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Transition energies of mercury and ekamercury (element 112)
by the relativistic coupled-cluster method
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The relativistic coupled-cluster method is used to calculate ionization potentials and excitation energies of
Hg and element 112, as well as their mono- and dications. Large basis sets are used, with l up to 5, the
Dirac-Fock or Dirac-Fock-Breit orbitals found, and the external 34 electrons of each atom are correlated by the
coupled-cluster method with single and double excitations. Very good agreement with experiment is obtained
for the Hg transition energies, with the exception of the high ()12 eV) excitation energies of the dication. As
in the case of element 1 1 1 [Eliav et al. , Phys. Rev. Lett. 73, 3203 (1994)], relativistic stabilization of the 7s
orbital leads to the ground state of 112+ being 6d 7s, rather than the d' s ground states of the lighter group
12 elements. The 112 + ion shows very strong mixing of the d s, d s, and d' configurations. The lowest
state of the dication is 6d 7s J=4, with a very close (0.05 eV) J=2 state with strong d s and d s mixing.
No bound states were found for the anions of the two atoms.

PACS number(s): 31.30.Jv, 31.50.+w

r. n TRODVCTION II. METHOD

Excitation energies and ionization potentials of the mer-

cury atom have been the subject of many calculations in the
past, using a variety of methods. Hafner and Schwartz [1]
used a relativistic model potential fitted to the low excitation
energies of Hg+ and determined a large number of excitation
energies of the neutral atom. Another model potential was
used by Mohan and Hibbert [2] in the framework of the
configuration-interaction (CI) method to calculate the 6s
'Sp —+ 6s6p ' P ] transitions. The latter have also been stud-

ied by Migdalek and co-workers [3—5] using multiconfigu-
ration Hartree-Fock and CI methods and by Chou and Huang
[6] with the relativistic random-phase approximation. More
recently, Haussermann et al. [7] treated several states of Hg
and its cation by the multireference CI method. All these
calculations involved some form of model or pseudopoten-
tial. Haussermann et al. [7] also carried out all-electron
Dirac-Fock calculations for comparison purposes, but such
calculations do not include correlations and cannot be ex-
pected to yield results comparable to experiment. We are not
aware of any all-electron calculations of the ionization po-
tential or excitation energies of mercury, which includes both
relativistic and correlation effects.

An accurate theoretical prediction of transition energies in
heavy atoms requires high-order inclusion of both relativistic
and correlation effects. An ab initio relativistic coupled-
cluster (RCC) method incorporating both effects has been
applied recently to a series of heavy atoms, including gold
[8], several lanthanides and actinides [9,10], and elements
104 [11]and 111 [12].Calculated transition energies were in

very good agreement with known experimental values, usu-
ally within a few hundred wave numbers. Even higher accu-
racy was obtained for fine-structure splittings. The method is
applied here to atomic mercury and ekamercury (element
112).

H+ =Hp+ U,

where (in a.u.)

Ho= + A, hD(i)A,", (2)

hD(i) =c n;. p;+ c (P;—1)+ V„„,(i) + U(i), (3)

v=g A, A, (v„,)„A, A, gA;U(i)A, . —

Here hD is the one-electron Dirac Hamiltonian. An arbitrary
potential U is included in the unperturbed Hamiltonian Hp
and subtracted from the perturbation V. This potential is cho-
sen to approximate the effect of the electron-electron inter-
action; in particular, it may be the Dirac-Fock self-
consistent-field potential. The nuclear potential V„„,includes
the effect of finite nuclear size. A, are projection operators
onto the positive energy states of the Dirac Hamiltonian
hD. Because of their presence, the Hamiltonian H+ has nor-
malizable, bound-state solutions. This approximation is
known as the no-(virtual)-pair approximation, since virtual
electron-positron pairs are not allowed in intermediate states.
The form of the effective potential V,& depends on the gauge
used. In Coulomb gauge it becomes (in a.u. , correct to sec-
ond order in the fine-structure constant tx) [15]

The relativistic coupled-cluster method has been de-
scribed in our previous publications [8,13] and only a brief
review is given here. We start from the projected Dirac-
Coulomb (or Dirac-Coulomb-Breit) Hamiltonian advocated
by Sucher [14],
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I 12
+~ i2+ O(~'),

where the frequency-independent Breit interaction is

1
2[~i tt'2+(~t &12)(~2'r12)«&2].

2r12
(6)

In g -nUmbcI' thcoI y thc Dirac-Coulomb-Brclt Hamll-
tonian 0+ is rewritten in terms of normal-ordered products
of the spinor operators (r s) and (r+s+ut) [14,16]

H=H+ —(0IH+10)=X f,,(r's)+4 X (rsll»)
r, s, t, u

(8)

where 0 is the normal-ordered wave operator

A = (exp(S)).

The excitation operator 5 is defined in the Fock-space
coupled-cluster approach with respect to a closed-shell ref-
erence determinant. In addition to the traditional decomposi-
tion into terms with different total (I) number of excited
electrons, 5 is partitioned according to the number of valence
holes (I) and valence particles (n) to be excited with re-
spect to the reference determinant

(10)

where fry and (rslltu) are, respectively, elements of one-
electron Dirac-Fock and antisymmetrized two-electron
Coulomb-Breit interaction matrices over Dirac four-
component spinors. The effect of the projection operators
A+ is now taken over by the normal ordering, denoted by the
curly brackets in the equation above, which requires annihi-
lation operators to be moved to the right of creation opera-
tors as if all anticonlmutation relations vanish. The Fermi
lcvcl ls sct at thc top of thc highest occUplcd positive cncrgy
state and the negative energy states are ignored.

The no-pair approximation leads to a natural and straight-
forward extension of the nonrelativistic open-shell coupled-
cluster (CC) theory. The multireference valence-universal
Fock-space coupled-cluster approach is employed here,
which defines and calculates an effective Hamiltonian in a
low-dimensional model (or P) space, with eigenvalues ap-
proximating some dcsll able eigenvalue s of thc physical
Hamiltonian. According to Lindgren and Morrison's formu-
lation of the open-shell CC method [17], the effective Hamil-
tonian has the form

III. CALCULATIONS

The Fock-space relativistic coupled-cluster method was
applied to several ionization states of the mercury and ele-
ment 112 atoms. Two sequences of the open-shell CC calcu-
lations were carried out for Hg, starting from the closed-shell
systems Hg

+ 5d' or Hg 5d' 6d, and then adding or re-
moving electrons, respectively:

Hg +(0,0)~Hg+(0, 1)~Hg(0, 2),

Hg(0, 0)—+Hg+(1,0)~Hg +(2,0). (12)

The ground state of the 112 ion is found to be 6d 7s
rather than 6d', in analogy with the 111+ ion [12]. Only
scheme (12) is therefore used.

The Dirac-Pock [16] and RCC [8,13] programs are both
written for spherical symmetry, utilizing the angular decom-
position of the wave function and CC equations in a central
field. The energy integrals and CC amplitudes that appear in
the Goldstone-type diagrams defining the CC equations are
decomposed in terms of vector-coupling coefficients, ex-
pressed by angular-nlomentunl diagrams, and reduced
Coulomb-Breit or 5 matrix elements, respectively. The re-
duced equations for single and double excitation amplitudes
are derived using the Jucys-Levinson-Vanagas theorem [17]
and solved iteratively. This technique makes possible the use
of larger basis sets.

To avoid "variational collapse" [18],the Gaussian spinors
in the basis are made to satisfy kinetic balance [19].They
also satisfy lclatlvlstlc boundary condltlons associated with a

Thc UppcI lndiccs lIi thc excitation BI1lplltUdcs Icflcct thc
partitioning of the Fock space into sectors„which correspond
to the different numbers of electrons in the physical system.
This partitioning allows for partial decoupling of the open-
shell CC equations, since the equations in each sector do not
involve excitation amplitudes from higher sectors. The ei-
genvalues of the effective Hamiltonian (8) in a sector give
directly the correlated energies in that sector with respect to
the correlated (0,0) reference state. These transition energies
may be ionization potentials, electron affinities, or excitation
energies, according to the presence of valence holes and/or
valence particles.

In the present application, we use the (0,0), (0,1), (0,2),
(1,0), and (2,0) sectors. The lower index I in (10) is truncated
at l =2. The resulting coupled cluster with single and double
excitations (CCSD) scheme involves the fully self-
consistent, iterative calculation of all one- and two-body vir-
tual excitation amplitudes and sums all diagrams with these
excitations to infinite order. Negative energy states are ex-
cluded from the Q space and the diagrammatic summations
1Il thc CC equations BI'c carried oUt only wlthlI1 thc sUbspacc
of the positive energy branch of the Dirac-Fock spectrum.

TABLE I. Basis sets for Hg and element 112. Members of the well- or even-tempered s-basis series used
in the various 3 sectors are given.

31s26p 23d 16f10g6 h

35s 26p 21d Iaaf 10g 6h
[20]
P1]

1—31
1—35

5—30
9—34

11—26
17-31

18-23
24-29
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TABLE II. Ionization potential (IP) and excitation energies (EE)
of Hg (cm '). PP, pseudopotential; HF, Hartree-Fock; MCHF, mul-

ticonfiguration Hartree-Fock; CI, configuration interaction; MCR-
RPA, multiconfiguration relativistic random-phase approximation;
MRCI, rnultireference CI; AE-DF, all-electron Dirac-Fock; AE-
RCC1, all-electron relativistic coupled cluster, starting from
Hg~+[Eq. (11)];AE-RCC2, same, starting from Hg [Eq. (12)].

trons of Hg and the 6s6p6d5f7s electrons of element 112.
Virtual orbitals with high orbital energies have been found to
contribute very little to correlation effects on excitation en-
ergies; orbitals higher than 100 a.u. are therefore eliminated
from the calculation, effecting considerable savings in com-
putational effort. All computations were carried out on the
IBM RS6000/390 workstation at Tel Aviv University.

IP (6s )

1S 3p

EE to 6s6p

3p 1P
IV. RESULTS AND DISCUSSION

A. Hg
PP-HF [1]
PP-MCHF [3]
PP-CI [2]
PP-CI [4]
PP-MCHF [5]
PP-MCRRPA [6]
PP-MRCI [7]
AE-DF [7]
AE-RCC1
AE-RCC2
Expt. [22]

85681 34730 36722 41013 54571
80636 39040 54500

36410 38584 42819 53420
34924 48363
37245 53903
33461

37738 39532 44062 53434
26422 28389 33655
37453 39302 44190 55453

78673

82260

84521
84237
84184 37645 39412 44043 54069

finite nucleus, described here as a sphere of uniform proton
charge [16].The atomic masses used are 200.59 for Hg and
272 for element 112. The speed of light c is 137.03599 a.u.
Nonrelativistic calculations are carried out by setting c to
10' a.u.

The uncontracted well-tempered basis set of Huzinaga
and Klobukowski [20] was used for Hg and the universal
basis set of Malli et al. [21] was selected for element 112.
The basis sets, which go up to h orbitals (1= 5), are summa-
rized in Table I. Atomic orbitals with the same l but different
)t number (e.g. , p, /2 and ps/2) are expanded in the same basis
functions. Correlated shells include the 5s5p5d4f6s elec-

The ionization potential and excitation energies of mer-
cury, calculated by schemes (11) and (12), are shown in
Table II and compared with experiment [22] and with previ-
ous calculations [1—7]. The RCC results are more accurate
than any previously reported. The average error in the five
calculated energies is 380 cm '. With the exception of the
'P] excitation, they are all within 200 cm ' of experiment.
The only calculation of comparable accuracy is that of
Haussermann et al. , [7] using energy-adjusted pseudopoten-
tials with multireference CI (PP-MRCI) in the valence shell.

Table III shows transition energies in the Hg+ and Hg
+

ions. Very good agreement with experiment is obtained for
the low-lying levels of both ions. The very high (above 12
eV) 5d 6s levels of Hg

+ are not reproduced as well. The
most likely reason is the incompleteness of the basis. The
PP-MRCI method [7] does not perform very well for the
ions, giving errors of 1000—2000 cm ' even for the low
excitation energies.

B. Element 112

Ionization potentials and excitation energies of element
112 and its ions, calculated by scheme (12) with the neutral
atom as reference, are shown in Table IV. The ground state
of the monocation is 6d 7s Dz/z rather than d' s, the

TABLE Ill. Ionization potential (IP) and excitation energies (EE) of Hg+ and Hg (cm '). Methods and

references as in Table II.

State Expt. AE-RCC1 AE-RCC2 PP-MRCI AE-DF

IP
EE

EE

5d 6s

5d' 6p

5d ( D )6ss/2

Sd ( D3/2)6s

5d 6s

2D 5/2
2D
2P 1/2
2

P3/2

D3
D

3D

'D
J=4
J=2
J=3
J=2
J=O
J=1
J=4
J=2

Hg+, ground state 5d 6$ Sy/2

151280 151200
35514
50552
51485 52030
60608 61269

Hg+, ground state 5d' 'So
42850
46030
58406
61086
97894

106028
112226
118927
122661
122735
126468
133732

150435
35437
50785

43715
46854
59630
62192

101014
109683
115724
122791
122509
126857
130881
138178

150580
34350
48782

41664
44818
56459
59610

37374
51984

43393
47445
58539
62793
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TABLE IV. Ionization potentials and excitation energies of ele-
ment 112 and its ions (cm ). DC, Dirac-Coulomb Hamiltonian;
DCB, Dirac-Coulomb-Breit Hamiltonian, including the term (6).

TABLE V. Energy differences of d9s and d' levels in Au [8],
element 111 [12], Hg+, and the 112+ ion (eV).

Transition Hg+ 112+

IP

IP
EE

EE

State DC

112, ground state 6d' 7s Sp

96721
112+, ground state 6d 7s D5/2

181143
6d "7s 2g 13330
6d'7s'

112 +, ground state 6d 7s J= 4
6d 7s,6d 7s J=2 567
6d ( D )5)27 s D3 1941

6d 7s lg 7034
6d97$, 6d 7s J= 2 11579
6d87 2 6d lp 'SO 25719

6d'7s' J= 3 25885
6d ( Ds&2)7s D, 29536
6d 7s,6d 7s J=2 30039

6d 7s J=1 35171
6d 7s,6d 7s J= 2 37185

6d'7s' J=4 38462

DCB

96545

181420
12896
25363

374
1493
6411

11228
25351
25165
28353
29196
34451
36161
37742

2 2
S&/2- D5/2

2 2
S&/2- D3/2

2 2
3/2 5/2

—1.15
—2.67

1.52

2.95
0.26
2.69

—4.39
—6.30

1.91

1.60
—1.54

3.14

V. SUMMARY AND CONCLUSION

5d 6s2 much higher (5.3 and 12 eV, respectively). The order
is reversed in ekamercury, with the three configurations
rather close in energy. While the calculated ground state is
6d 7s with J=4, the next level (with J=2) is only 0.05 eV
higher and might conceivably become the ground state in a
more accurate treatment. The J=2 level shows very strong
mixing of the d s and d s configurations and is pushed
below the Jr 3 level. Other cases of strong configuration
mixing occur, involving either the d s and d9s pair or (for
the two 'So levels) the 6d 7s and 6d' configurations. The
most important configurations contributing to the various
levels are indicated in Table IV. The levels themselves are
designated only by their J values, except for the few cases
where an LS designation is appropriate.

ground state of Hg+ and other elements of group 12. The
switch is due to the relativistic stabilization of the 7s orbital
relative to the 6d. A similar phenomenon has been observed
for the isoelectronic element 111 [12]. Table V compares
energy differences in the d s and d' configurations of Au
and element 111 with the isoelectronic Hg and 112+ ion.
Large changes occur both in the group 11 atoms and group
12 monocations upon going from the lighter to the heavier
species. These changes, ascribed mostly to relativistic ef-
fects, are larger in the cations than in the neutral species.
Thus the 5»2- D5&2 difference increases by 4.1 eV when
going from Au to element 111; the corresponding increase in
the Hg+-112+ pair is 6.0 eV. The larger effect is probably
due to the contraction of orbitals in the cations relative to
neutral atoms, bringing them closer to the nucleus and en-
hancing relativistic effects. This interpretation is corrobo-
rated by the fine-structure splittings of the D level in Hg+
and the 112+ ion, which are significantly larger than in Au
and element 111.

The dications of Hg and element 112 also show large
differences in level ordering. The ground-state configuration
of Hg

+ is 5d', with the lowest states of 5d 6s and

Ionization potentials and excitation energies were calcu-
lated for Hg and element 112, and for their mono- and dica-
tions. Very good agreement with experiment is obtained for
the Hg transition energies, with the exception of the high()12 eV) excitation energies of the dication. In analogy
with element 111 [12], relativistic stabilization of the 7s or-
bital leads to the ground state of the 112+ ion being
6d 7s rather than the d' s ground states of the lighter group
12 elements. Relativistic effects in the 112+ ion are even
stronger than in element 111. Very strong mixing of the
d s, d s, and d' configurations occurs in the 112 + ion.
The lowest state of the dication is 6d 7s J=4, but a very
close (0.05 eV) J=2 state with strong d s and d s mixing
cannot be ruled out as a possible ground state. Finally, it
should be noted that we could not find a bound anion of
either Hg or element 112.

ACKNOWLEDGMENTS

The research reported above was supported at TAU by the
U.S.—Israel Binational Science Foundation and by the Israel
Science Foundation. Y. I. was supported by the National Sci-
ence Foundation through Grant No. PHY-9008627.

[I] P. Hafner and W. H. E. Schwartz, J. Phys. B 11, 217 (1978).
[2] M. Mohan and A. Hibbert, J. Phys. B 20, 907 (1987).
P] J. Migdalek and W. E. Baylis, J. Phys. B 18, 1533 (1985).
[4] J. Migdalek and A. Bojara, J. Phys. B 21, 2221 (1988).
[5] J. Migdalek and M. Stanek, Phys. Rev. A 41, 2869 (1990).
[6] H. -S. Chou and K.-N. Huang, Phys. Rev. A 45, 1403 (1992).
[7] U. Haussermann, M. Dolg, H. Stoll, H. Preuss, P. Schwerdt-

feger, and R. M. Pitzer, Mol. Phys. 5, 1211 (1993).

[8] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724
(1994).

[9] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 51, 225
(1995).

[10]E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 52, 291
(1995).

[Il] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. Lett. 74, 1079
(1995).



52 TRANSITION ENERGIES OF MERCURY AND EKAMERCURY. . . 2769

[12]E. Eliav, U. Kaldor, P. Schwerdtfeger, B.A. Hess, and Y. Ish-

ikawa, Phys. Rev. Lett. 73, 3203 (1994).
[13]E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 50, 1121

(1994).
[14]J. Sucher, Phys. Rev. A 22, 348 (1980); Phys. Scr. 36, 271

(1987).
[15] I. Lindgren, in Many Bod-y Methods in Quantum Chemistry,

edited by U. Kaldor, Lecture Notes in Chemistry Vol. 52
(Springer-Verlag, Heidelberg, 1989), p. 293; Nucl. Instrum.

Methods Phys. Res. Sect. B 31, 102 (1988);Phys. Scr. T34, 36
(1991).

[16]Y. Ishikawa and H. M. Quiney, Phys. Rev. A 47, 1732 (1993);
Y. Ishikawa, ibid 42, .1142 (1990); Y. Ishikawa, R. Barrety,

and R. C. Binning, Chem. Phys. Lett. 121, 130 (1985).
[17]I. Lindgren and J. Morrison, Atomic Many Bo-dy Theory, 2nd

ed. (Springer Verlag, Berlin, 1986).
[18]W. Kutzelnigg, Int. J. Quantum Chem. 25, 107 (1984).
[19]R. E. Stanton and S. Havriliak, J. Chem. Phys. 81, 1910

(1984).
[20] S. Huzinaga and M. Klobukowski, Chem. Phys. Lett. 212, 260

(1993).
[21] G. L. Malli, A. B. F. Da Silva, and Y. Ishikawa, Phys. Rev. A

47, 143 (1993).
[22] C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand.

(U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1958),
Vol. III.


