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Transition energies of ytterbium, lutetium, and lawrencium
by the relativistic coupled-cluster method
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The relativistic Pock-space coupled-cluster method was applied to the Yb, Lu, and Lr atoms,
and to several of their ions. A large number of transition energies was calculated for these systems.
Starting from an all-electron Dirac-Fock or Dirac-Fock-Breit function, many electrons (30—40) were
correlated to account for core-valence polarization. High-t virtual orbitals were included (up to t = 5)
to describe dynamic correlation. Comparison with experiment (when available) shows agreement
within a few hundred wave numbers in most cases. Fine-structure splittings are even more accurate,
within 30 cm of experiment. Average errors are at least three times smaller than for previous
calculations. Two bound states of Lu are predicted, 6p5d D2 and 6p Po, with binding energies
of about 2100 and 750 cm, respectively. The ground state of lawrencium is Pz~z, relativistically
stabilized relative to D3f 2, the ground state of Lu. Two states of the Lr anion are bound, 7p Po
(by 2500 cm ) and 7p6d D2 (by 1300 cm ).

PACS number(s): 31.25.—v, 31.30.Jv, 31.50.+w

I. INTRODUCTION

Transition energies (ionization potentials, excitation
energies, and electron affinities) are experimentally
known for most atoms, including many of the lanthanides
[1]. This information is more scarce for the actinides,
in particular for the transuranium elements. The devel-
opment of reliable high-precision ab initio methods for
the theoretical investigation of these systems is therefore
highly desirable. Such methods must treat simultane-
ously relativistic and correlation efFects, since both play
an important role in the spectra of heavy elements.

The multiconfiguration Dirac-Fock (MCDF) method
has been applied to a number of atomic systems over
the past 20 years (see, e.g. , [2—7]). Relativity is included
by using the Dirac Hamiltonian, and the large number
of configurations in the MCDF function (on the order
of several hundred) takes care of some correlation ef-

fects, particularly those due to quasidegeneracies (non-
dynamic correlation). Dynamic correlation, which re-
quires many more configurations and high-It virtual or-
bitals for proper description, is not represented satisfac-
torily, leading to errors in some cases. Thus it has been
recently shown [8] that dynamic correlation reverses the
order of the two lowest states of rutherfordium, leading
to a 6d ground state rather than the 6d7p predicted by
MCDF.

The past few years have seen an intensive development
of relativistic many-body techniques in atomic physics
and quantum chemistry, in particular the method of
fully relativistic (Dirac-equation based) coupled-cluster
(RCC) theory [9—20]. The coupled cluster is an all-
order method and yields upon iteration the order-by-
order many-body perturbation theory (MBPT). Infinite

subclasses of perturbation diagrams are summed and size
extensivity is maintained. The latter feature is par-
ticularly important for heavy elements, which are also
elements where relativistic effects are most significant.
An additional advantage of the coupled-cluster (CC) ap-
proach is connected with the similarity of CC and MBPT
expansion terms. Using this property one can, if neces-
sary, improve the CC results by adding the most impor-
tant omitted diagrams with the aid of low-order MBPT.
The RCC method gives both electron correlation and
relativistic efFects with high accuracy and is a power-
ful and systematic method for calculating properties of
heavy atomic and molecular systems.

The implementation of relativistic CC may be done
either numerically [10] or by using discrete basis sets,
which may be local [11,12] or global [13—20]. We have
recently developed and implemented a relativistic ver-
sion of the multireference valence-universal Fock-space
coupled-cluster method, using a discrete basis of four-
component Gaussian spinors (G spinors), which may also
be applied to molecular systems. The method is based
on the Dirac-Coulomb-Breit (DCB) Hamiltonian and in-
corporates the instantaneous Coulomb and low-&equency
Breit interactions to all orders. Accurate ionization po-
tentials, excitation energies, and fine-structure split tings
were obtained for Au [15), highly ionized atoms with two
to five electrons [16], and the alkali-metal atoms I.i to
Fr [17]. Pair correlation energies were calculated for all
the electron pairs of the Xe atom [18] and, more recently,
energy levels of Pr + and U + were calculated [19] and
ground-state electron configurations were determined for
elements 104 [8] and ill [20].

Previous applications to lanthanides and actinides in-
volved the f electron configuration [19]. Here we ap-
ply the RCC method to atoms near the end of the f
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series, the lanthanides Yb and Lu and the actinide Lr.
MCDF calculations on some states of Yb and Yb+ have
been reported by Migdalek and co-workers [21,22] and
by Kotochigova and Tupizin [23], with the former includ-
ing core polarization via core-polarization potentials or
second-order perturbation theory. Migdalek and Baylis
also calculated Lu+ [24], while Vosko et aL applied the
density-functional theory (DFT) to Lu and Lu [25,26].
Lu and Lr were investigated by Desclaux and Fricke [3]
using MCDF.

II. METHOD

H+ ——Hp+ V,

where (in atomic units)

H, =) A+h,~(')~+, (2)

The relativistic coupled-cluster method has been de-
scribed in our previous publications [15,17], and only
a brief review is given here. We start from the pro-
jected Dirac-Coulomb (or Dirac-Coulomb-Breit) Hamil-
tonian advocated by Sucher [27]

H = H+ —(oiII+io)

= ) ' f„,(r+ s) + — ) (rs
) )
tu) (r+ s+ut),

r, a, t,u

where f„, and (rs~~tu) are, respectively, elements of one-
electron Dirac-Fock and antisymmetrized two-electron
Coulomb-Breit interaction matrices over Dirac four-
component spinors. The eKect of the projection oper-
ators A+ is now taken over by the normal ordering, de-
noted by the curly brackets in the equation above, which
requires annihilation operators to be moved to the right
of creation operators as if all anticommutation relations
vanish. The Fermi level is set at the top of the highest
occupied positive energy state and the negative energy
states are ignored.

The no-pair approximation leads to a natural and
straightforward extension of the nonrelativistic open-
shell CC theory. The multireference valence-universal
Fock space coupled-cluster approach is employed here,
which defines and calculates an efFective Hamiltonian in
a low-dimensional model (or P) space, with eigenvalues
approximating some desirable eigenvalues of the physical
Hamiltonian. According to Lindgren's formulation of the
open-shell CC method [29], the effective Halniltonian has
the form

hid(i) = ccrc, p; + c (P; —1) + V„„,(i) + U(i),

v = ) A+~+(v. );,~+Ji.+ —) ~+U(')A+. (4)

H, g ——PHOP,

where 0 is the normal-ordered. wave operator

0 = (exp(S)).

(8)

(9)

r12
+ H» + o(n'), (5)

where the frequency-independent Breit interaction is

1
@12 [~1 ' c12 + (ell ' rl2) (c12 ' rl2)/r122] ~ (6)

2~12

In q-number theory the Dirac-Coulomb-Breit Hamilto-
nian H+ is rewritten in terms of normal-ordered products
of the spinor operators (r+s) and (r+s+ut) [27,28]

Here hD is the one-electron Dirac Hamiltonian. An
arbitrary potential U is included in the unperturbed
Hamiltonian Hp and subtracted from the perturbation V.
This potential is chosen to approximate the efFect of the
electron-electron interaction; in particular, it may be the
Dirac-Fock self-consistent-field potential. The nuclear
potential V„„,includes the effect of finite nuclear size. A,+.

are projection operators onto the positive energy states
of the Dirac Hamiltonian ho. Because of their presence,
the Hamiltonian H+ has normalizable, bound-state solu-
tions. This approximation is known as the no-(virtual)-
pair approximation, since virtual electron-positron pairs
are not allowed in intermediate states. The form of the
efI'ective potential V~ depends on the gauge used. In
Coulomb gauge it becomes (in atomic units, correct to
second order in the fine-structure constant n) [9]

S=):):
m)0 n)0 l)m+n

(10)

The upper indices in the excitation amplitudes reflect
the partitioning of the Fock space into sectors, which
correspond to the difI'erent numbers of electrons in the
physical system. This partitioning allows for partial de-
coupling of the open-shell CC equations. The equations
for the (m, n) sector involve only S elements from sectors
(k, l) with A, ( m and l ( n, so that the very large system
of coupled nonlinear equations is separated into smaller
subsystems, which are solved consecutively: First, the
equations for S~ l (corresponding to the reference deter-
minant) are iterated to convergence; the S~l' l (or Si ' l)
equations are then solved using the known S& ' ~, and so
on. This separation, which does not involve any approx-
imation, reduces the computational efFort significantly.
The eigenvalues of the efFective Hamiltonian (8) in a sec-
tor give directly the correlated energies in that sector
with respect to the correlated (0,0) reference state. These
transition energies may be ionization potentials, electron

The excitation operator S is defined in the Fock-space
coupled-cluster approach with respect to a closed-shell
reference determinant. In addition to the traditional de-
composition into terms with different total (l) number of
excited electrons, S is partitioned according to the num-
ber of valence holes (m) and valence particles (n) to be
excited with respect to the reference determinant,
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affinities, or excitation energies, according to the pres-
ence of valence holes and/or valence particles.

In the present application, we use the (0,0), (0,1), and
(0,2) sectors. The lower index l in (10) is truncated at
l=2. The resulting coupled cluster with single and dou-
ble excitations (CCSD) scheme involves the fully self-
consistent, iterative calculation of all one- and two-body
virtual excitation amplitudes and sums all diagrams with
these excitations to in6nite order. Negative energy states
are excluded from the Q space and the diagrammatic
summations in the CC equations are carried out only
within the subspace of the positive energy branch of the
Dirac-Fock spectrum.

the same basis functions. To include core-valence polar-
ization effects, a large number of electrons are correlated.
Thus only the Kr electrons are treated as core in the RCC
calculation of Yb and Lu (alt orbitals are optimized at
the Dirac-Fock stage), so that the 4df5spd6sp electrons
are correlated. For Lr, Xe(4f 4) defines the core and the
5df6spd7sp electrons are correlated. The virtual orbitals
with high orbital energies have been found to contribute
very little to correlation effects on excitation energies; or-
bitals higher than 100 a.u. are therefore eliminated &om
the calculation, effecting considerable savings in compu-
tational effort. All computations were carried out on the
IBM RS6000/360 computer workstation at Tel Aviv Uni-
versity.

III. CALCULATIONS

The Fock-space relativistic coupled-cluster method was
applied to the Yb, Lu, and Lr atoms, in several ion-
ization states. The Dirac-Fock-Coulomb or Dirac-Fock-
Breit equations were solved for the closed-shell systems
Yb+2, Lu+s, Lu+, and Lr+, which define the (0,0) sector
in each case. These systems were correlated by CCSD
and two electrons were then added, one at a time, to
reach the desired states of Yb+, Yb, Lu+, Lu+, Lu,
Lu, Lr, and Lr

The Dirac-Fock [28] and RCC [15,17] programs are
both written for spherical symmetry, utilizing the angular
decomposition of the wave function and CC equations in
a central 6eld. The energy integrals and CC amplitudes
that appear in the Goldstone-type diagrams de6ning the
CC equations are decomposed in terms of vector-coupling
coefficients, expressed by angular-momentum diagrams,
and reduced Coulomb-Breit or 8 matrix elements, respec-
tively. The reduced equations for single and double exci-
tation axnplitudes are derived using the Jucys-Levinson-
Vanagas theorem [29] and solved iteratively. This tech-
nique makes possible the use of larger basis sets.

To avoid "variational collapse" [30], the Gaussian
spinors in the basis are made to satisfy kinetic balance
[31]. They also satisfy relativistic boundary conditions
associated with a Gnite nucleus, described here as a
sphere of uniform proton charge [28]. The atomic masses
used are 173.939 for Yb, 174.97 for Lu, and 257 for Lr.
The speed of light c is 137.0599 a.u.

The uncontracted well-tempered basis set of Huzinaga
and Klobukowski [32] was used for Yb and the universal
basis set of Malli ef at. [33] was selected for Lu and Lr.
The basis sets, which go up to h orbitals (l = 5), are sum-
marized in Table I. Atomic orbitals with the same l but
difFerent k number (e.g. , pig2 and psy2) are expanded in

IV. RESULTS AND DISCUSSION

A. Ytterbium

Starting from the closed-shell configuration 4f 4 of
Yb+2, two electrons were added (one at a time) in the
5d, 6s, and 6p orbitals. The ionization potential (IP) and
excitation energies (EE's) of Yb+ are shown in Table II.
They are compared with experiment [1] and previous cal-
culations [22]. The agreement of our results with exper-
iment is very good, with an average error of 644 cm
and a maximum error of 920 cm i. As found earlier [19],
the Breit interaction has a small effect. The Dirac-Fock
function corrected by perturbation or core-polarization
potentials [22] yields much larger errors. Good agree-
ment with experiment is also found for the levels of neu-
tral Yb (Table III). Excitation energies are correct within
a few hundred wave numbers, with the exception of the
two high singlet states. The fine-structure splittings are
highly accurate, with the largest error in the DCB results
smaller than 30 cm

B. Lutetium

Two sets of calculations were performed for Lu. The
first started f'rom the 4f 46s configuration of Lu+;
adding up to two electrons in the Gd and 6p shells gives
the ionization potential, low-energy excitations, and elec-
tron affinities of the atom. Good agreement with ex-
periment is obtained for the IP and EE's (Table IV).
Fine-structure splittings are again highly accurate. The
CCSD electron afFinities, which have not been measured,
differ considerably &om the DFT results of Vosko et al.

TABLE I. Basis sets for Yb, Lu, and Lr. Members of the well-tempered s-basis series used in
the various l sectors are given.

Atom
Yb
Lu
Lr

Basis
31s26p21d15 f10g6h
34s25p20d15flOg6h
34s25p21d15flOg6h

Ref.
[32]
[33]
[33]

s
1—31
1—34
1—34

S7

5—30
9—33
9—33

d
8—28

13-32
13-33

f
13-27
17-31
17-31

g
16—25
21-30
21-30

h
19-24
24—29
24—29
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TABLE II. Ionization potential (IP) and excitation energies (EE's) of Yb+ (cm ). DF plus
PT, Dirac-Fock corrected by second-order perturbation theory [22]; DF plus CP, Dirac-Fock plus
core polarization [22]; DC, relativistic coupled cluster, starting from the Dirac-Coulomb Hamilto-
nian, DCB, relativistic coupled cluster starting from the Dirac-Coulomb-Breit Hamiltonian. The
experimental results are from Ref. [1].

Quantity
IP
EE

Average error

State
6s
Gda(2

Gds(2

6ps(2

Expt.
98269
23285
24333
27062
30392

Present work
DC DCB

97934 97876
23770 23720
25072 24998
27868 27870
31324 31312

659 644

Other results
DF plus PT DF plus CP

102764 95317
28210 20333
28792 21140
30834 26559
33962 29679

4244 2063

TABLE III. Ionization potential, excitation energies, and fine-structure splittings (FS s) of Yb
(cm ). MCDF, multiconfiguration Dirac-Fock method [23]; +CP MCDF with core polarization
added [21]. The other definitions are the same as in Table II. The experimental results are from
Ref. [1].

Quantity
IP

State or
splitting

6s So
Expt.
50441

Present work
DC DCB

51143 51109

Other results
MCDF +CP

48074

EE

Average error

FS

6s6p Po
P

3P

Gd6s Dg
D2
Dg

6s6p Pq
Gd6s D2

Pi- Po

P2- Pg
3 3D2- Dg
3 3D3- D2

17288
17992
19710

24489
24752
25271
25068
27678

704

1718
263
519

17346
18082
19847

24981
25229
25735
27283
28673

626

736

1765
248
506

17359
18089
19836

24936
25180
25676
27271
28587

730

1747
244
496

15829
16563
18167

27838

1800

734

1604

23120

TABLE IV. Ionization potential, excitation energies, and electron affinities (EA s) of Lu (cm ).
MCDF, multiconfiguration Dirac-Fock method [3], DFT, density functional theory (the different
values given use different density functionals) [25,26]; DC, relativistic coupled cluster with the
Dirac-Coulomb Hamiltonian (present work). The experimental results are from Ref. [1].

Quantity
IP
EE

EA

State
Gd6s Da(2

2D5(~
6s 6p Pg(2

2

6s 6p5d Dq

6s 6pGd Dq
3DL

3Q
3+zL

Expt.
43762

1994
4136
7476

DC
42757

1975
3828
7140
2076

746
—336

—1014
—2628
—3304

MCDF

1000

44504
1580
3862

4499

3665

2129

DFT
42858

1536
3094

4258

3556

2173

IS term average.
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Quantity

IP
EE

Average error

State

s' 'S
5d6s Di

D

D2
6s6p Pp

1P

Expt.
Lu+

112000+3000
11796
12435
14199
17333
27264
28503
32453
38223

L 2+

DC Other

113914 110534
12861
13500
15253
18538
27569
28821
32811
38965

TABLE V. Ionization potentials and excitation energies
of Lu+ and Lu + (cm ). DC, relativistic coupled cluster
with the Dirac-Coulomb Hamiltonian (present work); Other,
MCDF plus core polarization for Lu+ [24], and Dirac-Fock
plus second-order perturbation for Lu + [22]. The experi-
mental results are from Ref. [1].

Quantity
IP
EE

EA

State

7s'7p1/2 P1/2
7s 6d3/2 D3/2
7s 6d5/2 D5/2

7p3/2 P3/2

7s 7p6d D2
7s 7p Pi

Present
DC

39511
1388
5236
8348

2483
1237

258

work
DCB
39419

1263
5062
8273

2477
1314

284

MCDF

1500+1000
3900
7900

This value is obtained after applying an empirical correction,
derived by analogy to other atoms. The MCDF calculated
value is 3600 cm

TABLE VI. Ionization potential, excitation energies, and
electron aKnities of Lr (cm ). MCDF, multiconfigura-
tion Dirac-Fock [3], DC, relativistic coupled cluster, with
the Dirac-Coulomb Hamiltonian, DCB, RCC with the
Dirac-Coulomb-Breit Hamiltonian.

IP
EE

Average error

6s S&/2
5d D3/2

2
D5/2

6p P~/2
2
P3/2

169049
5708
8648

38401
44705

169135
6812
9767

38688
44998

578

172002
7785

10332
40154
45864

1925

initio result.
The orbital reversal occurs also for Lr, for which we

predict a 7p&&2 Po ground state, bound by some 2500
cm . The next state of the anion is 7p6d, bound by
1300 cm . There may be a third bound state of the
anion, 7p Pz, but its calculated binding energy is too
small to be sure of its existence.

[25,26]. In agreement with two of the three density func-
tionals used by them, we predict a 68 6p5d D2 ground
state for the anion, but our electron affinity is one-half
of theirs. Another weakly bound state of the anion is the
68 6p Po, not considered by Vosko et at. On the other
hand, we do not get electron binding in the D and the
E states, although the former may be weakly bound.

A second set of calculations started from the 4f con-
figuration of Lu+, isoelectronic with Yb+ considered in
the preceding subsection. Adding one or two electrons
in the 68, the 6p, and the 5d orbitals yields the ioniza-
tion potentials and excitation energies of Lu+ and Lu+
(Table V). Satisfactory agreement with experiment [1]
is obt, ained and the RCC results are significantly better
than MCDF values [24]. The states involving a 5d elec-
tron are 1000 cm too high, probably due to remaining
deficiencies in the basis.

C. Lawrencium

Here we start from the 5f 47s configuration of Lr+
and add up to two electrons in the 6d and the 7p orbitals
(Table VI). While Lu has a 5d ground state, relativis-
tic stabilization of the 7p&/2 orbital relative to the 6d in
the heavier Lr is sufFicient to have a 7pz/2 ground state,
with the 6d3/2 state about 1300 cm higher. This order
was also found by Desclaux and Fricke [3] using MCDF.
Their calculated 6d3/2 excitation energy was 3600 cm
but they extrapolated MCDF errors in lighter atoms and
quoted 1500+1000 cm ~ for this energy, close to our ab

D. Sources of error

Errors of a few hundred wave numbers, or up to 3'Fo,

occur in the calculated ionization potentials and excita-
tion energies. More accurate results were naturally ob-
tained for alkali-metal atoms (agreement within 20—30
cm ~ for Fr [17]), since the transitions there involve es-
sentially single-electron states. Three approximations are
used in the calculations and may be responsible for the
errors. The first is the truncation of the Dirac-Coulomb-
Breit Hamiltonian (1)—(5) after the n terms. This trun-
cation may not be valid for highly ionized heavy atoms,
but Lindgren [34] has shown that it is quite accurate for
neutral and weakly ionized species. This is corroborated
by the small effect of the Breit term, which (being of or-
der n ) is included in the present work. The two other
sources of error are the finite basis set and the truncation
of the CC expansion (10) at the CCSD level. Both may
contribute significantly and it is hard to apportion blame
between the two without further studies.

V. SUMMARY AND CONCLUSION

A large number of transition energies were calculated
for. Yb, Lu, and Lr, including ionization potentials, exci-
tation energies, and electron aKnities of the atoms and
some of their ions. Many electrons (30—40) were cor-
related, to account for core-valence polarization. High-
s virtual orbitals were included (up to l = 5) to de-
scribe dynamic correlation. A comparison with exper-
iment (when available) shows agreement within a few
hundred wave numbers, with a few exceptions. Average
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errors are at least three times smaller than for previous
calculations. We predict two bound states of Lu, 6p5d
D2 and 6p Po, with binding energies of about 2100 and

750 cm, respectively. The ground state of lawrencium
is Pzy2, relativistically stabilized relative to D3~2, the
ground state of Lu. Two states of the Lr anion are
bound, 7pz sPo (by 2500 cm ~) and 7p6d Dz (by 1300
cm ). A third state (7p Pq) may also be bound.
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