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A spectrum-generating algebra for a unified description of rotations and vibrations in polyatomic molecules

is introduced. An application to nonlinear X3 molecules shows that this model (i) incorporates exactly the

relevant point group, (ii) provides a complete classification of oblate top states, and (iii) treats properly both

degenerate and nondegenerate vibrations.

PACS number(s): 33.20.—t, 03.65.Fd, 02.20.—a

I. INTRODUCTION

The progress currently witnessed in experimental tech-
niques for the spectroscopy of large molecules motivates the
development of theoretical tools to interpret and guide such
measurements. In view of the proliferation of parameters
needed in Dunham expansions and the difficulties encoun-
tered in solving a Schrodinger equation with interatomic po-
tentials for polyatomic molecules, the use of algebraic meth-
ods has been suggested in which the Hamiltonian is
expressed in terms of elements of a Lie algebra. The key
ingredient is the choice of a suitable spectrum generating
algebra.

At present there exist two versions of this method. In the
first version [1,2], rotations and vibrations are treated simul-

taneously and hence rotation-vibration couplings are built in
from the outset [3]. In this approach, a molecule with n

atoms is described in terms of n 1 coupl—ed U(4) groups,
one for each independent relative coordinate. Each u;(4) al-

gebra is realized in terms of a set of four vibron operators
(o.;,gr;): the three components of a dipole (or 7r) boson with
L =1 and a scalar (or o) boson with L =0, i.e. , one
o. boson for every m boson. The scalar boson does not rep-
resent an independent degree of freedom, but is merely in-
troduced to conveniently handle anharmonicities by com-
pacting the model space, i.e., the number of bo sons¹=n +n is conserved for each i=1, . . . , n —1 sepa-

t l

rately. This version has been applied successfully to poly-
atomic molecules with n =2,3,4 atoms, but it encounters dif-
ficulties in describing bent molecule s with degenerate
vibrations such as, for example, in nonlinear X3 molecules
[2,4].

In the second version [5,6] rotations are ignored, while
vibrations are treated in terms of coupled one-dimensional
anharmonic oscillators. A separate set of coupled U(2)
groups is introduced for each type of vibration (stretching
and bending). The use of symmetry-adapted operators en-
sures the correct transformation properties of the eigenstates

Present address.

under the relevant point group [6].Since there is no explicit
coupling between rotations and vibrations, this scheme be-
comes particularly useful for molecule s in which the
rotation-vibration coupling is negligible. ln this approach
each type of vibration is treated separately with different
interactions, although for degenerate vibrations such as, for
example, in symmetric top X3 molecules, stretching and
bending vibrations can belong to the same irreducible repre-
sentation of the relevant point group.

In this paper, we propose an alternative scheme for the
description of n-atomic molecules in which the relevant
point-group symmetry is taken into account exactly and all
vibrations (stretching and bending) and rotations are con-
tained in a single algebraic framework. We introduce a di-

pole boson for each independent relative coordinate and a
single scalar boson. This leads to a spectrum-generating al-
gebra of u(k+ 1), where k= 3(n —1) is the total number of
rotational and vibrational degrees of freedom. By construc-
tion, only the total number of bosons W = n + n with
n =X,n is conserved. For diatomic molecules (n=2) we

l

recover the u(4) vibron model [1].For triatomic molecules
(n= 3) we obtain a u(7) model whose building blocks are a
scalar boson and two dipole bosons (o., 7r, , m2). We present
this scheme by studying symmetric (oblate) top X3 mol-
ecules, which form the simplest nontrivial example of a bent
polyatomic molecule with a degenerate vibration. We com-
pare our results with those obtained in a u(4) IR u(4) model
[2]

II. POINT-GROUP SYMMETRY

The embedding of discrete point-group symmetries in an
algebraic model relies on a geometric interpretation of the
vibrons. For nonlinear rigid molecules it is convenient to
make use of the established isomorphism between the mo-
lecular symmetry group and the relevant point group [7].The
elements of the former consist of permutations of identical
nuclei with or without inversion (parity). The parity of the
bosons is well defined and the transformation properties un-
der permutations can be realized in terms of finite rotations
among the bosons. For bent X3 molecules with point-group
symmetry D3&, we use the isomorphism between the S3 per-

1050-2947/95/52(4)/2786(5)/$06. 00 2786 1995 The American Physical Society



52 SPECTRUM-GENERATING ALGEBRA FOR X3 MOLECULES 2787

(x, —x~),
2

(x, +xq —2xs)
6

mutation group and the point group Ds (CDsh). The parity
and S3 labels are equivalent to the classification under

D3h. We associate the two types of dipole bosons mi and

m2 with the relative Jacobi coordinates

and their conjugate momenta, which have well defined trans-

formation properties under permutations (x; denotes the co-
ordinate of the ith atom). The elements of the group S3 can
be expressed in terms of the transposition P(12) and the
cyclic permutation P(123), whose matrix representation in
the (cr~, 7r~i, vrz~ ) basis is [8]

P(12)
I

1 0 0 0 0

0 —1 0, P(123) = 0 —1/2 Q3/2

0 1 —Q3/2 —1/2 i

(2)

The o. boson is a scalar under the permutation group, whereas the two ~ bosons transform (for each projection m= 0,~ 1) as
the two components (M~, Mi, ) of the two-dimensional irreducible representation (M) of Ss. &n general, the symmetric (S),
antisymmetric (A), and mixed symmetry (M) classes of Ss can equivalently be labeled by the irreducible representations of
the isomorphic point group D3 as A l, A2, and F, respectively.

The transformation properties under S3 of all operators of interest follow from those of the building blocks. In particular,
the most general one- and two-body u(7) Hamiltonian that is a scalar under S3 as well as rotationally and parity invariant is
found to be

'Ea. o o ~w ( iri ' '7rl + rrp
' ir2) + iso o o ~o + 1 o (~i ' '7rl+ ~p ' 7r2) ~

+ Uo [(~ti mtt+m~~ m~~)o. o +r(stot(& . ivri+vrp vrp)]

+ g c, [(~', ~', ~,'~,'—)'"'(&,~, ~,&,) "+4 (~', ~,')"'(~,&,)'"]
k=0,2

+c (m"7rt) ' (7r m )
' + g w (7rtm~+7rt7r~) (7r & +~ m )

X =0,2
(3)

where ~ denotes the usual scalar product with
7r; =(—1)' ~; and i=1,2. The corresponding eigen-
states are labeled by the total number of bosons N and, by
construction, have good angular momentum, parity, and per-
mutation (point-group) symmetry.

III. GEOMETRY

The Hamiltonian of Eq. (3) is expressed in terms of ab-
stract algebraic interactions. A more intuitive geometric vi-
sualization can be obtained by using mean-field techniques
to study the geometric properties of the u(7) model. For a
system of bosons the variational wave function takes the
form of a coherent state [9], which is a condensate of N
bosons

0 (r, , rz~ 0 and 0» 0» ~). The two vectors r, and rz span
the xg plane. We have chosen the g axis along the direction

of rl, and r2 is rotated by an angle 0 about the out-of-plane

Y axis, r l r2 = r l r2cos 0. The expectation value of the
Hamiltonian of Eq. (3) in the condensate defines a classical
energy surface F(r, , rz, 0). The equilibrium shape is deter-
mined by' minimizing the energy surface with respect to
rl, r2, and 0. The nonlinear rigid and stable equilibrium
shape is characterized by rl=r2 and 0=~/2. These two
conditions are precisely those satisfied by the Jacobi coordi-
nates of Eq. (1) for an equilateral triangular shape and sug-
gest the association of the algebraic shape parameters in Eq.
(5) with these coordinates, i.e. , ri+-+ p and rz~ X.

1
I!N;c&= (b,".) 10&

QN!
(4)

bt=(1+R ) "[ot+r, +~i, +rz (mzt, cos8+mz, sin8)],
(5)

IV. EXCITATIONS

We consider separately the vibrational and rotational ex-
citations described by the Hamiltonian in Eq. (3). With the
techniques introduced in [10] for the nuclear interacting bo-
son model, an arbitrary u(7) Hamiltonian can be decomposed
uniquely into intrinsic (vibrational) and collective (rotational
and rotation-vibration coupling) parts

where R = r l + r2. The condensate is parametrized in terms
of two (real) coordinates r, and r z and an angle Hint+ Hcoll (6)
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~1 ~1 ~2' rrz) + (2 I (~1' ~1 ~2 ~2)

X(mi. 7r, —7rz. rrz)+4 (m, . zrz) (7rz. 7ri)]. (7)

To get more insight into the vibrational structure, we perform
a normal-mode analysis of the above Harniltonian. This is
done by introducing a set of orthonormal deformed vibrons,
consisting of the condensate boson of Eq. (5) with ri=rz
and 0= ~/2, and six additional bosons that represent excita-
tions of the condensate. The normal modes can be found by
rewriting the intrinsic Hamiltonian in terms of the deformed
vibrons and replacing the condensate bosons by their classi-
cal mean-field value +N [11,12]. As a result, we find, to
leading order in N,

1

N
—H;„,=et btb, +ez (b,"b, +b" b )+O(1/+N), (8)

with eigenfrequencies e, =4 (,R and ez =4 (2R (1
+R ) '. This identifies the deformed bosons that corre-
spond to the three fundamental vibrations: a symmetric
stretching (u), an antisymmetric stretching (U), and a bend-

ing vibration (w),

bt=(1+R )
' [—R ot+(mb), + zrzt )/+2],

bi = ( —vrti, + 7r~~, )/+2,

bt = (~t„+~zt, )/Q2.

A. Vibrations

The intrinsic part by definition annihilates the equilibrium
condensate and has the same shape for the energy surface as
the original Hamiltonian. For the rigid triangular equilibrium
shape, characterized by r& = r2 and 0= ~/2, we find

H;„,=(, (R o.to' —7r' vrt —7r". ~t)

monicities. These can be studied numerically by diagonaliz-
ing H;„, in a convenient basis.

A similar analysis [12] of the 53-invariant intrinsic (one-
and two-body) Hamiltonian of the u(4)Su(4) model yields
that, in this case, the two radial modes associated with the
Jacobi coordinates are uncoupled and have the same fre-
quency, in disagreement with the point-group classification
of the normal vibrations of a symmetric X3 shape. The dif-
ference with the u(7) model can be traced back to the occur-
rence of terms in the Hamiltonian of Eq. (7) in which only
the total number of dipole bosons is conserved. These terms
cannot appear in a u(4)Su(4) description, which requires
that each type of boson be conserved separately. A u(2)
Su(2) description will yield only the symmetric vi(A1) and
the antisymmetric vz, (E) stretching vibrations. The second
member of the degenerate vibration [the pzb(E) bending]
requires a separate treatment.

A A A A

+ K3 L.L+ K4 Ky Ky (10)

with

B. Rotations

On top of each vibrational excitation there is a whole
series of rotational states. In a geometric description the ro-
tational excitations are labeled by the angular momentum L
and its projection K (=0,1, . . . ) on the threefold symmetry
axis, parity P=( —1), and the transformation property t
under the point group. In the present algebraic model the
rotations (and rotation-vibration couplings) are described by
the collective part of the Hamiltonian. By construction,
H„I&=H —H;„, consists of interaction terms that do not affect
the shape of the energy surface [10,11]. Discarding
N-dependent terms that do not contribute to the excitation
spectrum, we find

n

Hanoi)= Ki (A 1.A1+Az. A2) + Kz (Bi Bi+Bz Bz)

The first two are radial excitations, whereas the third is an
angular mode that corresponds to oscillations in the angle
0 between the two Jacobi coordinates [12] (pi, vz, , and

vzb, respectively, in the usual spectroscopic notation). The
angular mode is degenerate with the antisymmetric radial
mode. This is in agreement with the point-group classifica-
tion of the fundamental vibrations for a symmetric X3 con-
figuration [13] and shows that H;„, describes the vibrational
excitations of an oblate symmetric top. Intrinsic states repre-
senting excited vibrations ( v, , vz) are obtained, for
large N, by replacing the condensate bosons in Eq. (4)
by the appropriate number of deformed bosons of Eq.
(9). Accordingly, the intrinsic state for such vibration
(having +/ projection of the vibrational angular mom-
entum on the symmetry y axis) takes the form

)(vz+ l)/2(bt ){v2—l)12(bt) v&(bi)N v&
—

vz~ 0), where-

By construction, H;„, has an exactly degenerate ground
band whose rotational members are obtained by projection
from the equilibrium condensate. Its excited states also tend
to cluster into bands. Equation (8) shows that in the large N
limit the vibrational spectrum is harmonic. For finite values
of N the correction terms of order 1/+N give rise to anhar-

A, =1 (~",~+ ~'~, )"),
B,= (zr, viz+ zrzvr, )(1)

L= +2 (~', ~, + ~,'~, )~'),

A, = 1 (~zt~+ ~'~2)"',

0 (mod 3) for A, ,Az
K

1,2 (mod 3) for E. (12)

States with well defined permutation symmetry (r) can be
formed by taking the two linear combinations ~L, , ~KY~)
~[1~ P(12)]~L,K~), which can be used to distinguish be-

(11)
The angular momentum L commutes with any rotational-
invariant Hamiltonian. The Hamiltonian of Eq. (3) commutes
also with the operator K . Consequently, the resulting eigen-
states ~L,KY) have good angular momentum L, parity P,
and K . The states ~L, ~K ) are degenerate since
p(12) ~LP, K ) = ( —1) . ~L, —K ) and P(12) commutes
with any 53-invariant Hamiltonian. The operator K is re-
lated to the cyclic permutation P(123)= exp( —1'27rK&/3) and
the absolute value ~KY~ determines the 53=DE symmetry
[14]
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tween t=At and A2 for ~K, ~

=0 (mod 3) and between the
components E~ and E&, for ~K~~

= 1,2 (mod 3).
By examining the projection of intrinsic states on the

symmetry axis, it is possible to show that for a ( p, , P2) vi-
bration, the algebraic quantum number ~K~~ and the geomet-
ric K are related by

(13)

The + ( —) sign corresponds to the + l ( —l) projections of
the vibrational angular momentum along the symmetry axis.
The ~K~~ quantum number is analogous to the G quantum
number

(14)

(~i, ~2)
1

(0,0 )
(0,11)

(1,0 )
(0,20)

(0,2 )
( 1,1')
(2,00)

(0,3')
(0,3 )
(o,3')

u(4) I8I u(4)'

DMT' u(7)

A)
E

Ai
A)
E
E

Ai
E

A]
Aq

0
2521
3178
4778
4998
5554
6262
7006
7283
7493

0
2522
3184
4770
5007
5543
6233
7019
7276
7492

0
2506
3181
4928
4928
5603
6233
7266
7266
7266

0
2506
3174
4929
4929
5597
6243
7269
7269
7269

TABLE I. H3+ band origins in cm

considered by Watson [15].Since both the G and ~K~~ labels
are defined (mod 3), they provide an equivalent classification
scheme. It is important to note that, unlike for l=o where

~K~~ =G=~K~, for 1)0 there are two possible ~K~~ or G
values for each K. Thus ~KY~ (or G) is an additional quantum
number needed to supplement the D3 and parity labels for a
complete classification of the oblate top states. As an ex-
ample, in E vibrations of the type (pi, vz ') the two Lz
levels with K=3 are distinguished by ~K~~ =5 (G=2) and

IKyl =1 (G=4).
From the above discussion it is evident that the last two

terms in Eq. (10) commute with the Hamiltonian of Eq. (3)
and thus correspond to exact symmetries. Their eigenvalues
K3L(L+ 1)+ K4K are similar in form to those of a symmet-
ric top. All rotational states with KWO are split in two, with
different ~K~~ assignments in accord with Eqs. (12) and (13).
The splitting between +l and —l levels is Ss&4lK, i.e., in-
creases linearly with K. The Ki and K2 terms in Eq. (10) do
not commute with the intrinsic Hamiltonian of Eq. (7).
Therefore, in addition to shifting and splitting the bands gen-
erated by H;„„ they can also mix them and hence contain the
rotation-vibration couplings. Their effect on the spectrum
can be studied numerically.

The one- and two-body u(7) Hamiltonian presented so far
does not exhibit l-type doubling and consequently its calcu-
lated A& and A2 levels occur in degenerate doublets. This
degeneracy can be lifted with the inclusion of higher-order
terms that break the ~KY~ symmetry. An example of such a
three-body term is considered below. A similar situation is
encountered in Watson's effective Hamiltonian [15], whose
major terms are diagonal in the quantum number G, and
small higher-order correction terms (with AG=6) are im-
portant for the splitting of the (Ai, A2) doublets.

'From [17].
Calculated with N= 40, R = 1.65, (t =12.3 cm ', (2= 21.3

cm ', K4= —14.8 cm ', and g= —0.38 cm
'From [2].

difficulties in the description of the vibrational spectrum of
H3+ [2]. Our goal here is to examine to what extent these
difficulties arise from the lack of an exact treatment of the
molecular point-group symmetry. For that purpose we use a
simple u(7) Hamiltonian

H H;„t((t $2 R )+ K4KY Ky+ ( T T (15)

where H,„, is given in Eq. (7) and Tt=(mt 7r, —7r2 7r2)
X mzt+2(hatt. rr2t) 7rtt. The parameters are determined from a
fit to the estimated band origins in H3+ [17]. In the fit we
minimize X;w; [E;(calc)—E;] with weights w;= 1.0 for the
two fundamentals (the only band origins known from experi-
ment) and w;= 0.1 for the other levels. As shown in Table I,
the u(7) calculation shows a significant improvement over
the ui(4) u, (4) fit, thus highlighting the importance of in-

corporating the discrete point-group symmetry in the alge-
braic description. It is clear, however, that the simple u(7)
Hamiltonian (15) used here is not sufficient to reach the ac-
curacy of ab initio calculations. Adding more interactions
(e.g. , rotation-vibration terms and/or additional higher-order
terms in the algebraic Hamiltonian) can improve the spectro-
scopic accuracy of the fit at the expense of more parameters.
The need for such terms is expected in view of the known
large rotation-vibration couplings in H3, the non-Born-
Oppenheimer corrections in the H3+ potential [18], and the
presence of higher-order terms in ab initio potential surfaces
(31 terms [17]).

C. Applications

Among the different features in the proposed u(7)
spectrum-generating algebra, as compared to the
u, (4) I3 u2(4) scheme, is the exact account of the point sym-
metry. This is particularly important for degenerate vibra-
tions present in symmetric top X3 molecules. With that in
mind, we apply the present formalism to the vibrational
spectrum of H3 . This molecule, with a triangular equilib-
rium shape, has been studied extensively [16] and can serve
as a test ground for different spectrum-generating algebras. It
was shown [4,12] that the u(4)43u(4) model encounters some

V. SUMMARY AND CONCLUSIONS

In this work we have introduced a u(7) spectrum-
generating algebra for the description of triatomic molecules.
Particular emphasis was put on the ability of the model to
adequately treat degenerate vibrations as they occur in oblate
top X3 molecules, by imposing the discrete point-group sym-
metry on the Hamiltonian. A normal mode analysis revealed
that the characteristic pattern of fundamental vibrations of a
symmetric b'ent X3 molecule is recovered in this model. Al-
gebraic terms affecting the vibrations, rotations, and their
coupling have been identified. The u(7) algebra provides a
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quantum number ~ICy~ (the analog of the quantum number

G), needed for a complete classification of oblate top states.
Although we have focused the discussion on oblate top X3
molecules, the u(7) model can be applied to any triatomic
molecule, both linear and bent. In each case the results of a
normal mode analysis are in agreement with those dictated
by the relevant point group [4].All these features of the u(7)
model are necessary ingredients for a proper description of
rotations and vibrations in triatomic molecules.

We have compared the present model with two other al-
gebraic approaches. The main difference between the models
lies in the choice of the model space. In the u(7) model the
distribution of quanta among the two dipole degrees of free-
dom is determined dynamically by the Hamiltonian, whereas
in the u(4)Su(4) model [or its simplified u(2)Su(2) version]
the number of bosons in each mode is restricted separately.
The existence of generators in the u(7) algebra that mix the
two types of dipole bosons is the different ingredient that
enables an exact treatment of the point-group symmetry and
a proper description of degenerate vibrations. Unlike in the

ui (4)Su2(4) case, in the u(7) scheme there is no need to use
nonanalytic (absolute value) interaction terms to describe
bent molecules. On the other hand, the u(7) algebra does not
have a so(4)Sso(4) dynamical symmetry, which leads to
considerable simplification in the u(4)Su(4) description of
linear molecules. In a fit to the band origins of H3+ we

showed that a simple u(7) Hamiltonian with the proper point-
group symmetry improves considerably the previous
ui(4) Su2(4) description of triangular Xs molecules.

Refinements of the simple u(7) Hamiltonian are needed to
achieve spectroscopic accuracy. The choice of rotation-
vibration terms and of additional higher-order algebraic
terms may be guided by examining corresponding terms in
Watson s effective Hamiltonian. The inherent simplicity in
algebraic methods is potentially important for polyatomic
molecules, where ab initio calculations are difficult to per-
form. A first step in this direction would be to extend the
current procedure to larger molecules, resulting in a
spectrum-generating algebra of u(3n —2) as a candidate for
a spectrum-generating algebra for vibrations and rotations in
n-atomic molecules with prescribed point-group symmetries.
Work along these lines, as well as on the rotational aspects of
these models, is in progress and will be reported separately.
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