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The hyperfine structure of highly charged lithiumlike ions is considered within QED using the
z perturbation theory (Z is the nuclear charge). The interelectronic interaction contribution of the
order of & to the hyperfine splitting of the ground state is calculated in the range Z = 5—100. The
hyperfine splitting values are found for the ground state of Fe + and Bi +.
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I. INTRODUCTION

Several years ago it was noted [1] that study of the
radio lines in the millimeter region, corresponding to the
transitions between the hyperfine structure components
of multicharged ions, could be a method of investiga-
tion of chemical composition of hot astrophysical plasma.
The search conditions of this transition for Fe + re-
quired the prediction of the wavelength with an accuracy

0.2%. It gave rise to the calculations of the hyperfine
structure of highly charged lithiumlike ions by various
methods [2—5]. So, in [2] the multiconfiguration Hartree-
Fock (MCHF) method with the relativistic correction was
used. The Hartree-Fock-Dirac (HFD) method and the
model potential method were employed in [3] and [4], re-
spectively. The most precise calculation for Fe + was
done in [5] where the & perturbation theory had been
used.

In the present paper we refine the result of [5] and ex-
tend the calculation of the interelectronic interaction con-
tribution to higher Z. We evaluate the hyperfine struc-
ture of Bi + that can be of interest for the experi-
mental investigations at GSI (Darmstadt) [6,7].

In the zeroth order of the & perturbation theory the
hyperfine structure of the lithiumlike ions is defined by
the same formulas as for the one-electron ions [8]. Tak-
ing account of the interelectronic interaction in the first
order of the perturbation theory gives the corrections of
the order of z These corrections are calculated within
quantum electrodynamics (QED) in the range Z = 5—
100 in Sec. II of the present paper. The calculations of
the hyperfine splitting of the ground state of Fe + and
2o9Bi8o+ are presented. in Sec. III.

The relativistic units (5 = c = rn = 1) and the Heav-

iside charge unit (a = 4, e ( 0) are used throughout
the paper.

II. BASIC FORMULAS AND CALCULATIONS

We consider the hyperfine splitting of the ground state
of highly charged lithiumlike ions. It is convenient to rep-

resent the energy difference between the hyperfine split-
ting components in the form

2[2(l + p) + +2(1+p)]
(1+~)'~(4~' —1)

17 , 449= 1+ —(nZ) + (o.Z)
8 128 (2)

p = gl —(nZ)2; b and e denote the nuclear charge and
magnetization distribution corrections. x, g is the one-
electron radiative correction. In the lowest orders in n
and nZ this correction is [10,11]

5l 8
d = —+

~

» 2 ——
I
ci(~Z) ——»' o'(ciZ)'

2ir ( 2) 3% nZ

——ln2+ + + — ln n nZ2 16 37 4 7

+(3.12 + 0.09)n(nZ) (3)

Thus, the one-electron contribution is enclosed in the
square brackets of Eq. (1). The other terms in the curly
brackets of (1) correspond to two- and three-electron con-
tributions.

To calculate the function B(nZ) we need, first of all,
to derive the calculation expression for this contribution.
For that we use the Green function technique in the Furry
picture for the case when the closed (ls) shell is consid-
ered as the vacuum. The Fourier transform of the QED
Green function of the considered system is defined by

1 sm p 2I+1
6 fA& p~ 2I

x AnZ 1 —b 1 —~ +xr~q

+—B(nz) + c(~z) + ),1 1

where n is the fine structure constant, I is the nuclear
spin, p is the nuclear magnetic moment, p~ is the nuclear
magneton, and m„ is the proton mass. A(nZ) is the one-
electron relativistic factor [9,5]
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FIG. 1. C is the original contour of the integration over
the electron energy variable when the closed (1s) shell is
considered as the vacuum. Cq+C2 is the transformed contour.

FIG. 2. The lowest-order diagram contributing to the hy-
per fine structure.

g(E, x, x.') b (E —E') =
27ri

dtdt' exp (iEt —iE't')

SE"= dE (E —E~')b,g"(E) .
27t Z

In the second order

x (0(ig)2 [TQ(t, x)Q (t', x') ~0(i,)2),

(4)

where g(x) is the electron-positron field operator in
the Heisenberg representation and T is the time-ordered
product operator. Introducing g „(E)by

g„„(S)= f dxdx' (x)gx(g, x, ) x(x'x), ,

where u is the unperturbed wave function of a state n,
and using the Sz.-Nagy and Kato technique [12] we get
the energy shift [13]

ZE„=—E„—E(')

2', f dE (E —E~ ~)Ag„„(E)
1+ 2, g dE bg„„(E) (6)

where b,g„„—:g „—g„„l,g„= (E —E~ ) . The inte-

gration contour I surrounds the level E and does not(o)

surround the other levels. The Green function g (E)
is constructed using Wick's theorem after the transition
in (4) to the interaction representation. Because we con-
sider the closed (ls) shell as the vacuum, in the diagram
technique rules [13] the electron propagator denomina-
tors corresponding to the 1s states have the same sign
of i0 as the denominators corresponding to the negative
energy states. In other words, the integration over the
intermediate electron energy variable is carried out along
the contour C represented in Fig. l. In the first order of
the perturbation theory according to (6) we have

dE (E —E„)Ag„„(E)
271 X

dE (E —E~ l)~g~„l(E)
2K'

x . dE Agi„l(E) .
27C2

We are interested here only in the hyperfine splitting.
Therefore, in the first order of the perturbation theory we
calculate only the contribution Rom the diagram repre-
sented in Fig. 2 where the dotted line denotes the hyper-
fine interaction. It corresponds to averaging the Fermi-
Breit operator

I~I ~(& x r)
p3

where n are the Dirac matrices, with the Dirac Coulomb
wave functions and gives the relativistic one-electron con-
tribution. In the technique considered here the interelec-
tronic interaction corrections and the one-electron radia-
tive corrections to the hyperfine splitting are the result of
the diagrams represented in Fig. 3. To divide the contri-
butions of these diagrams into the interelectronic inter-
action ones and the one-electron radiative ones we rep-
resent the intermediate electron energy integration along
the contour C (Fig. 1) in the form of the sum of the in-
tegrals along the contours Cl and C2 shown in Fig. 1.
The integration along C2 gives the one-electron radia-
tive corrections that are determined by (3) in the lowest
orders in aZ. The contribution from the contour Cl cor-
responding to the interelectronic interaction corrections
in the Feynman gauge is (see the Appendix)

+@(2) y g CFMF CFMP t (1(2a) + y(2b) + 1(2c) + 1(2d) )
I 2 2m I J~IMI ~

MI mM,'m
(10)
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(c}

FIG. 3. The second-order diagrams contributing to the hyperfine structure.

I = o' dx1dx2dx3 &~ 3 c
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gR(, 2) ) - @-(»)@.'(x2)

&n g&k

v = (220m), v'—:(220m'), C ~ is the Clebsch-Gordan coefficient, pl~, is the nuclear wave function, b, = s2, —zi„IMI zm
and e is the energy of the n state in the Coulomb field of the nucleus.

After the integration over the angular variables in (10)—(14), in the case of a point nucleus the summation over
the intermediate electron states coming &om GR& is carried out analytically using the method of the generalized virial
relations for the Dirac equation [14]. This method allows one to calculate by simple algebraic relations the sums of
kind

. in'K') (n'rc'iRinK)

n~ &n'~'n'

Here the prime over the summation means that it is carried out over all n' (K' is fixed) for which e I„~
r = (—1)~+ +~ (j + 2), j and l are the total and orbital electron moments, respectively; n is the principal quantum
number;
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)=I "";, I, ( I
)= (g„'„+f') 'd =1,

0

g „and f „denote the upper and lower radial components of the Dirac Coulomb wave function:

(") ( )

( if„„(r)A~i (n) )
one «th«o&&owjng ope»«»: ~', ~ ~', ~ r' ioyr' where 0 Qy Q Qr'e t;hie pe@]j ~@trjces g — 2 3 4

[For r' = r. the method allows the calculation of the sums (16) for arbitrary integer s.] So, for the case ~ = o r
that appears in our calculation one can find for e g kr'

).I"'"""'""""'I""' = ([I- (---)'][I-(-+-) ]+4(-Z) )-
&n]c &n' m'nl

x [1 —(r + r') ],+ (K' —K)r + r cr,
K —K
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, mo~ + s„„ur„+

rn+ K K —K

+2nz[~. r '+ (~'-+ K)r 'io„] [-n~) .

For v' = v.

&nrem n'~nl

1 +4

+(1 —4r. )o,r + (s„„ioy —mo )
(1 —4r )

2(nZ) rm 2o.Z(2s„„——„) d¹p 4(c5Z)2 + (1 —4r2) dr (18)

where p = QK2 —(nZ)2, N = gn2 + 2pn, + r2, n, is the radial quantum number (n = n, + IrI). The derivative
&" Inr) is calculated at the fixed radial quantum number n„. For the 1s state:

d
I

)= Gi(r)l
d~ +i.(r) )

where

Gi, (r) = k
exp (—t/2) t~, &(2~+1) + (p+1)—1 t

v'1 —
W y 27 2

1—lnt

k g(2q+ 1) 1 t 1F„(r) = — exp (—t/2)t~ + [2+1)+ ————lnt),V'1+ ~ y 27 2
(21)

t = 2nZmr (2nZ) ~ m 2k=
2/21'(2p+ 1)

'

I'(x) is the gamma function, g(x) = &" ln I'(x). For the 2s state:

d (G,.(r) l
d„lnK) =

I ~, '(„) (22)

where
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( t ) Q2 —N t2 2N4 —2N + N2+ 3N —2 2Q(2p+ 1)

+ + 2(tV + 2)t) (22 + 1) + t tnt —2(tV + 2)

tnt�),
N'+ 5N' —8N —4 2

N —1 (24)
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hatt'(22+
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'
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The results of the calculation of B(aZ) are given in Ta-
ble I. The functions B~ l(nZ), B~sl(cxZ), B~'l(nZ), and
Bl"l(aZ) denote the contributions &om the diagrams a,
b, c, and d represented in Fig. 3. For low Z it is conve-
nient to represent the function B(aZ) in the nZ expan-
sion form

same as for the one-electron atom. (The interaction with
the closed 1s shell changes mainly the normalization fac-
tor of the wave function at small r.) So, we suppose that
a main contribution of this correction to &, which

we denote by LNs &, can be estimated roughly by

B(nZ) = bp + b2(nZ) (25) B(cxZ) B(xxZ)
NS g g ) (27)

To calculate the coeKcients bp and b2, Eqs. (12) and (14)
can be restricted to the two lowest terms in the expan-
sion of cosLr and the lowest term in the expansion of
sin Lr. After that, the total expression for LE& can be(2)

transformed to the one which is obtained if the Coulomb-
Breit operator is used for the interelectronic interaction

yC —B yC+yB (26)

where

V = ——o. +CX xx 1 ~1 cx'2 (~1 r12) (~2 12)
&12 12

The contributions to bo and b2 &om the diagrams repre-
sented in Fig. 3 are given in Table II. [In the Couloxnb
gauge the Coulomb-Breit interaction (26) is implied for
the photon line in Fig. 3.] Here we have corrected a
numerical error that was made in the calculation of the
Breit part of b2 in [5] (the numerical error was made in
the calculation of a term equally contributing in both
gauges). As one can see from Table II, the contributions
from the separate diagrams in the Feynman and Coulomb
gauges, generally speaking, do not coincide with each
other but, in accordance with the gauge invariance, the
total contributions &om the gauge-invariant sets of the
diagrams coincide with each other.

Because the function B(xxZ) is calculated for a point
nucleus, the nuclear size corrections to this function must
be calculated separately. As one can see &om Tables I
and II, the function B(xxZ) is largely made up of the
contribution B~ l(nZ) which corresponds to the direct
Coulomb interaction of the 2s electron with the closed ls
shell. It means that the main part of the & contribution
can be taken into account by averaging the Fermi-Breit
operator (9) with the Dirac wave function of the elec-
tron in the spherically symmetric potential of the closed
shell. In this case (see, e.g. , [15]) the relative value of
the nuclear charge distribution correction is mainly de-
Bned by behavior of the wave function at small r, where
the Coulomb potential is to be, and is approximately the

where b is the one-electron nuclear charge distribution
correction. This formula is con6rmed by the HFD calcu-
lations as well [16].

The term ~&,
l in (1) is considerable only for low Z

where the nonrelativistic approximation C(o.Z) = cp xs

valid. We can roughly estimate co &om the nonrelativis-
tic calculation of the hyperfine splitting done in [17,18].
Proceeding from the nonrelativistic splitting values for
Z = 8, 9 [18] and taking into account bp ——2.6557 [5]
we obtain cp ——0.9(4).

III. APPLICATIONS

A. Hyperfine structure of 5"Fe~~+

Using the results of the preceding section and the for-
mulas for b and s &om [8], we evaluate the wavelength
of the transition between the hyperfine structure compo-
r.ants of the ground state of Fe + which is necessary
for the astrophysical search [1,19]. Because there is a dis-
crepancy in the experimental values of p, we calculate A

for all p given in [20]. For " =0.090623, 0.090764, and
0.09044(7) we find %=0.3073(5) cm, 0.3068(5) cxn, and
0.3079(5) cm, respectively. The values of the individual
terxns enclosed in the curly brackets of forxnula (1) are
listed in Table III. For comparison, the results obtained
with other methods are also given in this table. The nu-
clear charge distribution correction b is found from Table
I of [8] by interpolation. The uncertainty of b is about
2% of h. The Bohr-Weisskopf correction c [21,22] is cal-
culated within the single-particle model of the nucleus,
taking into account the angular asymmetry of the spin
distribution. For that the analytical formulas from [8]
are employed. (It should be noted that taking account
of the angular asymxnetry changes s by 75% in compar-
ison with the calculation neglecting it.) The radial part
of the probability density of the odd neutron is assumed
to be homogeneously distributed within the nucleus. We
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TABLE I. The contributions to the interelectronic interaction correction B(nZ), defined by (1),
from the diagrams represented in Fig. 3.

Z
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

B~ &(nZ)
-2.94569
-2.97773
-3.03220
-3 ~ 11082
-3.21610
-3.35163
-3.52224
-3.73451
-3.99730
-4.32266
-4.72720
-5.23417
-5.87690
-6.70440
-7.79119
-9.25523
-11.2927
-14.2514
-18.8006
-26.3862

B&'&( Z)
-0.376832
-0.382178
-0.391226
-0.404194
-0.421404
-0.443301
-0.470483
-0.503743
-0.544126
-0.593015
-0.652263
-0.724378
-0.81282
-0.922491
-1.06049
-1.23751
-1.47040
-1.78723
-2.23850
-2.92560

B&.&(~Z)
5.73790x 10
2.31248x 10
5.26916x 10
9.53611x 10
1.52510x 10
2.26066 x 10
3.18650x 10
4.33791x 10
5.76232 x 10
7.52391x 10
9.71064x 10
0.124450
0.159013
0.203343
0.261287
0.338886
0.446111
0.600489
0.835486
1.22277

B&"&(~Z)
0.657978
0.668508
0.686408
0.712229
0.746792
0.791249
0.847170
0.916671
1.00261
1.10886
1.24074
1.40570
1.61438
1.88241
2.23347
2.70496
3.35898
4.30529
5.75477
8.16191

B(o.Z)
-2.66397
-2.68909
-2.73175
-2.79325
-2.87547
-2.98107
-3.11369
-3.27820
-3.48119
-3.73158
-4.04162
-4.42840
-4.91633
-5.54114
-6.35692
-7.44889
-8.95803
-11.1328
-14.4488
-19.9271

suppose that the uncertainty of c, due to mainly a de-
viation from the single-particle model of the nucleus, is
about 50% of s. The one-electron radiative correction is
calculated according to formula (3). The uncertainty of
this correction, determined by the uncalculated terms in
the expansion (3), is about 30% of x, ~. The nuclear size

correction A&vs z is estimated by Eq. (27). We as-

sume that the uncertainty of this correction is about 50%
of the value.

The difference of the values of A obtained in this paper
&om our previous value (A = 0.3071 cm) [5] is mainly
determined by the change of p, and s. (In [5] we used
p = 0.09061 and c = 0.0021. This value of c was found
neglecting the angular asymmetry of the spin distribu-
tion and taking the average between two distributions of
the nuclear magnetization, homogeneous over the volume
and homogeneous over the surface. )

B. Hyperfine structure of ~ Bis +

In connection with the experiments at GSI (Darm-
stadt), in [23,24] the hyperfine splitting of the ground
state of Bi + was calculated. The calculation of

the present paper, without taking account of the one-
electron radiative corrections, gives A = 1.543(ll) &Mm,

for " = 4.1106(2) [20]. The values of the individual
effects are given in Table IV. The Bohr-Weisskopf cor-
rection e is calculated within the single-particle model
of the nucleus by taking the average between two distri-
butions of the radial part of the probability density of
the odd proton, homogeneous over the nuclear volume
and homogeneous over the nuclear surface. Thereby we
have taken into account that the real distribution is an
intermediate between these two [25]. For comparison, in
Table IV the results of the previous calculations [23,24]
are also presented. The difference of our value from the
result of Panigrahy et al. [23], obtained with the relativis-
tic many body perturbation theory, is de6ned mainly by
the fact that the nuclear magnetization distribution cor-
rection was omitted in [23]. According to our calculation
this correction contributes —0.037(15) to the total value
given in the table. The deviation of the present result
from the result of [24] is caused mainly by the fact that

the nuclear size correction L~g & was neglecteda(~z)

in [24]. In addition, in [23] and [24] only the Coulomb
part of the interelectronic interaction contribution was

TABLE II. The contributions to the coefficients bo and b2, defined by (25), from the diagrams
represented in Fig. 3.

Diagrams

C

d
total

bp

-2.9351
-0.3751

0
0.6545
-2.6557

Feynman gauge
b2

-7.9225
-1.3255
0.4299
2.6043
-6.2138

bc'

-7.9225
-0.5174

0
1.7626
-6.6773

Coulomb gauge
b,"
0

-0.2365
0.4299
0.2701
0.4635

b,"+b,"
-7.9225
-0.7539
0.4299
2.0327
-6.2138
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TABLE III. The terms enclosed in the braces of formula (1) for Fe + .The wavelength
of the transition between the hyperfine structure components is found to be A = 0.3073(5)cm,
0.3068(5)cm, and 0.3079(5)cm for p/p~ = 0.090623, 0.090764, and 0.09044(7) [20], respectively.

Term
A(a.Z)

b

A(nZ)(1 —b)(1 —s)
&sad
B(az)

z
a(az)

NS 2

Total
Fermi-Segre formula [1]
MCHF with rel. cor. [2]

HFD [3]
Model potential [4]

Value
1.0813
0.0045 (1)
0.0028(14)
1.0734(14)
-0.0010(3)
-0.1113
o.ooo5(3)
0.0013(6)
0.9629(16)
0.966
0.9662
0.9410
0.955

calculated. According to our calculation the complete &
contribution for the point nucleus is

B(nZ)
Z Z=83

while the Coulomb part gives [24]

B~(nZ)
Z Z=83

So, the Breit part contributes 0.005 to the total value
given in the table and is small enough in comparison
with what one could expect.

IV. CONCLUSION

also planned [19]. For that the prediction of the wave-
lengths with accuracy 0.1Fo is required. We think that
the method considered here in combination with the non-
relativistic MCHF method is most suitable for this pur-
pose, since it allows one to find consistently various cor-
rections to the hyper6ne splitting and their uncertainties.
Such calculations are underway and will be published
elsewhere.
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In the present paper the interelectronic interaction
contribution of the order of & to the hyper6ne splitting
of the ground state of lithiumlike ions has been calcu-
lated. The hyperfine splitting values for Fe + and

Bi + are evaluated. At the present time an astro-
physical search of the radio lines in the millimeter region
corresponding to the transitions between the hyperfine
structure components of lithiumlike ions with Z ( 20 is

APPENDIX

We consider how Eqs. (11)—(13) are derived on the ex-
ample of the contribution Rom diagrams (b) represented
in the Fig. 3. The contribution &om these diagrams is to
be considered together with the corresponding contribu-
tion of the second term in (8). According to (8) and the
diagram technique rules [13] we have

TABLE IV. The terms enclosed in the braces of formula (1) for Bi +. The wavelength
of the transition between the hyper6ne structure components, without the one-electron radiative
corrections, is found to be A = 1.543(11)pm for p/y~ = 4.1106(2) [20].

Term
A(o.Z)

b

A(nZ)(1 —b)(1 —s)
B(az)

z
s(az)NS 2

Total
Panigrahy et al. [23]

Shabaeva [24]

Value
2.790
0.117(2)
0.015(6)
2.427(16)
-0.100

0.012(6)
2.340(17)
2.387
2.321



M. B. SHABAEVA AND V. M. SHABAEV 52

MIm MI~'

« (& —~.) ') [(~'l&(&)l~) (~Is;I") + ("'I~~)") ("lr(s)l")j
«(E —e.) '(v'i~~lv) . «(@—e-) '(vl~(E)lv)

27ri 2+i

(Al)

(A2)

where

(al~(&) lb) = d o - (ablI(E —&')Inb)
dp

pO

(n[Z(e„)iv) = — ) (nc[I(e„—e,)icv)
(-c =(-1a

+( l~-'(.„)I.), (A7)

p is a small photon mass that allows one to separate the
pole at the point E = e from the corresponding cut
[13,26]. Calculating the E residues we obtain

„E(vl~(&) lv) ) (vc]I'(e„—e,) icv)
&c =(-1s

+ dz(vl~" (E)lv)

(AS)

li i = ) [(v'ir(z„)in) (vaiw„iv)
&n 8(-v

+(~'ls;l~) ("lr(")l~)]

+(
d

(A5)

(v'[Z(e ) fn) = — ) (v'cfI(e„—e, )lcn)
(-c—(-is

+(v'iZ' (e„)in), (A6)

Let us represent the integral along C in (A3) in the form
of the sum of the integrals along Ci and C2 (Fig. 1). We
obtain

OO

( l~"'(E)(b) = o )- (ablI(& —p') lnb)
p' —e„(1—i0)

(A9)

is the matrix element of the usual self-energy operator,
I'(w) = &&I(w). The first terms in the right side of (A6)—
(A8) correspond to the interaction of the 2s electron with
the ls electrons. The last terms in (A6)—(A8) correspond
to the one-electron radiative contributions. Taking the
real part of the first terms we get the expression (12).
The imaginary part of these terms is canceled with the
imaginary part of the one-electron radiative corrections.
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