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Effects of temperature on the absorption line-shape function for driven two-level atoms:
A non-Markovian treatment
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The description of a non-Markovian process is presented and the asymptotic solution of the generalized
master equation is obtained for a two-level atom pumped externally by a monochromatic time-dependent
electric field. We give the explicit expression for the absorption line-shape function and discuss its features as
a function of the temperature and the memory parameter. We verified the following interesting results: (a) At
a critical temperature the line shape undergoes a phase transition, the single-bump profile splits into two
bumps; (b) for small values of the memory parameter k the linewidths broaden, becoming larger than the ones
calculated under the Markovian approximation, and after reaching some maximum value they narrow mono-
tonically with increasing values of k, this behavior being standard for any finite temperature.

PACS number(s): 32.70.Jz, 42.50.—p

I. INTRODUCTION

In quantum irreversible processes the most familiar treat-
ment that one encounters in the literature is the Markovian
approximation, which assumes the time correlation ~ of the
enviroment variables is much smaller than the characteristic
decay time y

' of the system of interest. Formally the analy-
sis is performed by using a master equation, which is a Liou-
ville equation containing additional terms that come from the
coupling of the system with the reservoir and that answer for
the irreversibility of the evolution of the system [1—3].How-
ever, non-Markovian effects are important in optics and
radiation-matter interaction phenomena, due to the necessity
to go beyond the Markovian approximation in experiments
involving memory times 7. smaller but of the order of y
[4—11].

In a previous paper [12] we analyzed and discussed the
memory effects on the density-matrix coherence terms of a
driven two-level atom in the stationary regime, and we also
pointed out the importance of the entropy, as a function of
the detuning, in order to discern between Markovian and
non-Markovian relaxation processes. Continuing our work in
this line the present paper is devoted to the study of effects of
the temperature on the absorption line-shape function for a
driven two-level atom in its steady state. We observed the
existence of a phase transition in the line-shape function,
characterized by its split into two components, occurring at a
critical temperature, which depends on the memory param-
eter k. We also studied the linewidths for a continuous range
of values of k at several different temperatures.

The paper is organized as follows. In Sec. II the general-
ized master equation is introduced and in Sec. III its asymp-
totic solution is obtained. In Sec. IV the absorption line-
shape function is deduced. In Sec. V we present, analyze,
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and discuss the results for the line shape and the linewidth as
functions of the temperature and the memory parameter. Fi-
nally, Sec. VI contains the summary of our work.

II. THE GENERALIZED MASTER EQUATION

The total Hamiltonian we considered is constituted by the
terms

A A

H=Hoi+Ho. x+ V + V (t),

where Ho z and Ho& are the Hamiltonians of the system of
interest (.+ and reservoir (W), respectively, while V is the
system-reservoir interaction and V (t) is a time-dependent
external force acting only on the system. Concerning the
nature of the whole system some hypotheses are made: (a)
the interaction V' contains only nondiagonal terms in the
representations that diagonalize Hp y and Ho z, (b) the sys-
tem and reservoir are initially uncorrelated, that is,
p(0) = pz(0) p z(0); (c) the reservoir is ideal, this means it
remains undisturbed and it is always in thermal equilibrium,
independently of the strength of V'; therefore
p(t) = p ~(t) p z(0), where

p., (0)=e o~ /Tr. e

is the canonical distribution of the reservoir and the reduced
density operator is obtained from pz(t) = Tr~p(t).

With the above ingredients the generalized master equa-
tion (GME) in the interaction picture is written as

//P iAt).
Bt

= —i [V~(t), p ~ g(t) ]

dt' Tr~/tV~(t), [V'~(t'), p „(t')p~(0)]). .-
0

(2)

The physical problem we are going to study is a two-level
atom (~ coupled to a reservoir (A) and driven by a classi-
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cal (c-number) monochromatic electric field. For this case
the terms of the Hamiltonian (1) are (A, = 1) (a)
Ho. i= coo/2(IT)(T I

—
I l)(l I). representtng two-level atoms

embedded in the reservoir and that are sufficiently diluted so
their interactions can be ignored; IT) and I$) stand for the
upper and lower levels, whose energies are e1=~o/2 and

top/2; (b) Hp ~= X to b b, describing the reservoir,
constituted by a huge number of photons (or phonons) in
thermal equilibrium at some temperature T; (c)
V' = X„(K„*btIJ, )(TI+ H.c.) is the system-reservoir interac-
tion, given in the rotating wave approximation (RWA); (d)
V (t) = —/I E= (Fpe'"'I j )(T I+ H.c.) representing the
pumping of the system by the external field; in this expres-
sion

phonons) with frequency co, kj3 is the Boltzmann constant,
and T is the absolute temperature.

The system of first order differential equations, Eqs. (3)
and (4), is solved by Laplace transform technique, which
leads to a system of algebraic equations for the transforms

W, (p) and W, (p) and whose solution yields

W, (P) = X Xj (P) W (o)

W3(0)—( —1)" iF()p+i~~ —Q (p)

and

E(t) =(E11e e'"'+Ep e+.e '"'), Fp= —p, E11,
with

P ~j k+ (Q12~jl + Q21~j2) + IFol "(P)x „(p)=
Pl P+ Q12(p) + Q21(p) + 2 IFol "(P)1

/ =/ e+Il)(T + p*e-lT)(ll.

III. ASYMPTOTIC SOLUTION OF THE GME

The reduced density operator in Eq. (2) is expand-
ed in terms of a complete set of operators

p~i(t) =&J=twj(t)o, . wh««1=IT)(TI. o2=ll)(ll
03

I T )( l I, and 04 = l )( T I
W1 and W2 are the occupation

probabilities of the upper and lower levels, respectively,
while W3 and W4 are the coherence coefficients. Therefore,
with this expansion, the q-number GME (2) goes to a
c-number system of equations,

ft
W (t) = g dt'Q k(t, t') W„(t') —( —1) [iF11W3(t)

k=1 30

and

W1(p) —W2(p)+ W3(0)
W3(p) =i' P+ i~ ~ —Q33(p)

Q12(p) = f oo 2
dto'g(to') IK(to')

I

n(tp')
p + top co3o

(10)

with W4(p) = W3(p)*.
The quantities Q, k(p) and Q33(p) are the transforms of

the memory kernels Q,„(t) and Q33(t) and they are given by
the expressions

and

—iF() W4(t)], j=1,2

W, (t) = dt'Q, ,(t, t') W, (t') —( —1)j[iFgW, (t)
0

—iF() W2(t) —ib, toWj(t)], j=3,4

(3) 021(p) = d~'g(~') IK(~') I'[n(~')+ I]
Jo

2p
XP'+(~o —~')' '

f co

d~'g(~') IK(~') l2[2n(~ )+ I]
Jo

where W3(t) =e ' "'W3(t) and Ace=(cop —co) is the detun-

ing. We remind the reader that W1+ W2=1 and W4= W3 .
The occupation probability kernels are

p i(to to )
(12)

Q, k(t, t')= —2( —I)""X IK (~ )I' [n(~ )+~kl]

Xcos(cuo —co )(t—t'), j,k= 1,2

and the coherence kernels are

Q3,(t, t') = —g IK (co )I [2n(co )+1]e' "
(6)

and Q44(t, t')=Q33(t, t')*. In the above expressions
n(co ) =(e" j"~ —1) ' is the mean number of photons (or

in which the density distribution function g(co) was intro-
duced for the frequencies of the reservoir's bosons. In Eq. (8)
h(p) ={I/[P+ t/3 m —Q33(P)]+ C.C.).

The asymptotic solutions are obtained by calculating the
limit W =lim„oPW (P), j=1,2; W, j=3,4, come from a
relation equivalent to the previous one. So we have in the
Schrodinger picture

[Q12(o)~j1+ Q21(0) ~j2]+ IFol "(0) j=1,2
Q12(0) + Q21(0) + 2IFol "(0)

(13)

- and
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iFo [Qi2(0) —Q2i(0)]
W3 =e

I. Q12(0) + Qzi(0)+ 2IFol "(0)][+i~ to Q33(0)]
(14)

It is worth noting that the quantities W, do not depend on the
initial conditions, given by W, (0), as one can see from these
equations.

In order to get analytical results for the asymptotic diag-
onal and nondiagonal elements of p &, we have to introduce
shapes for g(co). For any choice of the product

g(co')IK(co')I, the stationary kernels Qi2(0) = yn(coo)
and Q2i(0) = y[n(coo) + 1] remain the same, where

y=2rtgoI&(coo) is the damping constant of the system.

Contrarily, the kernel Q3s(0) is sensitive to the shape of
the product g(co') IK(co')

I
. For example, (a)

g(to')IE(co')I =goIICoI, constant, characterizes a Markov-
ian correlation for the reservoir operators; the time-
dependent kernels have null memory time,

Q, k(t t')-8'(—t t'); (b) an—y other choice leads to a non-
Markovian process; we shall adopt in this work the Cauchy
distribution

where [W, (t)]FF and [W2(t)]zF are the rates of change of
the occupation probabilities of the levels

I

t') and
I J, ) induced

by the external field (FF). These quantities are given by the
terms containing the coupling parameters to the field, Fo and

Fo in Eq. (3). Then in the Schrodinger picture they are

[W, (t)]EF= t Fo W3(t) e'"' t'Fo W4(t) e

and

[W2(t)]pF= l'FoW3(t)e' '+ iFo W4(t)e

which yield [W&(t)]zF= —[W2(t)]sF. Inserting this result
in Eq. (16) one writes for the absorption line-shape function
F

F=iFoWs(t)e'"' —iF& W4(t)e

and finally

g(~ )=go 1+( r )2P (15) i W, (t)F= —2IFoI Irn ~
e' '

( Fo
(17)

IV. THE ABSORPTION LINE-SHAPE FUNCTION

The rate at which quanta are absorbed from the external
field is expressed by [13,14]

1
(all Wl(t)]EF+ e2[W2(t)]EF /8] 82

(16)

where the memory time ~ is a characteristic of the reservoir.
Equation (15) is equivalent to considering an exponential

time decay in the kernels, Q,„(t t ')-e—
which shows the dependence of the line-shape function on
the coherence coefficient Ws(t). The asymptotic value of F
is obtained by taking Ws in Eq. (17).

Our aim is to investigate the asymptotic behavior of the
temperature-dependent absorption line-shape function with
the detuning for non-Markovian processes. As we have al-
ready mentioned, we took for the density of levels function a
Cauchy distribution, Eq. (15), and this provides the follow-
ing expression for the dimensionless line-shape function

Fd, = 2F/y:

2IFoI'l y'

[n(~o)+ I/2]'+ g'(I+ k's') —2k''[n(~o) + I/2]+ 2IFoI'/y'
(18)

where k= yr is the memory parameter and s = Ace/y.

V. RESULTS AND DISCUSSION

The function (18) presents two distinct line shapes that
depend on a relation between k and n(tao). For
k[2n(coo)+1]&1 the line shape presents a single-bump
profile whereas for k[2n(coo)+ I])1 two symmetric bumps
are present. This can be viewed as a kind of a phase transi-
tion of the line shape that depends on the temperature
(through n) and the memory parameter k. To visualize this
behavior Fig. 1 exhibits Fd; as a function of the detuning
for IFoI/y= 5, n = 5 and three values of k, 0 =0 (Markovian

case), 0.05, 0.08, while Fig. 2 corresponds to the same val-
ues of n and IFoII y and also three values of k,
k = 0,0.10,0.20.

The height of the twin-bump line shape is

8k IFoI /yA=
ik[2n(coo)+ 1]—I) +8k IFoI /y + 1

8IF,I'l, '
[2n(too)+ 1] +8IFoI ly

(20)

whereas for the single-bump line shape the height is the
same as one obtained in the Markovian approximation,
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In order to characterize the phase transition we are going
to analyze the distance between the points of maxima of the
two bumps, given by

+2
D = (k[2n(too) + 1]—1)" . (21)

FIG. 1. The absorption line-shape function F„; as a function of
the detuning for n = 5 and three values of the memory parameter k,
satisfying the condition k(2n+ 1)(1.The solid line corresponds to
k=0 (Markovian case), the dotted line corresponds to k = 0.05, and
the dashed line corresponds to k=0.08.

n that depends on the absolute temperature T. Remembering
that the parameter k is characteristic of the reservoir, the
critical temperature at which the transition occurs is deter-
mined from k[2n, ( ron) + 1]= 1 or

A, coo ~ 1+k'I

(22)

FIG. 3. The distance D between the maxima of the two bumps
as a function of k and with n as parameter.

Figure 3 shows D as a function of k for different values of

1.0

For small values of k the behavior of T, is inversely propor-
tional to k, T,-fttool(2k~)(ilk)[1 —ll3k +O(k )]. Now,
the temperature dependence of the distance D around the
critical temperature is

0.8—
IF, I /~= 5 2

D = fk[2n, (too) + 2(T—T,)n,'(too) + 1]—1)'

0.6 where n, (coo)=(e"0' s ~ —1) ', and a direct calculation
leads to

0.4

0.2

D l A COO T

, 0,

T)T

T&T,
(24)

r~g

0.0 I I ~ L ~L+ s ~

-30 -20 -10 10 20 30

FIG. 2. The absorption line-shape function Fd; as a function of
the detuning for n= 5 and two values of the memory parameter k,
satisfying the condition k(2n+ 1))1. The solid line corresponds to
k= 0 (Markovian case), the dotted line corresponds to k =0.10, and
the dashed line corresponds to k=0.20.

so the critical exponent 1/2 is characteristic of a phase tran-
sition that occurs due to the presence of a fourth power poly-
nomial in the detuning g in the denominator of the line-shape
function, Eq. (18).Meanwhile, in the Markovian approxima-
tion the phase transition is absent because the line-shape
function is inversely proportional to a quadratic polynomial
in the detuning.

Now going to the analysis of the linewidth, defined at half
height of the line shape, we have two different functions, one
for each phase,
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(/k[2n(coo)+ 1]—1/+ Jk I M+fk[2n(too)+ 1]—1) )'
r=

((k[2n(too)+ 1]—1)+ gk I M (k—[2n(coo)+ 1]—1) )'
for k(2n+ 1)& 1

for k(2n+1))1, (25)

where I M is the standard Markovian linewidth [14,15] given
by

r =([2~(~,)+1]'+g ~F, ~'/y'}'",

and at the transition k[2n(coo) + 1]= 1 one has
I =(2I M/k)' . It is worth noting that I may be larger or
smaller than I M, depending on the values of n(coo) and k.

Figure 4 presents the linewidth as a function of the
memory parameter k and with n as parameter. It also shows
a curve, the dashed one, that separates the phases corre-
sponding to the conditions k[2n(coo)+ 1]&1 and
k[2n(coo)+ 1])1. We note that for small values of k there
occurs a broadening of I, for any temperature, reaching a
maximum value and then the line shape narrows monotoni-
cally, becoming for large values of k proportional to k
This narrowing of the linewidth is a characteristic of a non-
Markovian relaxation process, because as k increases the
GME becomes closer to a reversible system of equations, for
which the linewidth of the levels is zero. We also note that
for a fixed value of k the linewidth narrows with the decreas-
ing of the temperature.

In order to resolve the twin bumps of the line shape we
define the parameter o.=A/P —1 and impose the condition
cr) l, such that the height at the points of maximum is at
least twice the value of the height at the point of minimum,
at j=0 (which also is the height of the Markovian line
shape). The above condition leads to k)1/(2n+1 —I M/

Q2) and for the denominator being a positive quantity one
has the additional condition n) +2~ F~ o/—y 1/2. Under these

requirements Fig. 5 exhibits the line shape for n = 9,
k=0.5, and ~Fo~l y=5,, and one perceives that the absorption
line shape is constituted by two peaks located symmetrically
with respect to 6 am =0. At half height of the bumps the line-
width of each one is given by

1
I', tt= ((k[2n(coo)+ 1]—1)

2k

+ gk I I (k[2n—(coo)+ 1]—1)2)"2

(tk[2n(too) + 1]—1)
2k

—gk'r' —(k[2~(~,)+ 1]—I)')'". (27)

1.0 I ) I ( I i I ) I ) I

The transition can be understood as due to the following
mechanism: As long as the temperature of the reservoir is
kept below T, the atomic system absorbs energy mainly
from the pumping field at frequencies around coo, now, for
temperatures above T, the number of photons of the reser-
voir increases and they compete with the pumping field for
being absorbed by the system. The critical value N„'„of the
number of photons of the reservoir can be obtained from a
straightforward calculation: the number of photons is
N„h= fog(t0')n(to')dry'= agon(coo)/r; then at the phase
transition, k[2n(coo) + 1]= 1, one has
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FIG. 4. The linewidth I as a function of k and with n as pa-
rameter. The dashed curve separates the phases corresponding to the
conditions k(2n+ 1)& 1 and k(2n+ 1)& 1.

FIG. 5. The absorption line-shape function Fd; as a function of
the detnning for n = 5. The solid line corresponds to k =0 (Markov-
ian ease) and the dashed one, corresponding to k=0.5, has two
peaks whose linewidths at half height of the bumps are given by Eq.
(27).
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APPENDIX

Considering in Eq. 29)
d g (o)—( )n, that we now

ie to
w write as Fz; (j,0 ist

Fg; (g, b/a) = 4~Fp~/y2(1+ k2(~)

[(1+k ( )f akim+ (—1+ a/k)(b/a)]
~ 1+(b/ )n

(A1)
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where

a=n(top)+1/2 and b= —yn'( cop).
4k 2k r~

Since the ratio b/a(& 1, expanding Eq. (Al) up to first order
correction in bla, we obtain

where

I' b)
Fd; (C b/a) =Fd;.,(( o) I + g (C)f(C)a('

Fd; ($,0)
f(s) =4~F ~2

-2

2g
g(j)=—[(1+k ( )(kj —2a)+a2k].

(A2)
1b, a~ 3

rl ———31 ——1 ——
a + 2g 2

Therefore up to first order in bla the distance between the
points of maxima is not modified, although all three points
are shifted from their original positions.

Besides the shifts in the location of the extrema points in
the line-shape function, an asymmetry is present in the
heights of the bumps, and their difference, calculated in the
same approximation, is

F„„,(r, b/a) F„,,„(—r, , b/a)
In Eq. (18), for k[2n(cop) + 1]~ 1, the points of extrema are
located at r p

=0 (minimum and r = ~ (1/k) [(2ak
—1)/2]" (symmetric maxima). With the introduction of the
correction term, these points are shifted, approximately, to
~. o= Vo and r ' =r —

xg, , where also linear in bla.
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