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&«mic energy levels and Lande g factors: A theoretical study
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We have developed a relativistic multichannel theory that can be used to calculate the multichannel
quantum-defect theory parameters (ti, U, ) directly from first principles. With the parameters we
can calculate the energy levels and Lande g factors of Rydberg series based on the multichannel
quantum-defect theory. We have performed calculations of excited states for the Ne atom with
major configuration 18 28 2p np in J = 0+, 1+, 2+, and 3+ symmetry. The results are in good
agreement with the experimental data. We have also found that the coupling scheme is dependent
on the total angular momentum J. The jl-coupling scheme is more suitable than the jj-coupling
scheme in describing J = 1+ symmetry, whereas the jj-coupling scheme is more suitable than the
jL-coupling scheme for J = 2+ symmetry.

PACS number(s): 31.10.+z, 31.50.+w, 31.90.+s

I. INTRODUCTION

In the kamework of multichannel quantum-defect the-
ory (MQDT), the properties of an excited atom involving
infinite Rydberg states, autoionization states, and adja-
cent continuum states can be described with a set of phys-
ical parameters (p, , U; ) [1—12]. The MQDT parameters
(y, , U, ) can be determined semiempirically by fitting to
accurate energy levels and/or other atoxnic observables
Rom spectroscopic data [8, 10]. However, the numerical
fitting procedure requires rather complete spectroscopic
data and it then confines the scope of the application of
MQDT. In a few cases, the MQDT paraxneters (p, U, )
were also calculated Rom first principles under the &ame-
work of nonrelativistic theory [9, 12] and the theory of
relativistic random phase approximation with exchange
(RRPAE) [13].

With the development of relativistic multichannel the-
ory (RMCT) which is a nonperturbative theory and
can be applied to any atom (e.g. , high-Z atoms), we
can calculate the MQDT parameters (p, U, ) from
first principles for both bound and continuum energy
ranges [14]. RMCT can be regarded as an extension
of traditional configuration interaction theory by in-
cluding continuum configurations. The MQDT param-
eters (p, U; ) are equivalent to a diagonal represen-
tation of the short-range scattering matrix S, namely
S;~ = P U~ exp(i2mtx )U~ . The energy levels, the
Lande g factors, and the coupling schemes can be also
obtained with (tx, U; ) by means of the MQDT method.

Our RMCT is a full relativistic and nonperturbative
method. It should be valid for any atom. To test the
method we choose Ne as an example to show our method
is valid for a low-Z atom in which the relativistic eKects
are not important. We have performed calculations of
excited states for the Ne atom with major configuration
1s 28 2p np in J = 0+, 1+,2+, and 3+ symmetry. For
energy levels of Net with J = 0+, there are strong en-
ergy shifts for the states with major Sp character the
same as the ground state 2p Sp owing to continuum
configuration interactions which manifest as "plasma"

II. THEORY'

A. Relativistic multichannel theory (RMCT)

We start with a relativistic atomic Hamiltonian H
which is obtained by adopting the Coulomb gauge,
namely,

with

Ze') . e'H=)
~

cn, p;+Pmc — ~+)r; ) (2)

The Breit interactions and the remaining higher-order
quantum electrodynamical interactions can be treated as
perturbation later and will not be discussed in the present
paper. In order to solve Eq. (1), the relativistic atomic
Hamiltonian can be recast into (unless otherwise noted,
atomic units m = e = h = 1 are used)

H =Hp+V,
with a relativistic self-consistent field atomic Hamilto-
nian Hp,

Hp ——) h;

= ) [ccxi .p~ + Pimc + Vs~p(ri)] (4)

type radial correlations. In contrast with Sp, there
are negligible energy shifts for the states with major Pp
character. The results of the energy levels and the Lande
g factors for diferent J are in good agreement with the
experimental data. The coupling schemes of Ne I for dif-
ferent J are also discussed. We find the jl-coupling
scheme is more suitable than the jj-coupling scheme in
describing J = 1+ symmetry; the jj-coupling scheme is
more suitable than the jl-coupling scheme for J = 2+
symmetry. We will present our RMCT in Sec. II and
calculation results in Sec. III.
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and a residual interaction V,. ( Ze2 . e2
V = ) . I

—VscF (&')
l
+ )i

A relativistic atoxnic self-consistent-field potential
VS~F can be obtained by an atomic self-consistent field
(SCF) calculation such as Dirac-Slater SCF with a local
exchange approxiination [15, 16]. Based on VscF which
is solved for a neutral atom (Ne atom), we can calcu-
late all bound and unbound single-electron wave func-
tions &p with combined quantum numbers a = nK or cK.
Thus, they can be used to describe approximately oc-
cupied and unoccupied electron orbitals in the atomic
system from the point of view of the well-established
atomic shell model. From such a complete set of single-
electron wave functions, we construct configuration func-
tions 4 as antisymmetrized product-type functions of N
single-electron wave functions with appropriate angular-
momentum couplings and electron occupation distribu-
tion. Thus, such configuration functions form bases of
the complete Hilbert space for the atomic system with
N electrons. Note that we construct the configuration

I

F(eE, i) =) A„(E,i)@„i-) f B,, (E, i)de, ,de.
n C

(6)

The index j refers to various dissociation channels which
are various classes of similar configuration functions @j,
with the same core state and difI'erent radial excited
single-electron orbitals y [5, 6]. The energy integration
can be treated by appropriate energy meshes and starts
from e, (decided according to convenience of computa-
tion) above which infinite Rydberg-type configuration
functions are treated as channels. More specifically, as il-
lustrated later, first we calculate the MQDT parameters
(p, U; ), then the energy levels of infinite Rydberg states
above e, can be obtained from the parameters (p, , U; )
in the framework of MQDT. From Eq. (1) and Eq. (6),
we can get the following integral equations:

functions through the positive-energy projection opera-
tors defined by Ho, thus our method will not sufI'er &om
the so-called "Brown-Ravenhall" problem [17, 18]. If we
consider the continuum configuration interactions as well
as the discrete configuration interactions, wave functions
of energy eigenstates can be expressed as [19—21]

E„A (E, e) + ) V A (E i)+ ) f V, ,B,,(E i)de = Eei„(E,i),
n' C

) V, , „A„(Ee)+e'B, , (E e)+) f Ve. ..B,,(E i)de=EB, , (Ei),
n C

(8)

B, , (E,i) = ) G~ (j'e';jr)V~, A„(E,i),

with the coefFicients A (E, i) and G& (j'e'; je) to be cal-

culated. First we can calculate G& (j'e'; je) by matrix
inversion:

G& (j'e',j e)G@(je;j'e') = 1,

with

(lo)

Ga(je;j' )de'e

= ) [(E —e)b~ ~eh(e —e') —Vid, iede]de' (ll).
jt &c

with V„„=(4„[V~4„),V„~, = (4„[V[4~,), V~, „=
(@q'~ (V(e'~), and Vz, ,z,= (4z, )V)4z, ) and E, e' being
the eigenvalues of Hp corresponding to the eigenfunctions
4'„and 4~, . Equation (7) and Eq. (8) can be solved
in two cases, namely (1) for discrete eigenenergy corre-
sponding to the first few energy eigenstates of Rydberg
series (namely, precursor states) and some finite isolated
energy eigenstates with configurations of valence exci-
tations, and (2) for E ) e, (channel treatment aiming
directly to calculate the physical parameters p, and U;
in MQDT).

For discrete eigenenergy, the B~, (E, i) can be ob-
tained from Eq. (8) (here, the index i is not relevant
and can be emitted),

I

Then, substituting Eq. (9) into Eq. (7) will lead to an
eigenvalue problem,

) [(E-E„)S„„.—Z„„.(E)}A„(E,') = O, (12)

with

F„, (E)=V +) ) f de'f V, de,
j j' Ec

x G~'(j c;j 'e') V, ,e „i.
The first term in Eq. (13) represents discrete-discrete
configuration interaction and the second is the discrete-
continuum interaction. The CI without continuum calcu-
lation only takes the first term into account and omits the
discrete-continuum interaction term. The importance of
the discrete-continuum interaction will be demonstrated
later (Table I). The discrete eigenenergy E„can be cal-
culated by adjusting the coefBcient determinant in Eq.
(12) equal to zero. Here we adopt a frozen core approx-
imation and set the energy zero at the first ionization
threshold corresponding to the ionic state (2ps 2Ps&z).

At E & e lies the energy region where infinite Ry-
dberg discrete states, autoionization states, and contin-
uum states are treated in a unified manner by MQDT.
The Bz, (E,i) can be expressed as

W

B~, (E,i) = 'P ~ ' ", + 6~;b(e' —E) D(E,i), (14)
(E —ei)
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with the unknown Kj, iE to be calculated and the nor-
malization factors D(E, i) to be determined by asymp-
totic boundary conditions. The 'P represents principal
integration. Similarly, we can get

4(E,i): 4,E + 5 C;E( ~—K,E,.E) D(E, i)

A„(E,i) = "" D(E, i). (15)

: A ) O, [f, (r, E)C~,
2

(18)

By substituting Eq. (14) and Eq. (15) into Eq. (7) and
Eq. (8), it leads to a Lippmann-Schwinger-type integral
equation [22, 23],

V„j,Ej, iEKn' iE —+n' iE + ) E —e
C

~ Vn', n+n, iE
Eo

n n
(16)

E —e6c

+)j'e' n n iE
E —E

n n
(17)

The Kj, ;E and K;E matrix can be calculated by solving
Eq. (16) and Eq. (17). After getting the Kz, ,E matrix,
the energy eigenstate wave functions in Eq. (6) have the
following asymptotic expressions:

where

4;E,' A(8, (f; (r, E)cos (7rp, ) —g, (r, E)sin(m p, , ) ]),
(19)

4;E '
,'A(8, [ f; (r,—E)sin(7r p; ) + g; (r, E)cos(7r p, )]),

(20)

(21)
(22)

C~; = h~;cos(my, .) + vrK~;sin(vrp, ), .

Sz,. ——8~;sin(vr p. ) —7rK~ ,cos(vr p .), .

with K~, = K~.E;E. Here, A is the antisymmetrization
operator. 0; is the product-type wave function of the
core-state wave function and the angular wave function
of the excited electron. The f; and g; are regular and
irregular relativistic Coulombic functions [5]. The p, is
the quantum defect (namely, short-range phase shift in
a unit of vr) of the ith channel which has been obtained
by the calculation based on Vscp. The normalization
factor D (E, i) are determined such that eigenchannel
wave functions are satisfied with the following boundary
conditions:

: 5

":A ).&.82(A(r E)C2' —%(r E)~2']D-(E ~)
z 2

; A ) 8~U~ [f~(r, E) cos(harp ) —g~(r, E) sin(harp )]
2

(23)

with the o. denoting the nth eigenchannel. The tan(vrp, ) and the Uz are the eigenvalues and the corresponding
eigenvectors of C 8 matrix with the C matrix in Eq. (21) and the 8 matrix in Eq. (22), namely,

) (C )~A, SA,; = ) U~ tan(7rp )U; (24)

where the p are the eigenquantum defects and the orthogonal matrix U, is the transformation matrix in MQDT.
With the parameters (p, , U; ) we can calculate the atomic energy levels and properties by the following MQDT
method.

B. MC}DT calculation of atomic energy levels,
Lande g factors, and coupling schemes

In MQDT the energy eigenfunction of an excited atom can be written as a superposition of the eigenchannel wave
functions, i.e.,

4'=) 4 A, (25)
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where 4' satisfies the asymptotic boundary condition Eq. (23). The MQDT parameters (p, U; ) in Eq. (23) are
expected to vary smoothly with the energy. For bound states the asymptotic boundary conditions lead to the linear
equations

) [U, sinvr(v+ p )]A = 0, (26)

where vi satisfies

(I; —E) n' = 1 —( 1+ c '
(q + 1)'

V'~' —~'(q+ 1)'+ ~* —I~l

for all i. (27)

Here, Ii is the ionization threshold of the atom cor-
responding to the ith ionization channel; q is the de-
gree of ionization. In the nonrelativistic limit we have
v, = (q+ 1)/+2(I; —E). To obtain nonzero solutions of
A, the determinant of the coefficient matrix of Eq. (26)
must be equal to zero. It then generates innumerable
discrete energy levels. The mixing coeKcients A can be
calculated by Eq. (2.11) in [9].

The operator g is diagonal in LS-coupling representa-
tion, i.e.,

g(l, s) = [3J(J+1) —L(L+ 1) + S(S+ 1)]/[2J(J+ 1)].

(28)

(Aq) = ) Uq A
(

with ) (A ) =1, (31)

where q = i(jj-coupling), jl(jl-coupling), or LS(LS
coupling) .

III. CALCULATION RESULTS AND DISCUSSION

With (p, U; ) we can also calculate the percentages of
difFerent jj-coupling, jl-coupling, and LS-coupling chan-
nels in each energy level by means of representation trans-
formation, i.e. ,

Thus we set up a transformation between the eigenchan-
nel (n) representation and the IS-coupling (LS) repre-
sentation. The transformation matrix can be obtained
by U(l, s) ~ = P, V(L,s); U;~. Here V(~s); transforms the
jj-coupling ionization channels (i) into the LS-coupling
channels (LS). The Lande g factor is then obtained by

(g) = ) .g( ) ) .U( ),-A-
~

(I,s) ( a j
with ) (A ) = 1. (29)

Thus the energy levels and Lande g factors can be cal-
culated when (p, U; ) are known. In practice, because
(p, , U; ) are expected to vary smoothly with the energy,
we calculate (p, U; ) only at a few energy points with
RMCT and get the values of (p, U; ) for any energy
point by means of linear extrapolation or interpolation.
An orthogonal matrix U can be expressed by means of
n(n —1)/2 Euler's angles 8i with a conventional se-
quence,

A. J =0+
Table I gives out the calculated eigenenergy E with

respect to the first ionization threshold. The results are
obtained by adjusting the coeKcient determinant in Eq.
(12) equal to zero. To demonstrate the importance of
the continuum configuration, we also calculate eigenen-

ergy E of a few low-lying excited states and the cor-(&)

responding wave functions, according to the CI without
continuum method which only involves bound-type con-
figuration functions with principal quantum number less
than 6. The difference between E and E represents(~)

an energy shift owing to continuum configuration inter-
actions. It is interesting to note that the energies E
of np [2]o have negligible energy shifts while the ener-
gies of E of np' [z]o have larger energy shifts. The

TABLE I. Energy levels {in a.u. ) for Ne in the J = 0+

symmetries. E, E, and E are from the calculation of
the Dirac-Slater SCF, the CI +without continuum, and the
relativistic multichannel theory, respectively.

n, —1 i+1
R' (8i ),

h 4 I 4 1 0 I

i=1 j=n

where Bi (8i ) is an n-dimensional orthogonal ma-
trix which defers from unit matrix by replacing (tl)th,
(lm) th, (ml) th, and (mm) th elements with cos8i
—sin8i, sin8i, and cos8i, respectively [8]. Thus the
extrapolation or interpolation on U; is obtained through
that on Euler's angles 0~

Energy level
6 1g

»'{'&; )» [-.']

»'{'s';, )» [-,'].
»'{'&;)»' [-.']

+O

-0.7336
-0.1046

-0.6931
-0.1042

-0.7946
-0.1029

-0.1004 -0.0792 -0.0931
-0.0488 -0.0470 -0.0474
-0.0445 -0.0361 -0.0432
-0.0282 -0.0259 -0.0273
-0.0239 -0.0090 -0.0240

Z...[24]

-0.7925
-0.1049
-0.0955
-0.0480
-0.0439
-0.0276
-0.0243
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FIG. 1. Residual interaction matrix elements V;~ for J
0+ symmetry. —1.0

—0.05 0.00 0.05 0.10

np [2]o states have major components with Io charac-
ter, while the np' [2]o states have major components with
~SO character, the same as the ground state 2p So. In
order to elucidate the continuum configuration interac-
tions, we display the residual interaction matrix elements
V~ as shown in Fig. 1. For the residual interaction ma-
trix elements between the ground-state configuration 2p
and the channel configurations 2psnp/ep, a very narrow
energy domain just below the zero (the first ionization
threshold) contains infinite bound configurations 2psnp
and there is a "resonant peak" in the continuum state
energy range which can be regarded as radial "plasma"
type correlation due to the following understanding [25].
There are six 2p electrons in the ground state of a Ne
atom which form spherical symmetric electronic cloud.
If we treat the spherical symmetric electronic cloud as
a plasma, the plasma &equency can be calculated as
u = (2p~(4vrn, e2/m, ) / ]2p)=3.0 (a.u.), where n, is the
density of the electronic cloud. If one of the 2p electrons
is excited, the dominant collective correlation should be
corresponding to "classic plasma oscillation. " Therefore,
the difference of the peak position of the residual inter-
action and the 2p orbital energy should be around the
plasma oscillation energy hu, i.e., 3.0 a.u. As shown
in Fig. 1, the difference is 2.8 a.u. , which is quite close
to our predicted plasma oscillation energy (3.0 a.u.). ln
Fig. 1 there is no peak for the residual interaction ma-
trix elements between the first excited state configura-
tion 2ps&23ps~2 and the channel configurations 2p np/sp
The phenomenon can be also understood based on the

'.).9

—0.10 —0.05 0.00 0.05 Q. 10

0.8

(~) "

FIG. 2. The quantum defects p and Euler's angles 8&

of U; for J = 1+ symmetry of a Ne atom. The respec-
tive Euler's angles of the transformation matrix between LS-
coupling and jj-coupling channels are also given with the
solid lines. Euler's angles are 8&z, 8&4, 8&z, 834) 8]4 and 823
from the largest to the smallest. The jj-coupling channels
are (3/2, 1/2) i, (3/2, 3/2) i, (1/2, 1/2) i, and (1/2, 3/2) i in se-
quence. The LS-coupling channels are P» S» D» and

P~ in sequence.

—0.10 —0.05 0.00 0.05

2p'('Psys) spa(2
2p ( Pigs)spi)2

0.820
0.820

's
0.676

0.933
0.360

P
0.800

-0.360
0.933

TABLE II. Eigenquantum defect p and transformation
matrix U, for J = 0+ symmetry (s = —0.0186 a.u. ). FIG. 3. The quantum defects p and Euler's angles 8&

of U; for J = 2+ symmetry of the Ne atom. The respec-
tive Euler's angles of the transformation matrix between LS-
coupling and jj-coupling channels are also given with the solid
lines. The jj-coupling channels are (3/2, 1/2)2, (3/2, 3/2)s,
and (1/2, 3/2)2 in ac@uence. The LS-coupliug channels are
Dz, Pz, and D& in sequence.
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"
1

" type correlation. When the 3p electron is ex-p asma
d t ill be excited to np or ep or it. n s

case, only one electron is in the 3p orbit and there i
collective corre a ion.1 t' . Thus for such a quantum system

l ited electrons it is worthwhile stu ying t econtaining imi e e
collective correlation based on the physica pic ure o

dependent electronic motion.in e
Table II lists the eigenquantum defects andts and the trans-

= 0+ s mmetry. The calcu-forrnation matrix of Ne in = y
hlated eigenquantum defects are '

g grin ood a eernent wit
the values o taine yb d b fitting to observed energy levels,
i.e. , 0.679 and 0.807 [26].

B. 2 = 1+,2+, 3+

for J = 3+ symmetryFIG. 4. The quantum defect p, for J = +
y

of a Ne atom.
Figures 2 an s ow2 d 3 how the calculated results of p,

f J = I+ and 2+ symmetry ofand 0)~ of V,~ or

ominant channelgy (

s 2
A K g denotes 2p Pg(2 Ap

th th, ', fo J = 1+, (1), (2), (3), d (4) d-
s 2 s 2

3 21/ /» iy. ~/

() () ()p g

52 2''P ) / [3/2], d2 (P, ,) /(1/2, 3/2)z for jj-coupling, 2p ( P3/Q)TLp/'Ep [5 2 Qy 2p sjQ rip

Pg and D2 for L S-coupling scheme.[3/2]2 for jl-coupling, D2, q, an

Desig.

3p [-']i
3p 4]i
3p' [-,']i
3p' [-']i
4p [-' i
4p[-, i
4p' I-,']
4p' [-.']

sp [-', ]
sp' [-,']
sp' [-,'1

3p [-' g

3p [-.]2
3p' [-,']2
4p [-'],
4p [-.]
4p' [-.'l
sp [-,'.

3p 4]s
4p [-'. l

sp [-'.]

Kh

146 419
149 602
150 516
150 827
162 240
162 908
163532
163619
167374
167602
168 300
168 314

149 231
150 105
150 718
162 782
162 974
163629
167553
167623
168 341

148 865
162 660
167498

Z.„„[24]

148 260
150 124
150 774
151040
162 520
163015
163659
163710
167451
167642
168357
168361

149 826
150 318
150860
162 901
163040
163711
167593
167651
168381

149659
162 833
167561

gth

1.981
0.625
1.027
1.356
1.944
0.943
0.709
1.405
1.868
1.022
0.631
1.493

1.159
1.271
1.231
1.151
1.338
1.174
1.147
1.349
1.168

1.333
1.333
1.333

g.„,~ [24]

1.984
0.669
0.999
1.340
1.929
0.974
0.685
1.397

1.137
1.229
1.301
1.112
1.360
1.184

1.329
1.328

Percentage
jj-coupling

(2)0.445
(3)0.372
(3)0.540
(4)0.731
(2)0.499
(1)0.533
(3)0.866
(4)O.823
(2)0.540
(1)0.551
(3)0.902
(4)0.893

(1) 0.846
(2) 0.976
(3) 0.836
(1) 0.966
(2) 0.996
(3) 0.975
(1) 0.992
(2) 0.996
(3) 0.997

of predominant
jl-coupling

(2) 0.816
(1) 0.583
(3) o.6os
(4) 0.820
(2) 0.901
(1) 0.961
(3) 0.969
(4) 0.921
(2) 0.976
(1) 0.996
(3) 0.997
(4) 0.987

(1) o.7o6
(2) 0.764
(3) 0.836
(1) 0.819
(2) 0.840
(3) 0.975
(1) 0.844
(2) 0.847
(3) 0.997

channel
L S-coupling

(1)0.970
(2)0.812
(4)o.s34
(3)0.649
(1)0.915
(4)0.442
(2)0.684
(3)o.6oo
(1)0.802
(4)o.s23
(2)0.796
(3)0.520

(1) 0.858
(2) 0.540
(3) 0.441
(1) 0.670
(2) 0.677
(3) 0.420
(1) o.s6s
(2) 0.699
(1) 0.450
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a Ne atom. U; can be obtained from Eq. (30),
where i denotes the jj-coupling channel, i.e. , i=1,
2, 3, and 4 denote 2p ( Pgi2)npii2/cpy/2 (3/2, 1/2)g,
2p'('P, i2)npsi2/epsg, (3/2, 3/2) g, 2p'('Ppi, )npg y2/~pi(2

(1/2, 1/2) i and 2p ( Pii2)npsi2/epsi2 (1/2, 3/2) i for

J = 1+, i=1, 2, and 3 denote 2p ( Psi2)npii2/epii2
(3/2, 1/2) 2, 2p ( Psi2) nps/2/Cps/2 (3/2, 3/2) 2, and

2p ( Pii2)npsi2/epsi2 (1/2, 3/2)2 for J = 2+; o, denotes
the eigenchannel. The respective Euler's angles of the
transformation matrix TV; (l,~~ from LS-coupling to jj-
coupling channels are also given out with the solid lines,
where (LS) = 1, 2, 3, and 4 denote Pi, Si, Di, and
st for 1 = 1+; (LS) = 1, 2, and 3 denote sD2, sP2,
and D2 for J = 2+. It can be seen that the eigen-
channels are basically the LS-coupling channels with the
same labels. Figure 4 shows the calculated results of p
of J = 3+ symmetry for which only one channel is in-
volved. Both p and Oi for different symmetry vary
smoothly with the energy.

Table III displays some calculated results of the energy
levels and Lande g factors of a Ne atom for J = 1+,2+,
and 3+ with the MQDT parameters (p, U; ). In our
calculation the experimental ionization thresholds I; are
used. The similar calculated results can be easily ob-
tained for the other higher Rydberg series. The Lande g
factors as well as the energy levels are in good agreement
with the experimental data.

Table III also displays the calculated percentages of the
predominant channels in jj-coupling, jl-coupling, and
LS-coupling schemes for each energy level. Traditionally
the jl-coupling scheme is used to describe the excited
states of rare-gas atoms. It is suitable for a Ne atom
with J = 1+ symmetry, except for some levels which
tend to be IS-coupled. Nevertheless, the jj-coupling
scheme proves to be a more favorable one for a Ne atom
with J = 2+ symmetry. It reveals different dynamic
properties between J = 1+ and J = 2+ symmetry, al-
though they have the same electronic configuration. Such
a difference implies that a Ne atom with a larger total
angular momentum for the same electronic con6guration
has a weaker interaction between the atomic core and the
excited electron, and thus tends to possess more charac-

ter of jj-coupling.
In Table III we can see that there are four Rydberg

series of a Ne atom with J = 1+ and three Rydberg
series with J = 2+. The Rydberg series are strongly
disturbed. Especially, the disturbance greatly infiuences
the Lande g factors and has caused large variation of the
values and the sequence of g among the Rydberg series
when the principle quantum number varies. For example,
in np[z]i series, g factors are equal to 0.669, 0.974, . . . as
n = 3, 4, . . . , which can be described precisely by MQDT.
Such disturbance also infiuences the coupling schemes.
For example, 3@[2]i is LS-coupled, whereas 4p[z]i is jt-
coupled.

IV. CONCLU SION

In conclusion, MQDT ofFers a powerful method to de-
scribe the properties of excited atoms. The development
of RMCT offers us an effective method which can ac-
curately calculate the physical parameters (p, , U, ) in
MQDT. The calculation presented in this paper can be
extended to any atom with different J symmetry. With
the recent development of precision laser spectroscopy,
there will be a wealth of accurate spectroscopic data
available for complex atoms (e.g. , Ru, Yb,Dy) [27]. Thus
the semiempirical analysis combined with the new devel-
opment of RMCT will offer us very accurate data of the
physical parameters (p, U; ). Through the intimate re-
lationship between bound and continuum states in the
framework of MQDT, accuracy of the collision cross sec-
tions can be tested by the experimental results (e.g. , en-
ergy levels and Lande g factors) obtained from the most
accurate experimental spectroscopic data. This should
be very useful for future studies of electronic collisions
with atomic ions.
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