; dotted line, calculation
with retardation at backward (¢;=180°) scattering. Calculations
were made with C2-SH states and with C3-GS2 states.

For a high-energy electron (elef) we observe that
d® 05 (0°)>d? 051 (180°), using either model. This
could be explained by considering that the behavior of the
fast electron resembles the case of the single photoionization
of an s subshell electron. In this case the first-order retarda-
tion correction for the cos?6; behavior of the 3DCS at
€,=E/ is given by

d3URET 3 do-DIP
de dQ, e a7\ de
€=

51=Ef
Xcos?@;{1+ ksin@;cosp;}, (12)

where « is a retardation correction as in the case of an s
subshell electron [11]. Since for a high-energy single photo-
electron x>0 [11], the relation  d>che(0°)
>d® o}e1(180°) is fulfilled using this interpretation. The va-
lidity of Eq. (12) will be discussed below.

The other features of the spectrum, apart from the end
points of the electron energies recently discussed, could not
be explained easily from physical grounds. Differences ap-
pear in how retardation affects the spectrum. One sees that in
some regions the spectra invert depending on whether C2 or
C3 final states are considered. For example, for €, /E,=0.7
we observe in Fig. 4 that d30RET(O )/d30' +(180°)=1.9
using the C2 model, whereas this ratio is 0.8 with the C3
model. These results imply that measurements of electron
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spectra taken at the magic angle for these energies could not
be directly related to the differential cross section
do?*/de,, as already done for low photon energies [22,23].
We note that although the 3DCS presents an asymmetry in
¢, at 8,=54.73°, when properly integrated over d{}, the
differential cross section doxpr/d€; is symmetric about the
midpoint E4/2, as required by exchange.

When retardation is considered, the angular distributions
given by the 3DCS cannot be described by a single param-
eter as in the dipole case. In single photoionization the dif-
ferential cross section do*/d{} requires, in principle, an in-
finite number of terms [24]; however, for relatively small
energies a first order retardation correction could generally
be used. We analyze in the following the form that a first-
order retardation correction has for the case of double photo-
ionization. In this case we expand, as usual, the photon plane
wave in the form

exp(ik, - r)=1+ik,-r. (13)
The matrix element of Eq. (1) is now given by

T rer(k; . ko |k,) = TDIP(k1»k2)+T(RET(k1’k2| (14)

where

Trer(ki ko lk,) = (g7 |(ik, 1) Vi + ik, 1) Vol ), (15)
and the 5DCS, first order in k,,, is then given by

&’ ok 42\ kik,

- = —_— —= 2

de dQ,dQ, P ) (& T pp(k; k)|
+2Re{[e'TDIP(kl:k2)]

X[& Thuk(k, ks k,)]). (16)

Integrating the 5DCS given by Eq. (16) over d{}, leads to
the 3DCS also to first order in k,. As in the case of the
asymmetry parameter 3, the only model for which we could
find an analytic expression for this first-order retardation cor-
rection is the one given by C2-GS1 and in this case the
3DCS is given by (see Appendix B)

Loir | A 1+ P,(cosf
deldﬂl E w(él){ B, (€1)P(cosb,)

+ siné; cose[a,(€,)+2a,(€)P,( cosb;)]},
(17)

where A, (€,) and B,(€;) are given in Appendix A and the
retardation correction coefficient a,,(€;) is given in Appen-
dix B. From this formula we note that (i) the C2-GS1 model
introduces a first-order retardation correction with one addi-
tional parameter a,, and (ii) this retardation correction is of
the same form as that for single photoionization [11], al-
though in that case the retardation correction depends in gen-
eral on two independent additional coefficients, not one.
Since an analytical evaluation is not possible when more
complicated wave functions are employed, we analyze in the
following a first-order retardation correction given by
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FIG. 5. Angular coefficients B, a, and b of Eq. (18) for a
photon energy of 1.0 keV and 3.0 keV with C2-SH states. The
shaded area corresponds to the uncertainty in the determination of
the coefficients.

3
d URET

dedQ, Z;A(El){l + B(€,)Py(cosb;)

+ sinf,cosp;[a(€;)+b(€;)P,( cosh)]}, (18)

where we have introduced two independent additional coef-
ficients a(e;) and b(e,) and A(€,)=dopp/de; in the case
Eq. (18) represents a good approximation for the 3DCS. We
note that, for the C2-GS1 model, these additional parameters
are simply related by b=2a. It should be pointed out that
the first-order retardation correction for the 3DCS given by
Eq. (18) is expressed in the coordinate system of Fig. 1 and
if another coordinate system is employed the equation would
look different [25].

To make an analysis of Eq. (18), we note that our numeri-
cal programs introduce retardation to all orders in the multi-
pole expansion, so that we can investigate three things: (a)
whether the formula of the first-order retardation correction
given by Eq. (18) is still valid, (b) whether the retardation
coefficients a and b have a relation as in the case of the
C2-GS1 model, and (c) the validity of Eq. (18) as the photon
energy increases.

In Fig. 5 we present our calculated coefficients a and b
using the C2-SH states for two photon energies of 1.0 keV
and 3.0 keV. To assess the quality of Eq. (18) to describe the
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FIG. 6. Angular coefficients 8, a, and b of Eq. (18) for a
photon energy of 1.0 keV with C3-GS2 states.

3DCS, we have calculated the correction coefficients @ and
b, choosing different sets of grid points (6,,¢,) for their
determination; the shaded area in the figure corresponds to
the uncertainty in the value of the coefficients for the ap-
proximations employed. We stress that this uncertainty cor-
responds to how well the 3DCS could be parametrized using
Eq. (18) and not to a physical uncertainty in the parameters a
and b. At a photon energy of 1.0 keV the deviations from the
average are very low and have a maximum of 5%, but for
low electron energies €; the approximation of a first-order
retardation correction is excellent. However, at a photon en-
ergy of 3.0 keV the approximation given by Eq. (18) dete-
riorates and the deviations in the coefficients are up to 25%,
although for €,/E,;<0.4 the approximation is still a very
good one. On this basis, we can consider that the approxi-
mation of the 3DCS by Eq. (18) is a good one for electron
energies €< 1.0 keV, whereas for higher electron energies it
will be necessary to introduce more than three parameters
(B, a, and b) to describe the angular distributions [26]. We
observed also that the relation »=2a is in general not valid
as more correlation is introduced.

In Fig. 6 we present the correction coefficients a and b at
the photon energy of 1.0 keV using the C3 model. A com-
parison with the results presented in Fig. 5 using the C2
model at the same photon energy shows that these coeffi-
cients have different values, even considering the uncertainty
in their determination. However, the limiting values of these
coefficients are similar. For a low-energy electron (€;=0)
we observe that a=>b=0. This is explained physically in the
following manner. For a total asymmetry energy sharing
(€1=0 and e,=E/) the full photon momentum (k) is im-
parted to the fast electron, leaving no trace of k,, for the slow
electron; the retardation corrections vanish for the slow elec-
tron. As mentioned before, the fast electron resembles the
case of the single photoionization of an s subshell electron;
the formula previously introduced for the retardation correc-
tion of the 3DCS at €,=E;, given by Eq. (12), could be
written in the form of Eq. (18), with 8=2.0, b=2.0«, and
a=k, or equivalently »=2a. Coincidently, for the fast elec-
tron behavior we indeed observe b=2a, using either model
for the final state in Figs. 5 and 6.

Comparing the results of Figs. 5 and 6 at 1.0 keV, it can
be observed that the retardation coefficients approach the
values a=0.25 and b=0.50 as €,— E;. We can explain the
independence of the final state for this case as follows. As
E;— and €,—E, the Sommerfeld parameter £,,—0 and
the effect of the correlation of the C3 model, embodied in the
multiplicative term D~ (&;5,Kk5;1r12) of Eq. (5), tends to dis-
appear and ;=1 ¢, . The results using both models will be
very similar to the case of a complete asymmetric energy
sharing at high total energy.

In conclusion, our calculations favor the picture that, in a
complete asymmetric energy sharing, the angular distribution
of the fast electron resembles the case of an s subshell elec-
tron in a single-photoionization process, even when consid-
ering the retardation effects, while the slow electron emerges
isotropically, without a trace of the polarization direction of
the photon or of its momentum.

C. Contribution of retardation on total cross sections

As pointed out in the Introduction, a common feature of
the calculations of the ratio R=02"/c™" in the high-energy
regime is the use of the dipole approximation. This is not
automatically justified because the wavelength of the photon
is about the same as the size of the He target at about 4.0
keV; thus the use of higher multipole radiation would be
required. For the single photoabsortion cross section o™ it is
known that cross sections that do not neglect retardation dif-
fer from dipole results by quantities of the order (v/c)? (see,
for example, Ref. [27]). It should be mentioned that correc-
tions of this order also result from the use of the relativistic
Dirac formulation, therefore the results of the nonrelativistic
cross sections including retardation should be taken with
care.

We investigate in this section the contribution of retarda-
tion on the total cross section o?" and its influence on the
ratio R. As mentioned before, in the dipole approximation
the integration of the SDCS to obtain the total cross section
could be simplified due to the symmetries of the dipole op-
erator. When retardation is considered these simplifications
are not valid and the integration of the SDCS becomes a
formidable task if complex wave functions are considered.
For this reason we have limited ourselves to the simple C2-
GS1 models to calculate o** without neglecting retardation.
In Ref. [6] more elaborate wave functions have been em-
ployed within the dipole approximation (see Table II of Ref.
[6]). For the single-photoionization cross section o' the
same initial state GS1 was employed, whereas the final state
is described as a product of a bound 1s state with charge 2
and a continuum state with effective charge 1 (Coulomb ap-
proximation [28]).

Results in the dipole velocity approximation and with re-
tardation taken into consideration are shown in Table 1. As
the same states are employed in both calculations, this serves
as an examination of the influence of retardation on the total
cross section. It accounts for only 0.4% at 1.0 keV and for
4.8% at 12.0 keV on o*". However, a comparison of the
ratio R shows that

2+ 2+
OReT _ T pIp

= , (19)
U_];ET UBIP
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TABLE 1. Total cross sections of single and double ionization of helium by photons of energy E, . The
wave functions employed are the Coulomb approximation (see the text) and GS1 for single ionization and
C2-GS1 for double ionization. DIP, calculation in dipole velocity approximation; RET, calculation with
retardation. The last column is the relative difference of O'ZR-ET and 012)}},.

E, (keV) oy (Mb) 0 her (Mb) % (Mb) oktr (Mb) o= 0o
o
1.0 3.711x107* 3.724x107* 6.516X107° 6.542X107° 0.38
2.0 3.772%X 1073 3.799%x 1073 6.384x 1077 6.434%x 1077 0.79
3.0 9.673% 107 9.783x107° 1.633% 1077 1.652x 1077 1.18
4.0 3.655x107° 3.711x107° 6.188%x 1078 6.287x 1078 1.59
6.0 9.195% 1077 9.409% 1077 1.569% 1078 1.607Xx 1078 2.39
8.0 3.436x 1077 3.545%x 1077 5.908x107° 6.098x 107° 3.21
10.0 1.598%x 1077 1.661x 1077 2.764% 1078 2.875%107° 4.03
12.0 8.537x 1078 8.946x 1078 1.483x107° 1.555%107° 4.86

which indicates that previous calculations [3,5,6] may give
the same result for the ratio R when retardation effects are
taken into account, although the separate values of the cross
sections o>* and o™ slightly increase. Of course, the wave
functions employed for this evaluation do not give a good
value for the asymptotic ratio due mainly to the poor cusp
ratio of the initial state GS1 (Ry,= — 1.685). At 12.0 keV
our calculation gives a ratio of 1.73%, to be contrasted with
the shake calculation of Aberg [2], which, using the same
initial state GS1, gives a ratio of 1.75% (while the exact one
is 1.67%).

A simple analysis of the results of Table I shows that the
single-photoionization  cross section  behaves as
o rer/ opp=1+(v/c)?, where v is the velocity of the
ejected electron. This is in accordance with analytic results
valid for the K shell [27]. The double-photoionization cross
section behaves similarly o%e/op=1+(v,,/c)?, where
v,, is the maximum velocity of an electron. The fact that
corrections of the same order appear in both single- and
double-photoionization cross sections appears to be the clue
for the validity of Eq. (19).

Finally, we point out that the retardation contribution at
the level of the total cross section 0¥ could be competitive
with the inclusion of relativistic effects, as is the case for
ot. At E,=12.0 keV the maximum electron velocity is
about v,, /c=0.2 and relativistic effects should be noticeable.
No estimate of 02" is available within a relativistic frame-
work, so deviations from the ratio of 1.67% due to relativity
are uncertain.

IV. CONCLUSIONS AND PROSPECTS

In this work we have considered some aspects of the re-
tardation effects that affect the cross sections in double
photoionization. Several features have been exposed that are
missing in dipole calculations of this process, which have
tended to explain the data reported in synchrotron x-ray ex-
periments [1,10]. The analysis of data of future experiments
on the energy and angular distributions [29] might shed light
on the dynamics of the two-electron escape. For this task
inclusion of retardation effects in the theory will be
necessary.

First, we have presented calculations of the asymmetry
parameter B using the dipole velocity operator for a range of
energies including the intermediate- and the high-energy re-
gime. We have shown that for sufficiently high energies the
limits 8—0.0(2.0) as €, —0(Ey) are satisfied, independently
of the approximations employed for the final or initial state,
although the detailed behavior of B(€;) depends sensitively
on the choice of these approximations. These limits of the
asymmetry parameter 3 are, in consequence, a fundamental
feature of the high-energy regime of the process. In particu-
lar, the disagreement between our results and the ones pre-
sented by Teng and Shakeshaft [8] obtained using a short-
range correction term for the C3 model should be
investigated experimentally.

We have investigated the role of retardation on the differ-
ential cross sections. We have shown that the differential
cross section d302RET/d €,d(); could be described by a first-
order retardation correction that introduces two additional
parameters a(Ey,€;) and b(E;,€;) besides the asymmetry
parameter B(E,€;), with good confidence for electron en-
ergies €;<<1.0 keV. For higher electron energies more than
three parameters will be necessary to parametrize this cross
section; in this case a better coordinate system to describe the
3DCS appears to be one with the photon momentum k,
along the z axis, since in single photoionization this coordi-
nate system is the one generally used [24].

Finally, an interesting feature is our numerical finding of
the identity given by Eq. (19), which, although it has been
obtained with simple models for the states considered, opens
the way for a more general demonstration. This relation
would imply that the asymptotic ratio o>*/c*, which in
dipole approximation gives the value 1.67%, would be truly
realized in a formalism that takes retardation into account.
This formalism could be developed, in principle, under the
same assumptions of the shake formalism of Aberg and Dal-
garno. Since relativistic effects are also important for the
energies considered, a complete formalism should be devel-
oped within the relativistic framework.
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APPENDIX A: CALCULATION OF g
WITH C2-GS1 STATES

In what follows we derive the asymmetry parameter S for
the C2-GS1 model. The C2 model is given by Eq. (7) and the
GS1 wave function reads

Yasi(ry 1) =Ny(e @17 2t e7briman), (A1)
We use the Nordsieck-type integrals [30]
fd”‘"‘"”"ﬁﬂ(—is,l,ikwrik~r)=11(k,§,a>, (A2)

. z
fdre—""r—w;lFl(—ig,l,ikr+ik.r)=12(k,§,a)cos0,

(A3)
where @ is the polar angle of k, é=—Z;/k , and
Ik _ 8mi Al ) E(a—ik) (Ad
1( 957“)— (k2+a2)2 k,a CY( 1 g) Ak,a ) )
—8mi i .
(k& a)= mAk,a(l +if)k, (A5)
a?—k*—2iak
= (A6)

Ao =TT

The T matrix in the dipole velocity approximation [Eq. (4)]
is then given by

2- T pip(k; ,kKy) = C(Acosf, + Bcosb,), (A7)
where
C=—\/§—3N-N*(§1)N*(§z) (A8)
(2m)”
and

A=—aly(ky,€&1,a)](ky,65,b)

—bly(ky,&,,0)1(ky,65,a), (A9)
FB=—aly(ky,&,a)1(ky,&,,b)
—bly(ky, &5,0)1 (k€ ,a). (A10)
The 5DCS is then given by
d50'20+n’
m=cowcowl+ﬂcosezlz, (Al1)

where Co=(4m?/c)k k,|C|*/E,. Integrating over d(Q,
leads to the 3DCS given by

3 2+
d”o'pp

ded®, 1

1
= E AW(EI)[l+Bw(EI)P2(COSa1)],
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where
2
avten="T e @
and
2|2 (A14)

Aule)= A

A comparison of Eq. (A12) with Eq. (8) shows that
Aw(el)=d0'%);rp /de;. From Eq. (Al4) we see that
0=p,,<2, so that negative values of the asymmetry param-
eter are not allowed using the states considered. From the
definition of the quantities .2 and .% it is readily seen that
A4=2% when €,=E/2 and so we obtain that
Bw(€/E;=0.5)=1 for any final energy E;. Also, it could
be seen that for E;> —E| this asymmetry parameter ob-
serves the limits 8,,—0.0(2.0) as €;—0(E). But this is not
the case for the near-threshold behavior; for example, for
E,=120 eV we have gB,—0.3(1.7) as e, —0(E)).

APPENDIX B: CALCULATION OF THE FIRST-ORDER
RETARDATION CORRECTION WITH C2-GS1
STATES

In what follows we consider, as in the text, é=2 and
kp=f{. To evaluate the first-order retardation correction, we
use the Nordsiek-type integral [31]

) Xz
J dre” ‘k"“‘”—r—lFl(— i€,1,ikr+ik-r)
=15(k, &, a)cosfsinfcosep, (B1)

where @ and ¢ are the polar and azimuthal angles of k,
¢&=—Zy/k, and

167 .
I(k$.0)= Gy s A= (2 19k (B2)

Together with the integral given by Eq. (A2) we obtain

7T = ik, C(Zcosf;sinf cosp; + Zcosh,sinb,cose,),

(B3)
where C is given in Eq. (A8) and
T=—aly(k,&1,a)l(ky,6,.b)
—.bl3(kl’§l ?b)Il(k2’§2’a)’ (B4)
D= —al3(ky,&,a)l(ky,€,b)
—bI5(ky,6,,0)1(ky, &1 ,a). (BS)

Using Eqgs. (A7) and (B3), it may then be easily proved that

f dQ,2Re{[2- Tpp(k ko) [[2- TR (ky ko |K,) 1}

= —k,8|C|*Re[i.4%*]cos?;sinf,cosp;. (B6)
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Finally, using this result in the integration over d{), of the
first-order retardation correction of the 5DCS [Eq. (16)]
gives

2
d>oRpr

de,dQ,  4m A, (e){1+ B, (€)P,(cosb,)

+ siné, cose[a,(€;)+2a,(€;)P,( cosb;)]},
(B7)

where A,,(€;) and B,,(€;) are given in Appendix A and

_, dm[2.07%] as
aw(el)_ p(l/z|2+|}§)l2) ( )

is the coefficient of the first-order correction. We note that at
E,=1.0 keV this parameter has the limits a,,—0.0(0.24) as
€,—0(Ey). In general a,,—0.0 as €;—0, for any final en-

ergy Ey.
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