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Effects of temperature on the absorption line-shape function for driven two-level atoms:
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The description of a non-Markovian process is presented and the asymptotic solution of the generalized
master equation is obtained for a two-level atom pumped externally by a monochromatic time-dependent
electric field. We give the explicit expression for the absorption line-shape function and discuss its features as
a function of the temperature and the memory parameter. We verified the following interesting results: (a) At
a critical temperature the line shape undergoes a phase transition, the single-bump profile splits into two
bumps; (b) for small values of the memory parameter k the linewidths broaden, becoming larger than the ones
calculated under the Markovian approximation, and after reaching some maximum value they narrow mono-
tonically with increasing values of k, this behavior being standard for any finite temperature.

PACS number(s): 32.70.Jz, 42.50.—p

I. INTRODUCTION

In quantum irreversible processes the most familiar treat-
ment that one encounters in the literature is the Markovian
approximation, which assumes the time correlation 7 of the
enviroment variables is much smaller than the characteristic
decay time y~! of the system of interest. Formally the analy-
sis is performed by using a master equation, which is a Liou-
ville equation containing additional terms that come from the
coupling of the system with the reservoir and that answer for
the irreversibility of the evolution of the system [1-3]. How-
ever, non-Markovian effects are important in optics and
radiation-matter interaction phenomena, due to the necessity
to go beyond the Markovian approximation in experiments
involving memory times 7 smaller but of the order of y~!
[4-11].

In a previous paper [12] we analyzed and discussed the
memory effects on the density-matrix coherence terms of a
driven two-level atom in the stationary regime, and we also
pointed out the importance of the entropy, as a function of
the detuning, in order to discern between Markovian and
non-Markovian relaxation processes. Continuing our work in
this line the present paper is devoted to the study of effects of
the temperature on the absorption line-shape function for a
driven two-level atom in its steady state. We observed the
existence of a phase transition in the line-shape function,
characterized by its split into two components, occurring at a
critical temperature, which depends on the memory param-
eter k. We also studied the linewidths for a continuous range
of values of k at several different temperatures.

The paper is organized as follows. In Sec. II the general-
ized master equation is introduced and in Sec. III its asymp-
totic solution is obtained. In Sec. IV the absorption line-
shape function is deduced. In Sec. V we present, analyze,
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and discuss the results for the line shape and the linewidth as
functions of the temperature and the memory parameter. Fi-
nally, Sec. VI contains the summary of our work.

II. THE GENERALIZED MASTER EQUATION

The total Hamiltonian we considered is constituted by the
terms

IA{=I:10_7+IA10'//+‘A/1+‘/}2(t), (])

where Hy ., and H, , are the Hamiltonians of the system of
interest (%) and reservoir (%), respectively, while V! is the
system-reservoir interaction and V() is a time-dependent
external force acting only on the system. Concerning the
nature of the whole system some hypotheses are made: (a)
the interaction V' contains only nondiagonal terms in the
representations that diagonalize Hy,, and H, ,; (b) the sys-
tem and reservoir are initially uncorrelated, that is,
p(0)=p (0)p_,0); (c) the reservoir is ideal, this means it
remains undisturbed and it is always in thermal equilibrium,
independently of the strength of V'; therefore
p()=p ()p_A0), where

p/’(o) — e—HO_//kT/Tr‘ﬁevHo 2 1kT

is the canonical distribution of the reservoir and the reduced
density operator is obtained from p (1) =Tr ,p(t).

With the above ingredients the generalized master equa-
tion (GME) in the interaction picture is written as
3p., A1) S R
v iLV3(1).p., A1)]

—jodt' T AV, VA1) 6, A1)p.A0)]}.

2

The physical problem we are going to study is a two-level
atom (¥) coupled to a reservoir (22) and driven by a classi-
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cal (c-number) monochromatic electric field. For this case
the terms of the Hamiltonian (1) are (A=1) (a)
Hy,=wo2(| YT =L} L]), representing two-level atoms
embedded in the reservoir and that are sufficiently diluted so
their interactions can be ignored; |1) and ||) stand for the
upper and lower levels, whose energies are &,= wy/2 and
£,= —wy/2; (b) I}Oﬁz 3, w,b}b,, describing the reservoir,
constituted by a huge number of photons (or phonons) in
thermal equilibrium at some temperature 7T; (c)
VI=3,(K*bl||)(1]+H.c.) is the system-reservoir interac-
tion, given in the rotating wave approximation (RWA); (d)
ViA(t)=—p-E=(Foe'||)(1|+H.c) representing the
pumping of the system by the external field; in this expres-
sion

E(t):(Eoé_eiwt+E6ké+€_iwr), Foz_ﬁ‘ﬁo,

and

-

= | DT+ u*E 1)L

III. ASYMPTOTIC SOLUTION OF THE GME

The reduced density operator in Eq. (2) is expand-
ed in terms of a complgte set of _ operators
prAN=Z]Wi()0;, where O,=[1)(1], O,=|1)X|
O5=|TX!]|, and O4=|]){T|. W, and W, are the occupation
probabilities of the upper and lower levels, respectively,
while W3 and W, are the coherence coefficients. Therefore,
with this expansion, the g-number GME (2) goes to a
c-number system of equations,

>

vi/j(t)=§1 fotdt’ij(t,t’)Wk(t’) — (= 1)[iFoWs(t)
—iFEWa(t)], j=1.2 (3)
and
vffj(:)=f(:dz'ij(:,t')Wj(ﬂ) — (= 1)I[iFEW, (1)
—iF§Wy()—iAoW,(1)], j=34 @)
where W5(1)=e " "2°'W,(¢) and Aw=(w,— o) is the detun-

ing. We remind the reader that W+ W,=1 and W,=W¥.
The occupation probability kernels are

iju,r'):—z(—nf”; |K o @,) 2L 0,) + 811 ]

Xcos(wyg—w,,)(t—t"), j.k=12 5)

and the coherence kernels are

Q_33(t’t,): - 2 le(wm)lz[zﬁ(wm) + 1]ei(w—-wm)(t—t')
(6)

and Quu(t,t'")=035(t,t')*. In the above expressioné
fi(w,,)=(en’*8T— 1)~ is the mean number of photons (or

phonons) with frequency w,,, kp is the Boltzmann constant,
and 7 is the absolute temperature.

The system of first order differential equations, Egs. (3)
and (4), is solved by Laplace transform technique, which
leads to a system of algebraic equations for the transforms
Wj(p) and W;(p) and whose solution yields

2
Wip)= 2 Xu(p) | Wi(0)
W5(0)
—(— D iFp——2—tce. ||, j=1.
=0 lop+iAw_Q33(P)+cc” /=12
(7)
with
P5jk+(Q125j1+Q215j2)+1F0|2h(P)
X (p)= = = (8)
I o+ 0 (p) + Oa(p) +2|FoPh(p)]
and
- Wi(p)—Wy(p)+W5(0
W3(p)=iF6" 1(p) 2(p) 3(0) ©)

P+iAw_é33(P)

with Wy(p)=Ws(p)*. .

The quantities Q,(p) and Qs3(p) are the transforms of
the memory kernels Q () and Q33(t) and they are given by
the expressions

- o 2

On(p)= fo dw'g(w')[K(w’)Izﬁ(w’)m ,

(10)
Q21<p>=f:dw'gw’)lK(w')P[ﬁ(w')+1]
2
VTt an
Q’33<p>=—f:dw'gw'>|K<w'>12[2ﬁ(w'>+1]
1

, (12)

X—.__._..__

p—i(lw—w')

in which the density distribution function g(w) was intro-

duced for the frequencies of the reservoir’s bosons. In Eq. (8)
h(p)={1/[p+iAw—Q3(p)]+cc}

The asymptotic solutions are obtained by calculating the
limit W} =1lim, _opW;(p), j=1,2; W}, j=3,4, come from a
relation equivalent to the previous one. So we have in the
Schrodinger picture

W°,°=[Q~12(O) 61+ 02:1(0) dn]+ |Fol?h(0)
’ 012(0) + 021(0) +2|F|*h(0)

, j=12
(13)

-and
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iFE[012(0)— 02(0)]

W3

It is worth noting that the quantities W;° do not depend on the
initial conditions, given by W;(0), as one can see from these
equations.

In order to get analytical results for the asymptotic diag-
onal and nondiagonal elements of p., we have to introduce
shapes for g(w). For any choice of the product
g(w)|K(w")|?, the stationary kernels Q,(0)= yi(w,)
and 0,,(0)=7y[A(wy)+1] remain the same, where
y=2mgo|K(wp)|* is the damping constant of the system.
Contrarily, the kernel Q33(0) is sensitive to the shape of
the product g(w')|K(w')|>. For example, (a)
g(w")|K(w")|?>=go|Ko|?, constant, characterizes a Markov-
ian correlation for the reservoir operators;, the time-
dependent kernels have null memory time,
Qi(t—t")~8(t—1"); (b) any other choice leads to a non-
Markovian process; we shall adopt in this work the Cauchy
distribution

1
g(w,):gOW_’ (15)

where the memory time 7 is a characteristic of the reservoir.
Equation (15) is equivalent to considering an exponential

time decay in the kernels, O (r—t')~e 1"="'/7,
IV. THE ABSORPTION LINE-SHAPE FUNCTION

The rate at which quanta are absorbed from the external
field is expressed by [13,14]

1 . .
F= s —e {e[W1(6)1er+ &2l Wa(2)IEF} (16)
17 &2

[012(0)+ 0,(0)+2|Fo|2h(0) ][ +iAw—033(0)]

(14)

where [W,(#)]1gr and [W,(t)]gF are the rates of change of
the occupation probabilities of the levels |T) and || ) induced
by the external field (EF). These quantities are given by the
terms containing the coupling parameters to the field, Fy and
F& in Eq. (3). Then in the Schrodinger picture they are

[Wi(0)gr=iFoWs(t)e' —iF§ Wy(t)e '
and
[Wa(2)]gr=—iF o Wa(t)e' +iFFW,(t)e ™',
which yield [W,(1)1gr= —[W4()1gr. Inserting this result
in Eq. (16) one writes for the absorption line-shape function
F
F=iF Ws(t)e' ' —iFEW4(t)e '

and finally

Ws(t) .
F= -—2|F0|2Im( 35< ) e“‘”), (17)
Fy

which shows the dependence of the line-shape function on
the coherence coefficient W3(¢). The asymptotic value of F
is obtained by taking W5 in Eq. (17).

Our aim is to investigate the asymptotic behavior of the
temperature-dependent absorption line-shape function with
the detuning for non-Markovian processes. As we have al-
ready mentioned, we took for the density of levels function a
Cauchy distribution, Eq. (15), and this provides the follow-
ing expression for the dimensionless line-shape function
Fym=2Fly:

2|F o9

Fdim=

where k= y7 is the memory parameter and {=Aw/7y.

V. RESULTS AND DISCUSSION

The function (18) presents two distinct line shapes that
depend on a relation between k and n(wy). For
k[2n(wy)+1]<1 the line shape presents a single-bump
profile whereas for k[ 277(w() +1]>1 two symmetric bumps
are present. This can be viewed as a kind of a phase transi-
tion of the line shape that depends on the temperature
(through 7) and the memory parameter k. To visualize this
behavior Fig. 1 exhibits Fy,;,, as a function of the detuning
for |Fo|/y=5, n=5 and three values of k, k=0 (Markovian

[ wg)+ 122+ 2(1 + k222 — 2k [ wg) + 1721+ 2| Fol 2/ v*

(18)

case), 0.05, 0.08, while Fig. 2 corresponds to the same val-
ues of n and |Fy|l/y and also three values of k,
k=10,0.10,0.20.

The height of the twin-bump line shape is

e 8K Fol*/y*
{k[27(wg) + 11— 1Y2+8Kk2|Fy|*/y*+1°

(19)

whereas for the single-bump line shape the height is the
same as one obtained in the Markovian approximation,

_ 8|Fol*/ ¥
[27(wo) + 112+ 8|Fy|?/¥*

(20)
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FIG. 1. The absorption line-shape function F;,, as a function of
the detuning for n =5 and three values of the memory parameter k,
satisfying the condition k(2n+ 1) <1. The solid line corresponds to
k=0 (Markovian case), the dotted line corresponds to & =0.05, and
the dashed line corresponds to k=0.08.

In order to characterize the phase transition we are going
to analyze the distance between the points of maxima of the
two bumps, given by

D= \/TE {k[27(wo)+1]—1}12, (21)

Figure 3 shows D as a function of k for different values of

1.0 ————r—V—1——T7—T7

0.8 -

Fdim

A/ Y

FIG. 2. The absorption line-shape function F,;,, as a function of
the detuning for =35 and two values of the memory parameter k,
satisfying the condition k(27 + 1)>1. The solid line corresponds to
k=0 (Markovian case), the dotted line corresponds to k= 0.10, and
the dashed line corresponds to k= 0.20.
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FIG. 3. The distance D between the maxima of the two bumps
as a function of k£ and with n as parameter.

7 that depends on the absolute temperature 7. Remembering

that the parameter k is characteristic of the reservoir, the
critical temperature at which the transition occurs is deter-
mined from k[2n.(wg)+1]=1 or

(L+k
NT=%

For small values of k the behavior of T. is inversely propor-
tional to k, T,~%wy/(2kg)(1/k)[1—1/3k>+ O(k*)]. Now,
the temperature dependence of the distance D around the
critical temperature is

V2

3

-1
_—ﬁwo

TL‘.—_}:

(22)

D= ——{k[27(wo) +2(T— T )i (wo)+1]—1}'2, (23)

where 7 (wg)=(e“’*8Tc—1)~1 and a direct calculation
leads to

2kpT, T—T?

—< T>T,
T, (24)
0, T<T,

D= ﬁa)o

so the critical exponent 1/2 is characteristic of a phase tran-
sition that occurs due to the presence of a fourth power poly-
nomial in the detuning ¢ in the denominator of the line-shape
function, Eq. (18). Meanwhile, in the Markovian approxima-
tion the phase transition is absent because the line-shape
function is inversely proportional to a quadratic polynomial
in the detuning.

Now going to the analysis of the linewidth, defined at half
height of the line shape, we have two different functions, one
for each phase,
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for k(2n+1)<1

where I"j, is the standard Markovian linewidth [14,15] given
by

Ty={[27(wy)+ 11>+ 8|Fo|?/ y*} 12, (26)

and at the transition k[2n(wy)+1]=1 one has
I'=(2I',,/k)"2. It is worth noting that I' may be larger or
smaller than I';,, depending on the values of n(wg) and k.

Figure 4 presents the linewidth as a function of the
memory parameter £ and with n as parameter. It also shows
a curve, the dashed one, that separates the phases corre-
sponding to the conditions k[2n(wy)+1]<1 and
k[2n(wy) +1]>1. We note that for small values of k there
occurs a broadening of I', for any temperature, reaching a
maximum value and then the line shape narrows monotoni-
cally, becoming for large values of k proportional to k™ /2.
This narrowing of the linewidth is a characteristic of a non-
Markovian relaxation process, because as k increases the
GME becomes closer to a reversible system of equations, for
which the linewidth of the levels is zero. We also note that
for a fixed value of k the linewidth narrows with the decreas-
ing of the temperature.

In order to resolve the twin bumps of the line shape we
define the parameter c=A/N—1 and impose the condition
o>1, such that the height at the points of maximum is at
least twice the value of the height at the point of minimum,
at {=0 (which also is the height of the Markovian line
shape). The above condition leads to k>1/(2a+1—T,/
\/E) and for the denominator being a positive quantity one
has the additional condition 7> \2|Fy|/y— 1/2. Under these

35Tllvlllll||l||||ll||11l||llvl

ﬁ:g IFOI/'Y=5

30

LU L
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
k

FIG. 4. The linewidth I' as a function of k£ and with 7z as pa-
rameter. The dashed curve separates the phases corresponding to the
conditions k(2n+1)<1 and k(2a+1)<1.

V2 [ Qk[272(wg) + 1]— 1} + VKT 3+ {k[272(wg) + 11— 1}2)2
k| (k27 wo) + 11— 1} + VKT, — (k[ 27i( @) + 11— 11912

25
for k(2n+1)>1, @5)

requirements Fig. 5 exhibits the line shape for n=09,
k=0.5, and | F|/ y=35. and one perceives that the absorption
line shape is constituted by two peaks located symmetrically
with respect to Aw=0. At half height of the bumps the line-
width of each one is given by

1
FJB:E({k[zﬁ(wo)‘F 1]—-1}

+ VKT, —{k[27( wy) + 11— 1}2)12

1
2k

— VKT, —{k[27(wo) + 11— 1}2) "2 (27)

(k[2n(wo) +1]-1}

The transition can be understood as due to the following
mechanism: As long as the temperature of the reservoir is
kept below 7. the atomic system absorbs energy mainly
from the pumping field at frequencies around wg; now, for
temperatures above 7. the number of photons of the reser-
voir increases and they compete with the pumping field for
being absorbed by the system. The critical value N, of the
number of photons of the reservoir can be obtained from a
straightforward calculation: the number of photons is
N,p=Jog(w)n(w')dw'=mgyn(wy)/T; then at the phase
transition, k[2#n(wy)+1]=1, one has

1.0 T T T T T T T T T T T

0.8

0.6

|:dim

0.4

0.2

0.0
-30 -20 -10 0 10 20 30

FIG. 5. The absorption line-shape function F;;,, as a function of
the detuning for n=>5. The solid line corresponds to k=0 (Markov-
ian case) and the dashed one, corresponding to k=0.5, has two
peaks whose linewidths at half height of the bumps are given by Eq.
(27).
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FIG. 6. The absorption line-shape function F,,, as a function of
the detuning for =10, k=0.2, and w/y=130. The dotted line
corresponds to the first term in the expansion of n(w’), Eq. (29),
while the solid line includes the linear correction term that causes a
symmetry breaking in the curve.

: 12
-] .

and for k[2n(wo)+1]>1, N,,>N,, . The critical number
of photons is inversely proportional to the square root of the
product of the reservoir memory time 7 and the coupling
between the system and reservoir. When N,,>N}, the ab-
sorption from the pumping field is shifted to the neighboring
frequencies w=wy*D/2 while for frequencies w around
wq the reservoir will furnish most of the absorbed energy,
due to the shape of the frequency distribution g(w).

In Egs. (10)-(12) we have considered n(w')=n(w,) in
order to get the above results that enabled us to analyze and
discuss the effects of temperature on the phase transition in
the absorption line shape in a transparent way. Now, a
more accurate calculation needs to consider the expansion
of n(w'") around wy,

(") =n(wy) + ("= wo)n'(wo) +- - -. (29)

The introduction of the linear correction term in the integrals
(10)-(12) is discussed in the Appendix, where the dimen-
sionless line-shape expression is given for the two-bump
phase. Figure 6 shows F;,, and we note that the correction
considered causes the symmetry breaking in the line-shape
function. Obviously these line shapes should be closer to an
actual situation if the temperature effects can be verified ex-
perimentally.

|

It is worth mentioning that the split of absorption line
shapes was already observed, however, in a different context:
In a resonant modulation experiment Autler and Townes [16]
verified that at certain atomic frequencies an applied rf field
affects the absorption lines of microwave radiation, leading
to their split into two components. Otherwise the system we
presented is subject to only one external radiation field and
for a given k the split occurs when 7>T.,.

V. SUMMARY

In this work we analyzed, in the non-Markovian ap-
proach, the effects of the temperature on the absorption line-
shape function of a driven two-level atom in the steady state
regime. We verified the existence of a phase transition char-
acterized by a change on the profile of the line shape from
one bump to two bumps. The critical temperature was deter-
mined and we verified that the distance between the two
bumps near the critical temperature is proportional to
|T—T,|"2, with the critical exponent 1/2 being a conse-
quence of the presence of a fourth power polynomial in the
detuning in the denominator of the line-shape function. This
criticality is absent in the Markovian approximation since the
polynomial reduces to a second power one. Moreover we
noted the symmetry of the line shapes since they are an even
function of the detuning.

Concerning the linewidths, we verified that for small val-
ues of the memory parameter k they broaden, becoming
larger than the ones calculated under the Markovian approxi-
mation, and after attaining some maximum value they nar-
row with increasing values of k& and asymptotically they be-
have as k2, irrespective of the temperature.

We have calculated the line shapes with the usual approxi-
mation n(w’)=n(wy), constant, in the integrals involving
the memory kernels in order to give analytical expressions to
our results, which facilitate the physical analysis. The intro-
duction of the correction to n(w’) breaks the symmetry of
the line shapes, which is a situation closer to what can actu-
ally be observed experimentally.
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APPENDIX

Considering in Eq. (29) the linear correction term (second
term) and introducing it in the integrals (10)—(12), the line-
shape function (18), that we now write as F;,,(£,0), is
modified to

4|Folly*(1+k*2%)

Fdim(g’b/a) =

[(1+k%2)e—aki+ (alk)(bla)]? ’

(A1)

2ala[l1+(bla)]+

al[l+(bla)l]

+4|Fol?y 2(1+428%)
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where
a=n(wy)+1/2 and b=—yn'(wy).

Since the ratio b/a<<1, expanding Eq. (A1) up to first order
correction in b/a, we obtain

b
Fdim(g’b/a):Fdim(g’O)(1+g(£)f(§);)v (AZ)

where

_ Fdim(§70)
f(é)—W

and
2¢
(O =1L +K ) (kL ~2a) +a’k].

In Eq. (18), for k[2n(wy) +1]>1, the points of extrema are
located at ry=0 (minimum and r.==*(1/k)[(2ak
—1)/21'? (symmetric maxima). With the introduction of the
correction term, these points are shifted, approximately, to
ro=mp and r’. =r.— n,, where
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b, 3
o= 4k< 26772

and

Therefore up to first order in b/a the distance between the
points of maxima is not modified, although all three points
are shifted from their original positions.

Besides the shifts in the location of the extrema points in
the line-shape function, an asymmetry is present in the
heights of the bumps, and their difference, calculated in the
same approximation, is

Fyim(r_,bla)—F 4;,,(ry ,bla)
AF 0 "y " 1\(b
~AF gim(r 2 )‘k— at 27 )

also linear in b/a.
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