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Auger-electron spectroscopy of molecules: Circular dichroism in angular correlation
with photoelectrons from rotating linear molecules
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In this paper, we report a study of circular dichroism in angular correlation between photoelectrons
and Auger electrons emitted sequentially from a free, gaseous, linear molecule whose rotational motion
has also been taken into account. The outgoing electrons are observed without their spins. The photon-

propagation and electron-detection configurations, along with other conditions, have been specified
wherein dichroic effects do not necessarily vanish in one-photon, two-step, double ionization of rotating
linear molecules. The analysis is presented in terms of both the state multipoles and the photoionization
matrix elements. It is completely general and is independent of any particular dynamical description of
the photoabsorption as well as Auger emission processes.

PACS number{s): 33.80.Rv, 33.55.Ad

I. INTRODUCTION

Recently, we [1,2] have predicted chirality in the in-
tegrated as well as the differential Auger currents emitted
following absorption of circularly polarized (CP) light in
the electric-dipole (El ) approximation in an achiral,
linear molecule. The conditions for the presence of circu-
lar dichroism in Auger electron spectroscopy (CDAES)
are not only entirely different but also less stringent than
those required in other scenarios where dichroic effects
are hitherto found to exist and very much depend upon
the symmetry of the nuclear field experienced by the es-
caping Auger electron. This field in linear molecules is
always cylindrically symmetric. For the CDAES in such
molecules not to be trivially zero, it is necessary [1,2] to
observe spin-resolved Auger electrons, but without in-
cluding either the spin-orbit interaction or the spin-
rotation interaction. Nonlinear molecules, on the other
hand, have neither spherical nor cylinderical symmetry.
The CDAES in these molecules was therefore found [2]
to be present even in spin-resolved Auger electrons with a
simple cos0, distribution. Here 8, is the angle between
the direction of incidence of the CP light and that of ejec-
tion of the Auger electron.

Chandra and Chakraborty [2] have shown the presence
of circular dichroism (CD) also in the angular correlation
between Auger and photoelectrons without analyzing
orientation of their spins. The target may be either a
linear or a nonlinear molecule that belongs to one of the
32 point groups. This circular dichroism in one-photon,
two-step, double ionization [i.e., the circular dichroism in
double ionization (CDDI)] is very different from that
studied by Berakdar and Klar [3(a)] and Berakdar et al.
[3(b)] for atoms and by Chandra [4] for molecules in one-
photon, one-step, double ionization [i.e., circular di-
chroism in double photoionization (CDDPI)]. In CDDI,
the emission of the first electron by light interacting with
the target in the form of a vector operator in the E1 ap-
proximation is followed by the ejection of the Auger elec-
tron. But in CDDPI, both electrons are emitted simul-

taneously by the E1 interaction. Due to the presence of
an intermediate state of the photoion AB+* in the pro-
cess (1) in CDDI, unlike in CDDPI, the excess photon
energy is not shared continuously between the kinetic en-
ergies of two ejected electrons. The Auger electrons will
have the same kinetic energies as long as the states of
AB+" and of AB in (1) remain unchanged, whatever
the frequency of the incident light. CDDI has already
been theoretically studied by Kammerling and Schmidt
[5] for Xe and by Schmidt [6] for Mg.

Chandra and Chakraborty [2], in their work on CDDI,
did not take nuclear rotation into account. But recent
advances [7-10] in high-resolution electron spectroscopic
techniques have made it possible to obtain rotationally
resolved spectra produced in photoionization of "light"
molecules such as H2, N2, 02, CO, and NO. These high-
resolution electron spectrometers can possibly be used in
future CDDI experiments on rotating linear molecules as
well.

In the next section we therefore develop theoretical ex-
pressions for CDDI in rotating linear molecules using
parity adapted wave functions [11] in Hund's coupling
schemes [12] (a) and (b). For both of these schemes, two
different but equivalent CDDI expressions are derived,
one in rotational state multipoles [13]and the other in E 1

amplitudes. The properties of CDDI are also discussed
therein. In Sec. III we present explicit formulas for
CDDI applicable to any linear molecule with some
specific values of the total angular momentum J and J& of
AB+*, and AB +, respectively, in (1). The conclusion of
this CDDI work is presented in Sec. IV.

II. THEORY FOR CIRCULAR DICHROISM

Let us consider the angular distribution of photoelec-
trons (e~ ) emitted in

h v„+AB(JoMopo) —+ AB+*(JMp)+ep(k )

and observed along with the Auger electrons (ez ) coming
out in the subsequent process
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AB+'(JMp)~ AB +(JfMfpf )+eq(kq ) . (lb)

Here AB + is a doubly charged molecular ion left after
the radiationless decay of the excited photoion AB+*
formed in the process (la) in a rotating linear molecule
AB belonging to either the C, or theD & point group.
l JpMopo ), l JMp ), and

l JfMfpf ) in ( 1 ) are the molecu-
lar states of AB, AB *, and AB +, respectively. (Jofi,
Jiri, JfA') are the total angular momenta of these states,
(MOA MA Mfh') are the respective projections of these
angular momenta on the space-fixed quantization axis,
and (po, p,pf ) are the parities [11]of the three states re-
spectively.

The space-fixed quantization axis is nothing but the po-
lar axis of our space (or photon) frame of references taken
to be along the direction of propagation of the unpolar-
ized (UP) or circularly polarized (CP) ionizing light.
However, if the light incident in (la) is plane polarized
(PP), the direction of its electric vector then d~efines the
polar axis of the space frame. Further, k~(k~, k~(8~, $~))
and kz(kz, k„(8„,$& )) are propagation vectors of the
photoelectron and of the Auger electron ejected with en-
ergies e =A' k /2m from AB in (la) and with energy
Fz =iri k~ /2m from AB +* in (lb), respectively.

The cross section for the angle-resolved double-
ionization process (1) is given by [14]

d cr~ (m„) +Ap $ (JfMfpf i k p s u p p p l
F~ I™p) & JfMfpf; k &,u & p & F~ l

JM p ) 'p~ ( JMM ', 1m „;k )

dkg dk w~'
p ~,Mf

(2)

X(T(J;Im„;k )xg) (3)

is the density matrix describing the first step correspond-
ing to the photoionization process (la) in the electric di-
pole (El) approximation in terms of the state multipoles
[13] (T(J; lm„;k~)x~). The polarization of radiation
absorbed in (la) is represented by the parameter m„in ex-
pressions (2) and (3) and elsewhere in this article. m„=O
for PP and m„=+1for CP light; the cross section (2)
needs to be averaged over m„=+1for UP radiation. The
distribution (2) has been summed over the projection p„
(along uz ) of the undetected spin of the Auger electron.

If Eo, E, and Ef are the respective energies of the
molecular states of AB, AB+*, and AB + involved in

Here K„ is a constant, F„=V,+mliri is the Auger
transition operator with Vc the interelectronic Coulomb
interaction, which is a scalar, and

p~ (JMM', 1 m „;k )

(1), then the kinetic energy of the photoelectron is
e =hv„—(E Eo) and—that of the Auger electron is
e~ =Ef —E. The kinetic energy e will change with the
energy h v„ofthe photon absorbed in (la) even for the
same states lJ,M,p, ) and JMp) of AB and AB+*, re-
spectively. But the Auger electron will come out with the
same energy ez as long as neither E nor Ef changes.
Thus the angular correlation function (2) is difFerential in

three variables, namely, k z, k, and e .
The Auger decay matrix element

(JfMfpf kg upped lFQ lJMp) needed in (2) is already
available to us from Eq. (I7) [15] for Hund's coupling
scheme (a) and from Eq. (I16) for scheme (b). In order to
obtain the angular correlation functions between the two
electrons ejected in the process (1) in Hund's cases (a) and
(b), we substitute the pairs of equations (3), (I7) and (3),
(I16), respectively, in the expression (2). The resulting
two expressions, one each in coupling schemes (a) and (b),
for double-ionization cross sections can be shown [14],
after some simplifications to have identical geometrical
but, of course, different dynamical factors. Both of these
are therefore readily represented by a single function of
the form [14]

o Ap(mr ) J+J —1/2
2

" =( —1)
dk„dk

X X ()
lz, lz ' JA 'Jz

rc l„
Jw

E

Ja
e~'~(J;m„;k,)A, , A,*, , Ig(k, ) .

Here

ez&(J;m„;k~) =(2J+ I)( T(J;m„;k~)xg )o'~ /A (5)

The "reduced" Auger amplitudes A& present in (4) and the quantities A present in (5) are obtained from Eqs. (I8)
and (I8') in Hund's case (a) and from Eqs. (I17) and (I17') in Hund's case (b). The integrated Auger intensity o„,need-
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ed in (5), has also been defined in paper I for both the schemes. The state multipoles {T(J;m„;kz)xg ) occurring in (5)
are taken from Appendixes A and B for coupling schemes (a) and (b), respectively.

The circular dichroism in one-photon, two-step, double-ionization process (1) in a rotating linear molecule is readily
obtained by substituting (4) in

0 CD
2

dk~ dk

yielding

d o. z (m„=+1) d cr„(m„=—1)

dk~ dk dk„dk

d 0

dk~dk
0

l~ E l~

0 0 j'
E

1

2

J E .AIJf

X A(. . , ex'{J;k )coYg(k„), (6a)

e(Klg)(J;kp)cD=e(K(g)(J;m„=+ I;kp) —eK(lg)(J;m„=—I;kp) .

Equations (6) give us CDDI in terms of the state multipoles of the photoion AB+* before its Auger decay. In order
to obtain an expression for CDDI that contains E 1 photoionization amplitudes, we substitute in (6b) the definition (5),
along with appropriate expressions, for {T(J;m„;k )xg ) taken from Eq. {A7). After simplifications we get

CT CD —J —J=( —1) ' f(2J+1) —,
' E

dk„dk

l l' E l l' L
X g g g (

—l)~ 'Q(2L +1)(2K+I)
I,I,J L,K, Q

I,I,J

E L 1

X &O. )~ J~

l„' E J E
2

l, l,
' E

X '

J,' J, Jo

l

'l
1

l' I.
lt E Yg(k~)YL g(k )A(

1 1

X ((Js, )J,;I, IF(t, )lJ,;»((Js, )J,';I; IF(I,')IJ,;»' (7)

for both Hund's coupling scheme (a) as well as (b), with the corresponding Auger decay matrix element A& taken
A~A

from paper I. The reduced amplitude ((Js~ )J„'/~lF(l, )lJo, I ) is supplied by Eq. (A4) for Hund's case (a) and by Eq.
(B3) for case (b).

Introducing the bipolar harmonics [16]

Pio'(k~, k )=( —1) ' &3g ~ ~ O
Yg(k„)Y~g(k ),

the CDDI (7) can be written as

with

CD KL= g Cxr (JOJJf', k~k )P,o~(k„,k~),
dkA dk K,L

(9a)
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CxL (JOJJ~, k„k)=(—1) ' ~(2J+ I) E
P 2~~ 2 '

X g g ( —1) ' ~Q(2%+1)(2L +1)
l I J
l', I',J'

/& E / /' L

0 0 0 0 0 j& j& J&

/ /~X'.,
jw jw

K J J
1

2

/I ~ p

/J, J()
1

l' L

AJA 1AJA

1 1

x ( (Js~ )J, '
lz I

F( l, ) I Jo; 1 ) ( (Js~ )J,' l~ I +( It ) I Jo ' 1 ~

III. APPLICATION

Let us derive explicit expressions for CDDI in a rotat-
ing linear molecule when the total angular momentum J&
of the doubly ionized residue AB + after Auger decay is
0. For the first 6-j symbol in (7} not to be zero, the tri-
angular relations b,(Jj„,J&) and h(J,j„',J&) must be
satisfied. As both j„(=l„+—,') and j„'(=lz+ —,') are
half integers, the angular momentum J of the photoion
AB+* must also be half integers. Then, according to the
discussion presented in Sec. II, the minimum allowed
value of J for CDDI not to vanish identically is —,'. The
third 6-j symbol in (7) consequently gives J, =1 and 2.
This, in other words, means that the total angular-
momentum quantum number J, of AB in (1) has to be an
integer, for l, defined in (Al) cannot be a half integer.
We take in this application, for simplicity, the minimum
allowed value J,=0.

It is obvious that J=—', in Hund's coupling scheme (a)
means [20] that the spin of AB +* is given by
S ~

I

—A+ —', I. Hence some of the possible electronic
states of AB+' are ' ' '' X (i.e., X, X, . . . ),
( ' ' ' ' ' ' H, ' ' ' ' ' 5, etc. In Hund's coupling scheme
(b}, on the other hand, the states [20] X for N=O; ' ' ' 'X

d (2,4, 6)~ for ~ 1, (2,4, 6, 8)y (2,4, 6, 8)H and (2,4, 6, 8)g for
%=2; etc. of AB+ will have J=—,'. Similarly, the cou-
pling (a) electronic states of AB that will have J=0 and
of AB + with J =0 are "''' 'X '''' 'Hf'b„etc., whereas, the coupling (b) states of both
AB and AB + are 'X, (X, ll), (X, ll, b, ), etc. , for N, and

X&=0, 1,2, . . . , etc. , respectively.
From the first 6-j symbol in (7), we find j„andj~ =—'„

giving, in view of the second 6-j symbol, /& and /~ =1 or
2. That is, only a single (p or d) partial wave of the
Auger electron contributes in the present example of dou-
ble ionization (DI). The first 6-j symbol also gives
K=O —3. However, because of the first and third 3-j
symbols, K can be neither zero or odd. Therefore, the
only permissible value of K in the present case is %=2.
In addition to this, the third and fourth 6-j symbols
present in (7), on the other hand, yield I„lt= 1 and 2. An
application of the trangular condition implied in the
definition (Al) gives l~, l~ =0—3. However, it is obvious

Since we are using parity adapted wave functions [11]
for all of the molecular states involved in the process (1}
and the quantum numbers (J„J,J&) have definite values,
both E and L are even, as well as finite, positive integers
in Eqs. (4)—(7) and (9). Hence the CDDI expressions ob-
tained in this paper contain a limited number of harmon-
ics [17] only of even order in the directions of propaga-
tion k and kz of the photoelectrons and the Auger elec-
trons, respectively. One can readily show that Eqs. (7)
and (9) have the following properties.

(i) Let us specialize (8) to a coplanar experimental
configuration wherein detectors for Auger electrons and
photoelectrons and the polar axis of the laboratory frame
(which is along the direction of incidence of the CP radia-
tion) are in a single plane, i.e., I P„—P~ I

=n upwith.
n =0—2. We find that the CDDI (9) becomes zero. The
CD is absent in a coplanar experimental geometry in dou-
ble ionization also of atoms as the atomic states also are,
in general, parity eigenstates. In both of these cases one
has only the directions of two outgoing electrons plus the
axial vector of circular polarization. Therefore, no hand-
edness exists if all three vectors are in a single plane,
hence the absence of CDDI in the coplanar
configuration. Although CDDI does not exist in copla-
nar arrangements for atoms and linear molecules, the an-
gular correlation between the photoelectrons and the
Auger electrons is, nevertheless, not necessarily zero even
in this case [14,18,19$.

(ii) d o.cD/dk„dk~ will vanish identically where the
angular momentum J of the excited photoion AB+* in
(1) is less than one. In that case, the allowed even value
of E will only be zero from the triangular condition
b.(J,J,K), which needs to be satisfied in order for the first
and third 6-j symbols in (7) to exist. But L also should
be even. The third 3-j symbol present in (7) will then
identically vanish. This result will hold for all directions
of k and kz. However, this property of CDDI in rotat-
ing linear molecules is not surprising for the simple
reason [14] that when J (1, the angular correlation be-
tween Auger electrons and photoelectrons from a rotat-
ing linear molecule is completely isotropic. An isotropic
distribution will not naturally exhibit any dichroic effect.

Both results (i) and (ii) are applicable in either of the
coupling schemes being considered by us.
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from the second and third 3-j symbols occurring in (7)
that L,z, and hence l~ and l~, cannot be zero. Then we
obviously have (,l&=2 or 1,3 with L, =-2 only. There-
fore, in the application being considered (with J„J/=0
and J=—,'), the CD (7) will have spherical harmonics

YP(k„)and Y2 ~(k~) only. The CDDI is finally given

by, f'or lp, l~ =2; l~ (~ = 1 or 2,

X &( —,'s~)2;2IF(2) 0;1)'—c.c. ]

Xf(k~, k„) (10a)

and, for l~, l~
= 1 and 3; l~, l„'= 1 or 2,

d2
=i " ', [& ( —,'s )1;2~F(1)~0;1 &

9600m

d ~ca2 —[&(-',;)1;1IF(1)I0; »&(-,'s, )2;3~F(2)~0;1)* c—c ]. .
320vr 2 70

+ —[ & (-,",)2; I IF(2)10;I)& (-,",)2;3~F(2) ~0; »*—c.c. ]
1

10 14

3 20
—[&(-,'s, )1;IIF(1)10;1&&(-',s, )2;1IF(2)10;1&*—c.c. ] f(k„k,), (lob)

with

f(k„,k~ ) =2 sin O„sin H„sin2(P~ —P„)
+sin28& sin20~sin(P z P~ ) . —

Thus both (10a) and (10b) depend on the Auger decay
dynamics only to the extent of the integrated Auger in-
tensity o.~. This is a consequence of the fact, as shown in
the preceding paragraph, that only a single partial wave
is required to represent the Auger electron in the present
example. Another consequence of this is that CDDI is
split in two, rather than in four, continua corresponding
to l, 1' even and odd. The angular part (11) of CDDI
(10a) and (10b) is identical for the reasons explained in
the preceding paragraph. Also f ( k„,k~ ) =0 for
P„—P~ =0, m. , and 2m, that is, CDDI (10) vanishes iden-
tically for coplanar incident ionizing radiation, Auger
electrons, and photoelectrons. This result is in accor-
dance with property (ii) of CDDI in rotating linear mole-
cules discussed previously in this paper.

The reduced amplitudes & (Js~ )J, ; l~ ~F( l, )
~ Jo, 1 ) used

in (10) are given by Eq. (A4) in Hund's coupling scheme
(a) and by Eq. (B3) in scheme (b). These amplitudes are
completely determined by the allowed transitions only,
that is, it is the electric dipole E1 operator that makes
transitions involved in (A4) and (B3) take place. Thus the
CD effect in the present example of DI is completely
determined, apart from the total Auger intensity o.~, by
the photoionization dynamics in the E1 approximation.

Unlike the forbidden transitions [caused by the mag-
netic dipole (M1), the electric quadrupole (E2), the mag-
netic quadrupole (M2), etc. , operators], the allowed El
transitions are usually readily observable with modern ex-
perimental facilities. In fact, Kammerling and Schmidt
[5] and Schmidt [6] have already calculated CDDI in
atoms and found it to be measurable by the existing ex-
perimental apparatus. The structure of the theoretical
expressions describing CDDI in atoms and in rotating
linear molecules is identical [18]. For these reasons, it is
natural to conclude that the CDDI effect even in rotating
linear molecules should be sufticiently large so that, simi-

I

lar to the atomic case [5,6], one is able to observe it with
modern experimental facilities.

IV. CONCLUSION

In this paper we have set up a methodology and
developed a framework for studying dichroic effects in
one-photon, two-step, double ionization of a rotating
linear molecule. Expressions for CDDI in terms of both
state multipoles as well as in terms of E1 ionization am-
plitudes have been derived. Using the parity adapted
molecular states, both of Hund's coupling schemes (a)
and (b) are considered. An analysis of these expressions
shows that the CDDI will necessarily be zero if the total
angular momentum of the intermediate state of the excit-
ed photoion before Auger decay is less than one. The
other result is that the CDDI vanishes where the detect-
ed Auger electrons and the photoelectrons and the CP
ionizing radiation are in a single plane. This result is ap-
plicable whether or not rotation of the nuclei in a linear
molecule has been taken into account.

Because CDDI expressions usually contain fewer terms
than otherwise, it is therefore at least theoretically easier
to study electron correlation by investigating dichroic
effects. These can be used to extract information on state
multipoles as well as to calibrate the degree of circular
polarization of x rays.
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APPENDIX A:
ROTATIONAL STATE MULTIPOLES

FOR THE PROCESS (1a) IN A ROTATING LINEAR
MOLECULE IN HUND'S COUPLING SCHEME (a)

In this appendix we obtain density matrix and state
multipoles used in the various expressions in Sec. II of
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the present paper in Hund's coupling scheme (a); Appen-
dix 8 contains the same quantities in the scheme (b}. The
desired expressions are derived in terms of the angular-
momentum transfer

l, =l„—I =J, (—:J+s ) —Jo . (A 1)

Here l„(Il„I=1 in the F-1 approximation) is the photon
angular momentum, I and s (Is I

=
—,') are, respectively,

the orbital and the spin angular-momentum vectors of
the photoelectron in the process (la). The vector l, was
originally introduced by Fano and Dill [21—23] to simpli-
fy the mathematical structure and hence provide better
physical insight into the angle-resolved photoelectron
spectroscopy of atoms and molecules. The definition (A 1)

is appropriate for those experiments on photoelectron
spectroscopy that do not analyze the spin of the observed
photoelectron ejected in the E1 approximation.

The density matrix and state multipoles obtained in
Ref. [14] for studying angle and spin correlation between
the photoelectron and the Auger electron are based, on
the other hand, on the angular-momentum transfer

j,=l„—j (—= l +s )=J—Jo,
which is different from that defined in (A 1). This j, was
introduced by one of us [24] to study angle- and spin-
resolved photoelectron spectroscopy of atoms and mole-
cules.

The density matrix we need is given by

p»(JMM'; lm, k» }'=(2JO+1} I(.» g & JMp~k»;ii»p» IF»I JOM,po; lm„&& JM'p;k»;ii»p» IF„IJ,Mopo; lm„&' . (A2)

Here angular brackets are the E1 amplitudes for the pro-
cess (la), the constant IC» and the dipole operator F are
defined in Ref. [25]. Equation (A2) has been summed

over p, which is the projection of s in direction u, to
account for the fact that the photoelectron's spin remains
undetected.

On substituting (IA2} and (IA4), alongwith (IA3), we
find that each of the two photoionization matrix elements
in (A2) will contain, in addition to other things, an in-

tegral over the product of 2) 2)»2)' 2) 2)' in Hund's
case (a). Each of the 2)'s in this product is a rotational
harmonics [17]. In order to introduce I, according to the

definition (Al), we couple 2) ' with the combination of

using the Clebsch-Gordan series [17] in 3-j sym-
bols. The two remaining harmonics 2)», 2)' are com-
bined separately. This procedure reduces the above-
mentioned integrand into a sum of the product of six 3-j
symbols and two rotational harmonics, in addition to
various other quantities. The resulting integral is then
readily performed using the orthogonality [17] of rota-
tional harmonics. This same procedure is applied also to
the evaluation of the integral of the product of five rota-
tional harmonics present in each of the three remaining
terms in the E 1 amplitude in (A2).

Use of the identity (4.16) from Ref. [20] and some other
simplifications finally leads to

(JMp;k;u p IF IJOMopo, lm„&=(—1) 'V(2JO+1)l(21»+1)

X g g( —1)*
I,n, p J,N

I, , n,

Jp

M p N& 1V Mp n, m„—n n,

XI'i" (k )2)„'„(co„)((Js)J,;l F(l, )IJO', 1& .

The reduced amplitude in the present case is defined by

((Js )J, ;I IF(l, )IJ0, 1&=—,'e»( i)(2»,J—+1)( l,2+1)Q(2 J+1)(2l +1)

J, Jp I,
X g(2Jz+I) '

1 I J '(n(Js )J,AQp;l IF(JT)InoJoAOQopo;1& (A4)

with
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(n( Js~ )J,AQp;l~ ~F(JT )ino JOAOQ~O; 1)

Xg g ( —1)™
m, v A.„)M

1

2 lp J, JT
m M, MT

J0 1 JT po+200+Ms
(n ASrn;l, mvjF in, A~, r,n, ; la„)+( 1)—"

0 r T

Jo
( n ASXO; 1~m viFi no —

ADSO
—Xo—Qo;1A,„)

0 r T
(A5)

The selection rule —,+1~+Jo —J+p+po even is identical to that found earlier [14,15] in simplifying the photoioniza-
tion matrix element present in (A2) using two different definitions, other than (Al), of the angular-momentum transfer.

In order to obtain the desired density matrix for the process (la), we first substitute the amplitude (A3) in (A2) and
carry out the sum over pz using the unitary property [17] of the Xl s . The resulting expression is then simplified and
brought to the desired form by applying, in succession, the identities (14.42) from [26], (4.16) from [20], (4.6.5) from
[17], (14.42) from [26], and (10) from [16],p. 464. We finally get

p~(JMM'; lm„;k )

=( —1)"m„—1/2 +p
&4~

l l' L
X g Q (

—1) ~ ' (2L„+l)(2A +1)+2L +1
1 L„

—m„m, 0

J J A

M -M' M.
A

—ML Ml

r

l' A

J, J0 1,

1

I,
' L,

X Yl (kp)((Jsq)J„'l~iF(1,)iJO', 1)((Js )J,';1'iF(1,')~J0, 1)' .
P

(A6)

In order to obtain state multipoles, we first substitute (A6) in the inverse of (3) and then simplify the resulting expres-
sion using the orthogonality [17]of 3-j symbols. This procedure yields

J Jp+m —jr2 &p
( T(J;lm„;k )xtg) =( —1)

4m

I +1,' lp lp Lp
X g g ( —1) ~ '(2L„+1)Q(2L+1)(2%+1)

1,I,J 1. ,1.
„

1 L,
—m„m„0

L, E L„
Q Q 0 J,' J,

sc

J,'
1,

'
lC

J, J0
'

~ l,

1

sc i

1 L„
X FL ~(kz)((Js~)J„'l~iF(l,)~J0, 1)((Jsz)J,';l~~F(l,')iJO;1)' . (A7)

The highest-order multipole moment that can be deter-
mined in the present case is obviously 0 ~ K
(min[2(l~), „+2,2J+1]. The normalized statistical
tensors are defined by

(T(J;lm„;k )xg)
pxg(J;m„;k~ ) =v 2J+ 1 t . (A8)

(T(J; lm„;k,)' )

It is obvious from Eqs. (A6) and (A7) that

(T(J;lm„,k, )' )
=(2J+1) ' g pp(JMM; lm„;k~)

M
do (J;m„)=(2J+1)- "

dk
(A9)
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APPENDIX B:
ROTATIONAL STATE MULTIPOLES

FOR THE PROCESS (la) IN A ROTATING LINEAR
MOLECULE IN HUND'S COUPLING SCHEME (b)

An expression the E1 amplitude

(JMp;k;u p IF I JoMopo', lm„) in Hund's coupling
scheme (b} is readily obtained by first following the pro-

for

Here do (J;m„)/dk» is the differential photocurrent of
spin-unresolved photoelectrons ejected in the process
(la). This expression can be shown to have a form identi-
cal to that given in Refs. [21—23] and in Ref. [27] in
terms of an incoherent sum over the angular momentum
transfer I, .

cedure described at the beginning of Appendix B in paper
I. This amplitude contains, in addition to several other

1 N ) Noterms, an integral over the product of 2)»2) 2)'2) . On
1 N ocombining 2)» with 2)' and 2P with 2) ', this product

reduces to a sum of the product of four 3-j symbols and
two rotational harmonics. The resulting integral is readi-
ly performed using orthogonality [17] of 2) functions.
After that, we apply identities (4.16) from [20] and (7)
from p. 454 in Ref. [16], respectively. The next step is to
perform, with the help of Eq. (3.7.9) from [17], a single
sum over the magnetic quantum number Ms associated

0
with the spin of AB in the state

I JoMopo ) in (la). This
procedure is readily repeated for the three other similar
terms present in ( JMp;k»;uzi»IF» I JoMopo; lm„). A
few additional simplifications finally lead us to

with

&nNA~p;l IF(l, )lnoNoA~/o, '1&

1 O'
I

X g g ( i)»e»—( —1) ' (2J, +1)(2l,+ 1)Q(2No+ 1)(2So+1)
1,n, p, J,M

1,n

J,
X Q(2Jo+ 1)(2N+ 1)(2J+1)

lt Jo J N J S Js Jo l
X

n M, M 1 S, J 'N, N S Yl,"(kp)2)pl'p( .)

X ( nNANp; l» IF(l, ) I noNoA&po, '1) (B1)

I

m, m, A,
„

l, N %0
(n A~;1»m IFInoA~;1&„)

AN —AN m,
0

Np p 0 Not r

+( —1) '
'N No l,

(n A~; l»m IF Ino —A~;1A,„)
N N mt 0

(B2)

We now substitute (Bl) and its complex conjugate in (A2), use the unitary property of the 2) functions, and apply
identities (14.42) from [26], (4.16) from [20], (4.6.5) from [17], (14.42) from [26], and finally (10) from page 464 in Ref.
[16], respectively. All these operations and some additional simplifications can be shown to yield Hund s coupling
scheme (b} density matrix identical to that derived in the Eq. (A6) for scheme (a). But one now needs to use in Eq. (A6)
the case (b) reduced amplitude

((Js»)J, ;l»IF(l, )IJo;1)=( i) e —
( —1) ' (2J, +1)(2l,+1)

No So Jo
XQ(2No+1)(2So+1)(2N+1)(2J+1)(2l»+1) '

Js

X & nNA~p l» IF(l )InoNoA'xylo'1 &

S J
So

(B3)

The expressions for state multipoles and for normalized statistical tensors in case (b) are readily obtained by merely sub-
stituting in the respective relations (A7) and (AS) the reduced amplitude (B3) in place of (A4).
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