
PHYSICAL REVIEW A VOLUME 52, NUMBER 4 OCTOBER 1995
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Relativistic corrections to the exchange-correlation energy functional of density functional theory are exam-

ined within the no-sea approximation to the full relativistic Kohn-Sham equations. We apply the relativistic

optimized-potential model to spherical atoms in order to establish a comparative standard in the longitudinal

exchange-only limit and use the results for an analysis of the corresponding relativistic local- and weighted-

density approximations. In addition, we investigate transverse exchange and correlation contributions. A local-

density approximation for the correlation energy functional is constructed from the relativistic high-density and

the nonrelativistic limits and analyzed by comparison with quantum chemical data.

PACS number(s): 31.10.+z, 71.10.+x

I. INTRODUCTION AND SUMMARY

Density functional theory (DFT) has become a widely
used tool in ab initio electronic structure calculations for
molecules, clusters, and solids (see, e.g. , [1—4]). Increased
interest in DFT methods has been stimulated by the appear-
ance of rather accurate nonlocal exchange-correlation (xc)
energy functionals E„,[n], which have presently started to
replace the former standard, the local-density approximation

(LDA). For nonlocal corrections to E„, [n] a number of
competing concepts have been introduced [such as the

weighted density approximation [5,6] (WDA) and related
schemes, the generalized gradient approximation [7,8]
(GGA), or the linear response approximation [9,10]], which
are currently being tested [3,11—15]. Obviously, for high-Z
systems relativistic corrections should be included for the
kinetic energy as well as E„,[n] [16—18].However, even for
systems with moderate Z relativistic contributions to E„are
larger than the differences between the more refined nonlocal
functionals (as, for instance, GGA's [19—22]), so that a final

analysis of these functionals by comparison with experiment
requires the inclusion of relativistic effects. Relativistic cor-
rections to E„,[n] have been addressed in the literature [23—
37], but their examination has been restricted to a limited
number of systems so far. It is the purpose of this contribu-
tion to provide an overview of the accuracy that can be ob-
tained with currently available relativistic E„[n] and to es-
tablish a definitive comparative standard, at least for
longitudinal exchange-only potentials and energies.

Relativistic DFT (RDFT) [23,25,27,36] constitutes a
rather general approach to the ground state properties of
atomic, molecular, and condensed matter systems including
not only magnetic but also quantum electrodynamical ef-
fects. On the most general level, however, the RDFT formal-
ism is very complicated and computationally involved,
mostly due to the self-consistent inclusion of radiative cor-
rections [36]. On the other hand, if one aims at electronic
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structure calculations for atoms, molecules, and solids, radia-
tive effects can either be neglected completely (no-sea ap-
proximation) or need not be taken into account self-
consistently: If required at all, a perturbative treatment
should prove to be sufficient, except in special circum-
stances. Excluding in addition the presence of external mag-
netic fields, one ends up with a calculational scheme which
differs from nonrelativistic DFT only by the Dirac form of
the relativistic Kohn-Sham (RKS) equations and relativistic
corrections to the functional dependence of E„,[n] on n

Finally, in most situations also photon retardation effects,
i.e., the contribution of transverse photons, only play a minor
role. This suggests including only the longitudinal electron-
electron (Coulomb) interaction self-consistently, while add-

ing all transverse (Breit) contributions in a perturbative man-
ner [38]. (This approximation is by no means essential for
RDFT applications. ) The resulting scheme should provide a
reasonable starting point for electronic structure calculations
and is particularly suited for an examination of approxima-
tion schemes for E„,[n]. We note, however, that due to the
intrinsic coupling of orbital angular momentum and electron
spin no relativistic analogue of spin-density functional theory
is currently available. The RDFT formalism is briefly re-
viewed in Sec. II in order to establish the longitudinal no-sea
RKS equations, initially introduced in the context of the rela-
tivistic Slater approach [39].

For an analysis of approximations for E„,[n] the avail-
ability of an exact reference standard is of importance. In the
nonrelativistic case it turned out to be useful to compare the
xc potentials u„,(r) in a given approximation with the corre-
sponding exact results [22,40—43] rather than the total xc
energies F„:Local errors which are clearly recognizable in

u„,(r) can cancel in E„,, so that the potentials are more
suitable to reveal the physical content and the accuracy of the
approximation. Unfortunately, the evaluation of exact local
xc potentials for larger atoms represents a formidable task
even in the nonrelativistic limit. Consequently, results for
relativistic U„are not available at present. On the other
hand, the exact longitudinal exchange-only (x-only) potential
v can be evaluated rather directly even in the relativistic
case, so that this limit can be used for a detailed study of
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local or improved approximations. Thus the first aim of this

paper is to provide a rigorous comparative standard for both
atomic exchange energies and potentials, which, due to the
multiplicative nature of the corresponding exchange poten-
tial, is based on the relativistic extension of the optimized-
potential-model [44—48] (OPM) rather than on the Hartree-
Fock (HF) approximation. The relativistic OPM (ROPM)
[49] approach is summarized in Sec. III. Moreover, it is
shown that ROPM results for ground state and exchange
energies of atoms (with closed subshells, i.e., atoms with

spherical symmetry in the x-only limit) are very close to the
corresponding relativistic HF (RHF) values.

The ROPM results of Sec. III then allow us to examine
the LDA [50—52,25,27] for the relativistic E [n] in some
detail (in Sec. IV A). Unfortunately, it turns out that the rela-
tivistic LDA (RLDA) underestimates the relativistic contri-
bution to the longitudinal exchange energy E, by 20—50%
(with a tendency of becoming more accurate with increasing
Z), while it overestimates the transverse component of the
exchange energy, E, , by about 50% (as already noted by
MacDonald and Vosko [27] and Ramana et al. [32]). The
failure of the RLDA to represent the relativistic components
of E,[n] is even more obvious from a comparison of the

x-only RLDA potential to the exact v: The RLDA po-
tential shows substantial deviations from v in the
small-r region which are also rejected by the corresponding
single-particle energies. As one might have expected, the
relativistic corrections to E and v are dominated by the
self-interaction of the 15&iz electrons. This can be gleaned
from the similarity of the relativistic corrections to neutral
atoms and the corresponding ions with only two bound elec-
trons. It is therefore not surprising that the RLDA shows
significant errors, as even in the nonrelativistic case an accu-
rate treatment of self-interaction effects is known to require
highly nonlocal exchange functionals.

This then suggests the consideration of a nonlocal ap-
proximation which explicitly takes into account electron self-
interaction effects. One of the most widely used schemes of
this type is the WDA, its crucial ingredient being a density
functional representation of the x-only pair correlation func-
tion g, . While for the nonrelativistic g rather refined ap-
proximations have been suggested in the literature [53—56],
their relativistic generalization is not immediately obvious.
We thus use the only relativistic g available at present, the
pair correlation function of the relativistic homogeneous
electron gas (RHEG), g, [24,27], for a first study of the
properties of the relativistic WDA (RWDA). A simple and

accurate fit to g which simplifies the actual RWDA cal-
culations is provided in the Appendix. The relativistic cor-
rections for E and v obtained from the RWDA are closer
to the ROPM results than those from the RLDA.

Finally, in Sec. V we examine the RLDA for the relativ-
istic correlation energy functional E,[n]. As the correlation
energy of the RHEG has only been calculated within the ring
approximation (RPA) [31,57], which constitutes the most rel-
evant contribution only in the high-density regime, the dif-
ference between the relativistic RPA and its nonrelativistic
limit is combined with the full nonrelativistic LDA for
E,[n] in order to establish a more complete RLDA. A com-
parison of atomic F, 's from the RLDA with quantum chemi-

cal results for the correlation energy demonstrates that the
relativistic corrections to F., are much smaller than those to
E and that the RLDA is only correct within a factor of 2,
even for high-Z atoms. In particular, the relativistic correc-
tion to the longitudinal correlation energy is overestimated
(for neutral high-Z atoms by roughly 30%), while the trans-
verse correlation energy is by far underestimated.

One is thus led to the conclusion that nonlocal corrections
for both E [n] and E,[n] are even more important in the
relativistic context than they are in the nonrelativistic situa-
tion. Consequently, intrinsically nonlocal concepts like the
WDA seem suitable to account for relativistic corrections to
E„[n].It remains to be investigated whether semilocal ap-
proaches like GGA's allow a sufficiently accurate treatment
of these corrections.

II. THEORETICAL BACKGROUND

J'~(r) =Jv(r) +Jn(r), (2.1)

mc (Eg2
(2.2)

4 (r) V~~ (r). (2.3)

where the vacuum (V) and the occupied orbital (D) contri-
butions have already been separated [renormalization is im-

plicitly understood in the case of j"„(r)].One can then de-

compose the total ground state energy functional E0[j'] into
the kinetic energy functional of noninteracting electrons
T,[J'] (we use 6= 1 throughout this paper),

gR Z U+ Z-D (2.4)

A relativistic extension of the Hohenberg-Kohn (HK)
theorem [9] has first been formulated by Rajagopal and Cal-
laway [23].The corresponding relativistic Kohn-Sham equa-
tions have been introduced by Rajagopal [25] and by Mac-
Donald and Vosko [27]. A more detailed discussion of the
quantum electrodynamical basis of RDFT, addressing in par-
ticular questions of renormalization, has been given in a re-
cent review [36] to which we also refer the reader for an
overview of RDFT. Here we only summarize its central fea-
tures: Any (nondegenerate) ground state ~40) corresponding
to some given external four potential U~„,(r) is, up to gauge
transformations, uniquely determined by the renormalized
ground state four current jg (r) of the system, i.e., the ground
state is a unique (and universal) functional of the four cur-
rent, ~40[jg]). As a consequence the ground state energy

F0 can also be viewed as a functional of the complete

j~(r), E0[jg]. Minimization of E0[jg] then leads to the
exact ground state four current and energy, including all
vacuum effects inherent in the underlying quantum field
theory, i.e., quantum electrodynamics (QED). In order to set
up the RKS equations one introduces auxiliary single-
particle four spinors cp& to represent jg(r) as
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T = d r
f

2mc (Eg 6'F
Vk(r)[ leg %+me ] Pk( )~

(iii) Finally, one can split E&[n] as well as E„,[n] into
their longitudinal (Coulomb) and transverse components,

(2 5)

where T, has a similar structure as j~ and also requires
renormalization [36], the external potential energy

EH[n] =EH[n]+ EH[n],

E„,[n]=E„,[n]+E„,[n].

(2.10)

(2.11)

E,„,= d r j (r)u~, (r),

the "covariant" Hartree energy,

(2.6)

The definition of the individual components relies on the
corresponding decomposition of the photon propagator
D „(x y) i—nto the nonretarded Coulomb (longitudinal) in-
teraction and the transverse contribution [59],

2

EH= —i — d x d yj ~(x)D,(x —y)j '(y), (2.7)
I'4 0

2J p p

B(x —
y )D', .(. y) ='g-'"g'

I

—
l

+D'„'.(- y)-
~X

(2.12)

where D,(x —y) represents the free photon propagator,

d4g 4
—ik(x —y)

'g~'J (2~)" (k'+i. )
(2 8)

(Feynman gauge), and the xc energy functional E,[j'],
Eol J ]=T,U']+E..~lj ']+EH[j ']+E..U "] (29)

and recast the energy minimization in the form of Dirac-type
RKS equations [25,27,36,37].

However, these RKS equations are rather involved due to
the four-component structure of both the Hartree and the xc
potential and, even more importantly, due to the fact that the
vacuum polarization current j~v(r) enters the self-consistency
procedure, requiring summation over all continuum states.
Thus, while RDFT provides a rather general and extremely
powerful approach to relativistic bound state problems in
principle, some physically motivated approximations seem
unavoidable in order to make RDFT a workable scheme in
practice. Aiming at electronic structure calculations for rnol-
ecules and solids the following simplifications should be ap-
propriate, in particular, in view of the limitations of present
xc energy functionals, even on the nonrelativistic level.

(i) First of all, a more modest approach only aiming at
relativistic but neglecting radiative corrections (often called
the no-sea approximation) suggests itself. This amounts to
dropping j ~~(r) from the four current, Eq. (2.1), and to ignor-
ing all vacuum corrections in both the kinetic as well as the
xc energy functional. In any case an a posteriori perturbative
evaluation of radiative corrections should be sufficient for
most problems of interest and, in fact, represents the standard
treatment (compare, e.g. , [59]).

(ii) While according to the relativistic HK theorem in gen-
eral the complete j~(r) is required to determine

l 4O),
knowledge of its zeroth component, j (r) =n(r), is sufficient
if the spatial components of the external potential vanish,
v„,= 0 (which does not only exclude the presence of exter-
nal magnetic fields but also implies a partial fixing of gauge).
As this is the situation most commonly met in electronic
structure calculations, we will restrict the present discussion
to this "electrostatic" limit. Note, however, that this does not
imply that the spatial components of the current vanish in
general, but rather that j(r) =(4O[n]lI(r) lrIio[n]) has to be
interpreted as a functional of n(r).

f —icn V+Pmc +v (r))qk(r) = ekcpk(r), (2.13)

where

u (r) = v,„,(r) + v H(r) + v „,([n];r), (2.14)

n(r')
uH(r) = e d r' (2.15)

BE„,[n]
v„([n];r)= (2.16)

n(r) =
2—mc (E'I, EF

~k(r) v k(r). (2.17)

The longitudinal ground state energy of the system is ob-
tained from

(2.18)

while the transverse energy components are evaluated pertur-
batively using the result of (2.13),

E„,= E„,+ EH[n]+ E„,[n]. (2.19)

The longitudinal components EH[n] and E„,[n] are obtained
from EH[n] and E„[n] by neglecting D '„(x y) co—m-

pletely (while this decomposition is immediately clear for
EH[n], explicit examples for E„,[n] will be given in Secs.
IV and V). Following the standard treatment within the rela-
tivistic HF approach [38,58], it seems legitimate in most situ-
ations to add EH[n] and E„,[n] as perturbative corrections,
i.e., to neglect the corresponding potentials uH[n] and

u„,[n] in the self-consistency loop. While, in contrast to the
previous two simplifications, this approximation is not re-
quired for an efficient application of the RKS equations, it
allows a more direct comparison of the resulting RDFT data
to most conventional many-body results. Moreover, for all
the atomic systems considered in this work the self-
consistent inclusion of EH[n] and E„,[n] leads to results
which are only marginally different from the perturbative
ones.

The resulting longitudinal no-sea RKS equations then
read
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If desired, radiative corrections can be added at this point (in
this contribution, however, vacuum effects will be com-
pletely neglected).

It should be emphasized that the calculational procedure
suggested here for the application of RDFT closely follows
the standard relativistic many-body approach: It essentially
represents the RDFT equivalent of the so-called no-pair
Dirac-Coulomb Hamiltonian [18] (self-consistent treatment
of EH[n]+E„[n] would lead to the RDFT version of the
no-pair Dirac-Coulomb-Breit Hamiltonian, neglecting the
small differences between the full transverse interaction and
its Breit limit as well as between the no-pair and the no-sea
approximation). In Secs. IV and V the approach character-
ized by Eqs. (2.13)—(2.19) is used to analyze various ap-
proximations for E„,[n] for spherical atoms. We remark that

EH vanishes for these systems,

where the ql, have to be interpreted as functionals of the
density and summation over the spinor indices
a, b=1, . . . ,4 is implicitly understood. The crucial feature
of this E,[n] is its linear dependence on the electron-
electron coupling constant e, which relies on the fact that
the functional dependence of the qk on n is independent of
e as the yk experience a local (in the sense of multiplica-
tive) one-body potential [46—48]. While the exact density
dependence of E [n] is not known, the corresponding x-only
potential v, (») can nevertheless be obtained by solution of
the ROPM equations [45], utilizing the fact that the one-
body potential minimizing the x-only ground state energy
T, +E„,+EH+ E is unique [46—48]. The ROPM equations
require the simultaneous self-consistent solution of the RKS
equations (2.13) in the x-only limit, i.e., with the local RKS
potential

"„, , j(») j(»')
EH — d r d r i,

i

—0,

as j(») =0.

(2.20)
U' '"(») = U..(»)+ U'(»)+ U.'(»)

and the ROPM integral equation [45],

f
d r ' K(r, »') U (») = Q()»,

(3 2)

(3.3)
III. RELATIVISTIC OPTIMIZED-POTENTIAL MODEL

In close analogy to the nonrelativistic case, the exchange-
only limit of the xc energy functional is defined by insertion
of the RKS four spinors qk into the relativistic Fock term.
For the exact longitudinal exchange energy functional [60]
one thus obtains

where

and

K(r, r') =
.2—mc (ek» eF

cpk(»)Gk(», »') q&k(»') (3.4)

e2 f
E,[n]= —— d r d r'

2 J J

0',k(») Vb, I(» )P, t(») %b,k(» )

2PIC (6k, 6'I ~~EF

(3.1)

f
Q(»)= —e g d r' d r",

mc (Ek, 61 EF2 J

Here Gk(r, »') represents the Green's function

TABLE I. Longitudinal x-only ground state energies ( —E„,) for closed subshell atoms from nonrelativistic OPM (NROPM), relativistic
OPM (ROPM), relativistic HF (RHF), RNRLDA, RLDA, and RWDA calculations [61] (all energies are in hartrees).

Atom

He

Be
Ne

Mg
Ar

Ca
Zn

Kr
Sr
Pd
Cd
Xe
Ba
Yb

Hg
Rn
Ra
No

NROPM

2.862
14.572

128.545
199.611
526.812
676.751
1777.828
2752.028
3131.514
4937.858
5465.056
7232.018
7883.404
13391.070
18408.313
21865.826
23093.258
32787.471

ROPM

2.862
14.575

128.690
199.932
528.678
679.704
1794.598
2788.848
3178.067
5044.384
5593.299
7446.876
8135.625
14067.621
19648.826
23601.969
25028.027
36740.625

RHF

2.862
14.576

128.692
199.935
528.684
679.710
1794.613
2788.861
3178.080
5044.400
5593.319
7446.895
8135.644
14067.669
19648.865
23602.005
25028.061
36740.682

RNRLDA

2.724
14.226

127.635
198.569
526.387
677.118
1790.721
2783.758
3172.638
5037.733
5586.299
7438.858
8127.344
14058.528
19638.195
23590.763
25016.763
36730.804

RLDA

2.724
14.226

127.628
198.556
526.337
677.047
1790.458
2783.282
3172.071
5036.677
5585.086
7437.076
8125.336
14054.349
19631.622
23582.293 .

25007.568
36714.839

RWDA

2.862
14.609
129.417
200.963
530.747
682.204
1799.949
2795.778
3185.631
5054.707
5604.337
7460.124
8149.714
14089.603
19675.706
23632.105
25059.377
36782.219
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Gk(r r )=
—mc (e,(mc, lXk

~t(r) ~t (r')
EI Ek

(3.6)

which satisfies

[—ica' V'+ pmc + v (r) —e„]G„(r,r')

= &"(r—«') —~ (r) ~'(r'). (3.7)

For spherical atoms the ROPM integral equation can, as
in the nonrelativistic case, be solved on a discrete mesh (here
800 mesh points have been used). Note that Eq. (3.3) deter-

mines v only up to an additive constant, which is specified
by requiring the exact asymptotic form [45] of the ROPM
exchange potential, v, (r~~) + —e2/—r.

Some ROPM results for spherical (closed subshell) atoms
are compared to RHF- [58] and nonrelativistic OPM data
[41] in Tables I—III [61].First of all, Table I lists the longi-
tudinal ground state energies E„,, demonstrating on the one
hand the drastic relativistic effects for high-Z atoms and on
the other hand the similarity of ROPM and RHF results. In
fact, the differences between ROPM and RHF total energies
are smaller than 60 mhartree, with the ROPM energies al-
ways being somewhat higher (consistent with the reduced
variational freedom of the ROPM orbitals) —apart from He,
where both approaches coincide. An analogous agreement
between ROPM and RHF results is found for the longitudi-
nal exchange energies E given in Table II. Here the maxi-
mum difference amounts to 106 mhartree (obtained for No).
On the other hand, the relativistic contributions to E

one obtains 20 hartree (see Table II), which represents 5.8%
of E, very similar to the 6.8% relativistic correction found

for E',.,
Clearly, relativistic effects are most important for the in-

nermost orbitals. This is obvious from Table III, showing the
single-particle spectrum of Hg. Note, however, that the

2P»2 eigenvalue is also modified by 17% and even the out-
ermost 65,iz eigenvalue experiences a 26% shift (reflecting
the "gold maximum"). Table III also demonstrates that,
apart from the physically relevant highest occupied eigen-
value and in spite of the very similar ground state energies,
ROPM and RHF single-particle energies differ substantially
(compare [40]), in consistency with their auxiliary character.

pl. , RLDA[ ) d3 NRLDA(
)C L( p) (4 1)

IV. RELATIVISTIC EXCHANGE-ONLY ENERGY
FUNCTIONALS

A. Local-density approximation

Among the nonrelativistic xc energy functionals the LDA
represents the most widely used approximation and thus also
serves as a starting point in the relativistic case. In the LDA
the density dependence of the xc energy density e „of the
HEG is used with the substitution of the constant density
no by the local density n(r) of the inhornogeneous system in
question. The x-only energy of the RHEG has been evaluated
a number of times [50—52,25,27]. For the longitudinal com-
ponent one finds [52,27]

R] p [ NR] (3 8)

i.e., the differences between the ROPM and the nonrelativ-
istic OPM values, are quite remarkable. For instance, for Hg

1

NRLDA

4m
(4.2)

TABLE II. Longitudinal (Coulomb) exchange energies ( —E,) for closed shell atoms from NROPM,
ROPM, RHF, RNRLDA, RLDA, and RWDA calculations [61] (all energies are in hartrees).

Atom NROPM ROPM RHF RNRLDA RLDA RWDA

He

Be
Ne

Mg
Ar

Ca
ZI1

Kr
Sr
Pd
Cd
Xe
Ba
Yb

Hg
Rn
Ra
No

1.026
2.666
12.105
15.988
30.175
35.199
69.619
93.833
101.926
139.113
148.879
179.062
189.065
276.143
345.240
387.445
401.356
511.906

1.026
2.667
12.120
16.017
30.293
35,371
70.245
95.048
103.404
141.898
152.143
184.083
194.804
288.186
365.203
414.082
430.597
564.309

1.026
2.668
12.123
16.023
30.303
35.383
70.269
95.072
103.429
141.930
152.181
184.120
194.841
288.265
365.277
414.151
430.664
564.415

0.853
2.278
10.952
14.564
27.897
32.702
66.107
89.784
97.836
134.971
144.931
175.926
186.417
278.642
354.299
402.713
419.218
554.242

0.853
2.278
10.944
14.550
27.844
32.627
65.834
89.293
97.251
133.887
143.687
174.1.02
184.363
274.386
347.612
394.102
409.871
538.040

1.026
2.706
12.843
17.093
32.419
37.967
75.604
102.095
111.133
152.275
163.321
197.564
209.171
310.268
392.339
444.584
462.365
606.216
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TABLE III. Single-particle energies ( —e„,,) for Hg from nonrelativistic (NROPM) and relativistic
(ROPM) OPM calculations as well as relativistic HF (RHF) results in comparison to the eigenvalues obtained

by solution of (2.13) using various x-only energy functionals: RNRLDA: nonrelativistic LDA, Eq. (4.9);
RLDA: relativistic LDA, Eq. (4.1); RWDA: relativistic WDA, Eq. (4.21). Also listed are the eigenvalues
from the complete longitudinal RLDA xc energy functional [RLDA(x+c)], Eqs. (4.1) and (5.5) [61] (all
energies are in hartrees).

Level NROPM ROPM RHF RNRLDA RLDA RWDA RLDA(x+c)

1Si/2

2S
2P
2P
3Ss/2

3 P I/2

3P3/2

3D3/2

3D5/2
4S ~t/2

4P i/2

4D3/2

4D5/2

4F5/2

5P1/2

5D
5Ds/2
6S

2756.925
461.647
444.015
444.015
108.762
100.430
100.430
84.914
84.914
23.522
19.895
19.895
13.222
13.222
4.250
4.250
3.501
2.344
2.344
0.538
0.538
0.262

3047.430
540.056
518.061
446.682
128.272
118.350
102.537
86.201
82,807
28.427
24.161
20.363
13.411
12.700
3.756
3.602
4.403
3.012
2.363
0.505
0.439
0.329

3074.228
550.251
526.855
455 ~ 157
133.113
122.639
106.545
89.437
86.020
30.648
26.124
22.189
14.797
14.053
4.473
4.312
5.103
3.538
2.842
0.650
0.575
0.328

3047.517
539.713
518.164
446.671
128.001
118.228
102.397
86.085
82.690
28.067
23.871
20.039
13.148
12.434
3.556
3.402
4.290
2.898
2.219
0.363
0.296
0.222

3044.410
539.250
517.746
446.399
127.905
118.148
102.346
86.060
82.668
28.046
23.854
20.030
13.146
12.432
3.559
3.404
4.286
2.896
2.218
0.363
0.296
0.222

3051.995
540.530
519.244
447.469
128.292
118.592
102.691
86.364
82.959
28.200
24.023
20.167
13.271
12.553
3.665
3.509
4.349
2.955
2.265
0.397
0.328
0.254

3044.573
539.342
517.840
446.488
127.976
118.220
102.416
86.131
82.739
28.109
23.917
20.092
13.207
12.493
3.618
3.464
4.339
2.949
2.271
0.413
0.345
0.262

5 1 2y 2'4 (P) = —+ 2 + arcsinh(P) — 4ln( g)

1 t' y arcsinh(P) ~

2ip p' (4.3)

1(3' n) 3

(4.4)

1

q=(1+P') ~, (4.5)

while the corresponding transverse component is given by
[52,27]

Before proceeding to a detailed analysis of the RLDA a
few remarks concerning conceptual questions seem in order.

(i) First of all, the effect of using finite versus point nuclei
has to be discussed [61].While, as is well known, the ground
state energy and the innermost single-particle energies for
finite and point nuclei differ substantially, Table IV demon-
strates that the exchange energy is only marginally affected:
For Hg, which we use as a prototype of all high-Z atoms, the
difference of 58 mhartree between the longitudinal RHF
x-only energies for point and finite nuclei is negligible com-
pared to the difference of 17.6 hartree between the RLDA
(347.659 hartree) and the RHF values. This is corroborated
from a local perspective in Figs. 1 and 2, where the radial
density 47rr n(r) and the relativistic correction to the x-only
potential,

pT, RLDA( ] d3 NRLDA( )C, T(p)X X

1 1 2y 2y"
4 (P) = ——

2
— arcsinh(P)+ 4 ln( g)

(4.6)
L(( g]. ) NR(( NR]. )

U x( r ) NROPM( ( NROPM] . )
(4.8)

( g arsinh(P) )

~p p' I
(4.7)

TABLE IV. Relativistic HF results for Hg: Point versus finite
nucleus [61] (for Hg the nuclear radius is R=0.000133 a.u.) (all
energies are in hartrees).

Plots of 4 (p) and 4& (p) (and their various components,
such as the Breit term) can be found in [27,36]. As in the
nonrelativistic case, Eq. (4.1) represents the homogeneous
limit of the exact E,[n], Eq. (3.1).

Nucleus

Point
Finite

L
+tot

19 653.649
19 648.864

~1S1/2

3076.157
3074.228

—EL
X

365.335
365.277

22.184
22.166
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FIG. 1. Radial densities 47rr n(r) obtained for Hg
+

by self-
consistent ROPM (using a finite nucleus) and RLDA calculations

using both a point (p) and a finite (f) nucleus [61].
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FIG. 2, Relativistic correction to the longitudinal x-only poten-
tial Av, (r), Eq. (4.8), for Hg obtained by insertion of self-
consistent OPM (usiug a point nucleus) and LDA densities [using
both a point (p) and a finite (f) nucleus [61]]into the v, [n] result-

ing from (4.1) [the nonrelativistic LDA x-only potential has always
been used for v, (r)].

i.e. , the percentage deviation of the self-consistent relativ-
istic potential v, ([n ];r) from the corresponding self-
consistent nonrelativistic potential v ([n ];r), are shown

for Hg7s+. Note that for a given (approximate) E,[n] the

self-consistent relativistic potential v, ([n ];r) is calculated

by insertion of the self-consistent relativistic density n (r)
into the functional derivative (2.16) for that E [n] which has
been used to determine n"(r). In particular, the ROPM
x-only potential can formally be understood as being ob-
tained by insertion of the exact density n (r) into
the exact v, ([n],r) = v,. ([n];r) . The same holds
for the nonrelativistic OPM (NROPM) potential

v, ([n ];r), which is used for normalization in

(4.8). As a consequence Av (r) is a direct measure of the
corresponding relativistic correction to n (r). In fact, the
radial densities obtained for the point and the finite nucleus
[using the RLDA, Eq. (4.1), in both cases] are indistinguish-
able. Even for rather small r (apart from the immediate vi-

cinity and the interior of the nucleus) the density and thus

v, ([n ];r) do not depend sensitively on the form of the
nucleus, a feature that is exhibited more clearly by Av, (r)
(Fig. 2). In particular, the divergence of the RLDA x-only
potential at the origin resulting from the divergence of n(r)

TABLE V. Relativistic contribution to the longitudinal exchange
energy ( —AE, ) from self-consistent OPM, RNRLDA, LDA, WDA
aud calculations [61] (all energies are in hartrees).

Atom OPM RNRLDA LDA WDA

He

Be
Ne

Mg
Ar

Ca
Zn

Kr
Sr
Pd

Cd
Xe
Ba
Yb

Hg
Rn

Ra
No

0.000
0.001
0.015
0,029
0.118
0.172
0.627
1.215
1.478
2.785
3.264
5.021
5.739
12.043
19.963
26.637
29.241
52.403

0.000
0.001
0.015
0.029
0.122
0.179
0.675
1.306
1.590
3.042
3.566
5.481
6.269
13.450
22.421
29.918
32.859
59.886

0.000
0.000
0.007
0.015
0.069
0.104
0.402
0.814
1.005
1.958
2.322
3.657
4.215
9.194
15.734
21.307
23.513
43.683

0.000
0.001
0.015
0.029
0.122

0.178
0.662
1.278
1.555
2.957
3.461
5.312
6.073
12.920
21.518
28.696
31.503
57.074

for point nuclei does not show up in the relevant r regime
(for high density v ' [n] n' [2-7]). Nevertheless, the
subsequent analysis of E,[n] (and also E,[n]) is based on
finite nuclei [61,62].

(ii) Furthermore, as v, (r) only represents a small fraction
of the total potential experienced by the 15i&2 electrons the

15»2 density distribution is almost independent of the spe-
cific functional form of v, [n] used in the RKS equations.
This is demonstrated in Figs. 1 and 2 where also the radial
ROPM density and the Av, (r) obtained by insertion of the
ROPM density into the v, [n] resulting from (4.1) (and
nNRopM into v, ([n],r)) are given: n (r) is very
close to the RLDA density, although one finds a non-
negligible difference between the ROPM and RLDA 15&&2

single-particle energies (see Table III) refiecting the different
asymptotic behavior of the densities. One thus concludes that
n(r) is not the most suitable quantity on which a comparison
of different approximations for E,[n] could be based. A di-

rect look at the corresponding self-consistent v, (r) allows us

to distinguish various approximations to v, [n] much more
clearly.

(iii) As a consequence the x-only energies obtained by
insertion of different self-consistent relativistic densities
n (r) into some approximate E, [n] are rat.her similar
[27,32]: Using, e.g. , the ROPM density for Hg in Eq. (4.1)
leads to —347.928 hartree compared to —347.612 hartree
found by insertion of the self-consistent RLDA density.

With these considerations in mind we now proceed to an
analyis of the x-only RLDA, Eqs. (4.1) and (4.6). In spite of
its early appearance in the literature the x-only RLDA has
only rarely been used in actual applications [28,29,32]. This
may be attributed to the fact [32] that nonlocal contributions
play an important role in the relativistic corrections to the
x-only energy. This is confirmed by Table V, in which the
AE, from the RLDA, Eq. (4.1), is compared to the exact
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ROPM values and the AE, found by using the nonrelativistic
x-only LDA functional,

~ 3 s st s) ~ ~ ~ ) ~ ~ ~ ] ~ ~ ~ ) ~ s ~0
OPM

0.2

ENRLDA[ ) ds NRLDA(
)X X (4.9)

0
in the RKS equations (this computational scheme, usually
referred to as the Dirac-Fock-Slater approach with n = 2/3, is
abbreviated by RNRLDA here). While for larger Z the
RNRLDA overestimates the ROPM results by about 10%,
the RLDA underestimates them drastically, in particular for
low and intermediate Z.

In order to analyze the origin of this failure of the RLDA
it is useful to separate the two effects leading to the relativ-
istic correction in x-only energies,

AE, = AE, (dens) + AE, (fctl),

AE, (dens) =E, [n ]—E [n ],

b, E (fctl) =E,[n ]—E, [n"],

(4.10)

(4.11)

(4.12)

e t' ( n(r)n(r')
E,[n]= ——

i d r d r'
r —r

is identical to the exact E [n]. The OPM values of
AE, (dens)= —7.963 hartree and b, E,(fctl)=0 for Hg
can thus be compared to the corresponding LDA results,
AE, (dens) = —7.198 hartree and AE, (fctl) = 3.157
hartree. The error of 765 mhartree for AE, (dens) rellects the
fact that the LDA is missing important nonlocal contribu-
tions responsible for the cancellation of the self-interaction
energy already on the nonrelativistic level. The much larger
LDA error for AE, (fctl), on the other hand, directly shows

i.e., the correction E [n ]—E, [n ] resulting from the

difference between the self-consistent relativistic density n

and the self-consistent nonrelativistic density n and the
contribution E,[n ]—E, [n ] arising from the relativistic
modification of the functional dependence of the x-only
functional on n. Using, e.g. , the RLDA one finds for Hg
AE (dens) = —22.303 hartree and b,E,(fctl) = 6.569 hartree.
Thus the dominating density contribution increases the
x-only energy, while the functional correction leads to a re-
duction (as is immediately obvious from the form of tIs ).
Note that the AE, (dens) contribution is dominated by the
relativistic corrections to the kinetic energy and thus is rather
insensitive to the precise form of E,[n] Consequentl. y the

AE, (dens) from the LDA is almost identical to the complete
AE, from the RNRLDA ( —22.421 hartree for Hg).
AE, (fctl), on the other hand, is exclusively determined by
the properties of E,[n], making it a particularly interesting
analytic tool.

Unfortunately, for an evaluation of the exact AE, ( dens)
and AE, (fctl) one needs the set of nonrelativistic KS orbitals
which generates the ROPM density (required for E, [n"]).
While the calculation of these orbitals is a rather complicated
task and thus will not be addressed here, there is one type of
system for which the exact AE, (dens) is identical to the
complete AE, as the functional contribution AE (fctl) van-

ishes: For all two-electron systems the exact E,[n],

-01

-0.2

s ~ si s ssl s ssl s sst s ~ s
Q Q

~ M

0.0001 0.001 0.01 0.1 1 10
r (a.u. )

FIG. 3. Relativistic correction to the longitudinal x-only poten-
tial hv, (r), Eq. (4.8), for neutral Hg from OPM, LDA, and WDA
calculations [61].

Av (r) =Av (r, dens)+Av (r, fctl), (4.13)

v ([n ];r)—v, ([n ];r)
Av (r, dens) =

NRDPM NRoPM . , (4.14)
; I"

0.3

0.2

0.1

0

-0.1

-0.2

Q 3 ~ ~ ~ ~ I ~

0.0001 0.001
~ sl s ~ sl s s sl s ~ s

0.01 0.1 1 1 0
r (a.u. )

FIG. 4. Decomposition of Av (total) into its density component
(4.14) (dens) and the functional contribution (4.15) (fctl): LDA re-
sults for neutral Hg [61].

that nonlocal corrections are even more relevant for the rela-
tivistic correction E,[n) E, [—n] Furth. ermore, the total
LDA deviation of 3.922 hartree found for Hg

+ matches
rather well with the deviation of 4.229 hartree for neutral Hg,
suggesting that the major contribution to AF. comes from
the 1S&&2 electrons, while contributions of the order of 300
mhartree are due to the relativistic rearrangement of other
orbitals.

The corresponding plots of Av, (r) for Hg and Hg
+ are

given in Figs. 3—5. In Fig. 3 one first of all observes an
"oscillatory" behavior between 0.01 a.u. and 3 a.u. rejecting
the shell structure of the atom: The relativistic single-particle
orbitals are shifted towards the nucleus with respect to the
nonrelativistic ones, resulting in an oscillating structure of
n (r) —n (r) and thus also of the potential. Note that the
relativistic correction in the exact v amounts to roughly
10% even in the valence regime. This shell oscillation is only
partially reproduced by the RLDA, the OPM-amplitudes be-
ing larger by more than a factor of 2. Decomposing
b, v, (r) into a density and a functional component [in anal-

ogy to Eqs. (4.10)—(4.12)],
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FIG. 5. Decomposition of ku, (r) for Hg7s+: Exact
Au, (r, dens) (OPM-dens) in comparison to ku„" "(r,dens) (LDA-
dens) and Au, (r, fctl) (LDA-fctl) [61].

L([ R]. ) NR([ R]. )
( ~ fctl) NROPM NRopM 3'I )

(4.15)

one finds that the oscillatory structure is completely due to
the density correction Av, (r, dens), as can be gleaned from
Fig. 4 [the LDA result for Av (r, dens) is almost identical to
the complete self-consistent Av, (r) from the RNRLDA]. As
to be expected the functional correction Av (r, fctl) is only
relevant for the high-density small-r regime, i.e., the inner-
most orbitals. In this regime, however, the b v (r) from the
LDA is rather different from the exact OPM result. In order
to demonstrate on a local basis that both components of
Av (r) contribute to the LDA's error, it is again advanta-
geous to consider Hg +: Similar to the situation for AE the
exact b, v, (r, fctl) vanishes. As is clear from Fig. 5 the LDA
is far from reproducing the exact du (r). In particular,

~Av" (r, fctl)~ does not vanish but is of the same order of
magnitude as the exact Av, .(r, dens).

Consequently, the origin of the RLDA's deviation for neu-
tral atoms is twofold: The error is dominated by the self-
interaction of the 1S&i2 electrons which manifests itself
mainly in the functional correction E [n] —E [n] T.he
smaller (but chemically equally relevant) error in the density
components AE, (dens) and b, v, (r, dens), on the other hand,
is a result of the LDA's difficulties to reproduce the shell
structure of the exact n already in the nonrelativistic
regime [40,22]: The amplitude (not the location) of the rela-
tivistic shift of the individual shells becomes larger the more
pronounced the shells are. Thus while the first source of
errors calls for improved, i.e., nonlocal, relativistic correc-
tions to the x-only energy functional, the second problem can
only be solved by using a more accurate nonrelativistic basis
for E,[n] than the NRLDA in relativistic DF calculations. A
number of concepts are available in the latter respect (like,
e.g. , GGA's), but we only address the question of improved
relativistic corrections in this contribution (in Sec. IVB).

However, before further addressing this question, a few
remarks on transverse exchange seem appropriate. The trans-
verse x-only energies calculated from the self-consistent
RLDA densities are compared to RHF results [58,38] in
Table VI (note that the RHF orbitals used for these energies
[38,58] could be replaced by the ROPM or RLDA orbitals
without significantly changing the resulting E 's: For Hg,
e.g. , one obtains 22. 145 hartree by inserting the self-
consistent RLDA orbitals into the transverse Fock term). As
already recognized by MacDonald and Vosko [27] the RLDA
overestimates the exact F., by about a factor of 1.5. More-
over, in contrast to the RLDA's error for AE, its deviation
for F does not decrease with increasing Z. Thus the RLDA

TABLE VI. Transverse exchange energy (E ) from RHF [58,38] and RLDA calculations and its components. E™s:current-current
contribution; E '"': photon retardation correction to density-density contribution; E, ' "":Breit approximation to E . Also given is the total
correction hE +E [61] (all energies are in hartrees).

Atom

He

Be
Ne

Mg
Ar

Ca
Zn

Kr
Sr
Pd

Cd
Xe
Ba
Yb

Hg
Rn
Ra
No

0.000
0.001
0.017
0.032
0.132
0.191
0.759
1.419
1.710
3.290
3.808
5.711
6.473
13.897
22. 166
28.676
31.148
53.576

ET,mag

0.000
0.001
0.018

0.143

0.834
1.566

4.218
6.331

15.393
24.503
31.647

58.759

RHF

ET,ret

0.000
0.000
0.001

0.011

0.075
0.146

0.410
0.621

1.496
2.335
2.966

5.158

ET,Breit

0.000
0.001
0.017
0.032
0.132
0.191
0.761
1.427
1.720
3.318
3.842
5.775
6.552
14.148
22.665
29.397
31.957
55.248

AE +E

0.000
0.000
0.002
0.003
0.014
0.019
0.131
0.203
0.231
0.503
0.541
0.687
0.733
1.846
2.192
2.028
1.899
1.154

ET

0.000
0.002
0.035
0.065
0.249
0.353
1.322
2.401
2.867
5.358
6.162
9.089
10.255
21.557
34.201
44.313
48.202
84.987

ET,mag

0.000
0.002
0.042
0.078
0.300
0.425
1.595
2.901
3.467
6.501
7.484
11.071
12.505
26.521
42.412
55.265
60.240
108.154

RLDA

ET,ret

0.000
0.000
0.007
0.013
0.050
0.072
0.272
0.500
0.600
1.143
1.321
1.982
2.250
4.964
8.212
10.952
12.039
23.167

ET,Breit
X

0.000
0.002
0.035
0.064
0.248
0.352
1.312
2.373
2.831
5.263
6.045
8.877
10.001
20.778
32.654
42.046
45.636
79.083

AE.+E.'
0.000
0.001
0.028
0.050
0.180
0.249
0.920
1.586
1.862
3.399
3.840
5.431
6.038
12.355
18.444
22.964
24.638
41.085
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can only serve as a qualitative measure of transverse x-only
energies. Furthermore, due to the rather subtle cancellation
between the exact AE and E„ the RLDA completely mis-
represents the total relativistic correction to atomic E,'s (see
Table VI).

In Table VI also various components of E are listed
(compare [32]). The magnetic, or current-current, contribu-

tion E ' ' originates from the spatial components of D ', ,

Eq. (2.12), while E, '"' is due to Doo . Finally, expanding
D ', to first order in I/c leads to the Breit approximation

E, ' "".Both E, ' 's and in particular E '"' are grossly mis-

represented by the RLDA. On the other hand, E ' "" is
rather close to the full E throughout the periodic table for
both RHF and the RLDA.

Lacking the transverse ROPM exchange potential, one
has to resort to an indirect analysis of U

' (r) based on
the self-consistent orbitals @I, obtained by including
U

' (r) in the RKS potential (2.14). In particular, one can
use the difference between the E ' "" found by inserting
these yk+ into the Breit Fock term and the E ' ""calcu-
lated with the yj, corresponding to the purely longitudinal
RKS potential (2.14) as a quantitative measure of U (r) On.
the basis of RHF orbitals one finds for the fully self-
consistent E, ' ""of Hg 22.633 hartree [63], while a pertur-
bative evaluation yields 22.665 [38]. The difference of 32
mhartree may now be compared to the difference of 153
mhartree between the E ' ""calculated from yi,

+ (22.483
hartree) and that from the longitudinal yt, (22.636 hartree),
indicating that the RLDA overestimates v, (r) drastically.

The failure of the RLDA in the case of E,[n] is, however,
not surprising in view of its RHEG origin. The finite speed of
light plays a much more important role for an infinite system
like the RHEG than for atoms: In the RHEO extremely dis-
tant points in space are interacting with each other such that
the traveling time of photons between these points modifies
the form of the long range electromagnetic forces (similar to
the difference between Casimir-Polder and van der Waals
forces [64]). The electronic density of atoms, on the other
hand, is rather localized so that the actual propagation of
photons as compared to the instantaneous Coulomb interac-
tion can not have the same impact.

B. Weighted-density approximation

Nonlocal x-only energy functionals can either be obtained
by the derivation of systematic corrections to the LDA (e.g. ,
in the form of gradient corrections) or, in a more phenom-
enological way, by making an ad hoc ansatz in which as
much insight into the nature of the physical problem is in-
corporated as possible. Among the latter, one of the most
prominent approaches is the WDA. The WDA explicitly ad-
dresses the problem of self-interaction so that it appears par-
ticularly attractive in the present situation. In complete anal-

ogy to the nonrelativistic case the relativistic x-only WDA is
based on the (exact) representation of the longitudinal x-only
energy [31,36,65],

n(x) n(y) [g.(»y) —1]
E, ——„d dy

in terms of the noninteracting (or x-only) limit g, (x,y) of the
pair correlation function,

(iIioln(x) n(y) l4 0)
g x.y)=

n(x) n(y)

6 l(x —y)
(4.17)

The exact g(x,y) as well as the exact g (x,y) satisfy the sum
rule

f
d'yn(y) [g.(x y) - I]= —I (4.18)

By contrast, local-density-functional approximations to

g, (x,y) will no longer satisfy (4.18). The central idea of the
WDA [5,6] is to go beyond the LDA by enforcing (4.18) also
for suitable approximations to g (x,y). While in the nonrel-
ativistic case a number of qualitatively different model pair
correlation functions have been suggested [53—56] for this

purpose, a systematic relativistic extension is only available
for the most simple g (x,y), i.e., the pair correlation function
of the HEG. While the nonrelativistic g, (x,y) is a function
of z=k, lx yl on—ly,

9 ji(z) '
g. (z) =1-2 (4.19)

the pair correlation function of the RHEG [24,27],

9 1
™

j;+ i(z) P (2i+ 1)!!
4 g'(;=0 z'+'

( g/ 2i+1

P' j,+,(z) 'P~'(2i+1)!!l'
z'

~ g/ 2i+1 j

+
)

(4.20)

e & I n(x)n(y)
E, ' "[n]=— d x d y2 ~ ) Ix yl

x [g (kF(x) lx yl kF(x)) —1].
(4.21)

The main advantage of this approximation is that it is exact
for two-electron systems [if the correct kF(x) is utilized in
(4.21) before performing the functional differentiation
(2.16)] and also correctly accounts for the self-interaction
energies of individual closed shells if a shell-partitioning
scheme is used [66]. Furthermore, the WDA reproduces the
asymptotic r ' behavior of the exact x-only potential (al-
though with the incorrect prefactor of 1/2 [67]).

Unfortunately, the nonrelativistic WDA with g as ker-
nel substantially overestimates atomic exchange energies [5]
and completey misrepresents the corresponding exchange
potentials [68].This deficiency of the WDA, however, is not

also depends on kF separately. For an inhomogeneous system
the Fermi momentum kF is now replaced by a local screen-

ing momentum kF(x) which is chosen such that

g,
" (kF(x) lx —yl, kF(x)) satisfies Eq. (4.18) with the actual

density n(y). The x-only energy functional is then given by
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TABLE VII. Comparison of CI and second-order MBPT correlation energies with LDA results. F., 2
'. second-order MBPT for nonrel-

ativistic CI correlation energy [63];E, ' non. relativistic CI correlation energy from CI calculations [70,71];Ei i ': CI correlation energy
estimated from both nonrelativistic CI calculations and experimental ionization potentials [71];E, : LDA result for nonrelativistic DFT
correlation energy; kE, 2 sec. ond-order MBPT for 6E, [63]; AE,":LDA result for kE, ; E, '2

' Br.eit contribution to second-order
MBPT for E, [63];E,':RLDA result for E, [61] (all energies are in hartrees).

Atom

He

Be
Ne

Mg
Ar

Zn

Kr
Cd

Xe
Hg
Rn

pNRCI
c&2

0,037

0.383

0.697
1.651
1.835
2.618
2.921
5.086
5.392

pNRCI
C

0.042
0.094
0.386

p(NR) CI
C

0.042
0.094
0.390
0.438
0.722

pNRLDA

0.111
0.224
0.743
0.891
1.430
2,665
3.283
4.571
5.200
8.356
9.027

g pCI
C,2

0.000

0.000

0.001
0.011
0.011
0.036
0.038
0.203
0.195

g~LDA
C

0.000
0.000
0.000
0.001
0.003
0.011
0,020
0.045
0.065
0.201
0.257

pT, RCI
c,2

0.000

0.002

0.008
0.026
0.041
0.082
0.109
0.283
0.353

pT, RLDA
C

0.000
0.000
0.000
0.001
0.002
0.008
0.013
0.029
0.039
0.113
0.138

transferred to the relativistic corrections AE and AU (r), as
is shown in Table V and Fig. 3. [Note that for our actual
calculations an accurate approximation to g, , Eq. (4.20),
has been used —see the Appendix. ] In fact, although the
AF obtained in the WDA also exhibit some tendency to
overestimate the exact values, the WDA is more accurate
than the local approximations RLDA and RNRLDA. In par-
ticular, one would expect the remaining error to be mainly
due to the AE (dens) component as the AE, (fctl) from the
RWDA correctly vanishes for all two-electron systems. Also,
the Av, (r) from the WDA are close to the exact results in
the small-r regime as demonstrated for neutral Hg in Fig. 3,
emphasizing the accurate description of AU (r, fctl) by the
WDA. As is to be expected from the physical nature of the
relativistic effects in E,[n] the concept of the WDA seems
very suitable as a basis for nonlocal x-only functionals. This
result calls for a relativistic extension of one of those model
pair correlation functions which are more accurate than

g in the nonrelativistic regime. Such an extension
could, e.g. , be based on a scaling approach similar to that
utilized in the Appendix.

t

V. LOCAL-DENSITY APPROXIMATION TO THE
RELATIVISTIC CORRELATION ENERGY FUNCTIONAL

The relativistic correlation energy functional E,[n] is de-
fined on the basis of the x-only energy functional, Eq. (3.1),

E, '[n]=E„' [n] —
. E ' [n], (5.1)

where again a decomposition into a longitudinal and a trans-
verse part is possible. As for the x-only energy the LDA is
the natural approximation to start with in the case of
E,[n]. While, unlike the nonrelativistic case, no Monte
Carlo evaluation of the correlation energy of the RHEG is
available to date, fortunately only its high-density limit is of
interest in the present context. The relevant ring diagram
contributions are given by [50,52,31],

I. RPAe, ' (no) = ——
4 ln 1+

2J (27r)4

47re II (q)

4me II (q)
q

(5.2)

d4
e, ' (no)= —i 4 ln 1—T, RPA

J 2 tr

4vre II (q)+ 2
q

47re II (q)
q

(5 3)

where II (q) and II (q) represent the longitudinal and
transverse components of the noninteracting relativistic
current-current response function. The integrals (5.2) and
(5.3) have been evaluated by Ramana and Rajagopal [31]
and, more recently, by Miiller and Serot [57], whose very
accurate results are used here (for plots of e, ' " see Refs.
[31,36]). The resulting E, ' [n],

ELIT RPA[ ) d3 LIT RPA( )C ) C (5.4)

i.e., we only utilize the relativistic correction provided by the
RPA, while for nonrelativistic densities the complete
NRLDA is used (with the parametrization of Vosko et al.
[69]).Thus for high densities E, [n] and E, [n) es-
sentially cancel so that E, ' " [n]=E, ' [n], while for

has been applied to the correlation energies of high-Z atoms
by Ramana and Rajagopal [31]and Ramana, Rajagopal and
Johnson [31,32]. Unfortunately, the RPA is not an accurate
approximation to the correlation energy of the HEG, in par-
ticular for intermediate and low densities [69]. In order to
establish a more complete relativistic LDA we thus combine
the relativistic RPA (RRPA) with its nonrelativistic counter-
part (NRRPA) and the complete nonrelativistic LDA
(NRLDA),

EL,RLDA[ ) EL,RRPA[ ) ENRRPA[ ) + ENRLDA[

(5.5)
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TABLE VIII. Comparison of CI and second-order MBPT correlation energies with RLDA results for two-electron systems. E, 2
'..

second-order MBPT for nonrelativistic CI correlation energy [76];E, ': nonrelativistic CI correlation energy from CI calculations [70,71];
E, ":LDA result for nonrelativistic DFT correlation energy; AE, '2. second-order MBPT for AE, [76]; AE, ":LDA result for AE, ;

E, '2 ': Breit contribution to second-order MBPT for E, [76]; E,':RLDA result for E, [61] (all energies are in mhartree).

Ion

He

Be +

Ne +

M 10+

A 16+

C 18+

Z 28+

Z 38+

48+

78+

gNRCI
c,2

37.135

44.368

45.374
45.710
45.876
45.976

pNRCI
C

42.044
44.267
45.693
45.854
46.123
46.177

ENRLDA
C

111.469
150.462
202.680
2 13.233
236.903
243.098
267.099
284.270
297.662
326.051

G,2

-0.003

-0.074

-0.194
-0.193
0.060
0.685

ggLDA
C

0.000
0.010
0.267
0.456
1.413
1.874
5.413
11.294
19.921
68.372

gT, RCI
c&2

0.037

1.398

5.695
12.635
22.113
34.190

gT, RLDA
C

0.000
0.017
0.274
0.450
1.305
1.705
4.614
9.012
14.837
41.107

ERCI E ERHF g EQED
tot tot (5 6)

low densities E, ' [n] and E, [n] are identical. Note
that the scheme (5.5) could be used with more accurate in-
gredients.

The results from (5.5) for a number of (spherical) atoms
are summarized in Table VII and compared to the usual
quantum chemical correlation energy E,. ',

to E, '. Nevertheless this uncertainty is sufficiently small

to allow the use of E, ' as nonrelativistic reference stan-
dard.

As is well known the LDA overestimates the exact atomic
correlation energies by about a factor of 2. Here, however, it
is not so much the accuracy of the complete functional (5.5)
which is of interest but rather the relativistic correction to the
longitudinal correlation energy E, ,

Here the RHF ground state energy E„," includes the trans-
verse energy contributions as well as the finite nuclear size
correction and AE represents all quantum-
electrodynamical corrections (when extracting E„, from ex-
perimental data also the finite nuclear mass has to be taken
into account [70]).Consequently E, ' contains all relativistic
corrections to the correlation energy. Unfortunately, apart
from the two-electron systems, E„," is not identical to the
corresponding ROPM ground state energy so that the exact
density functional E, does not exactly agree with E, ' but is
somewhat larger in magnitude. This small difference, how-
ever, is irrelevant for the present purpose, so we use E, ' as
a reference standard. The same holds for the nonrelativistic
quantum chemical correlation energy,

ENRCI ENR EHF
c tot tot ~ (5.7)

with respect to the nonrelativistic E, .
An idea of the uncertainty of currently available atomic

E, 's is obtained by comparing the purely theoretical state-
of-the-art values given in [70,71]with the results obtained by
combining very accurate nonrelativistic CI calculations for
two- and three-electron systems with experimental informa-
tion on atomic ions with more than three electrons [71]
(called E,t 1 in Table VII). As a matter of principle, the
latter values neither agree with the nonrelativistic nor with
the relativistic CI correlation energies as the experimental
data utilized in [71]have not been corrected for relativistic
contributions to E, . Thus the difference between the theo-
retical and the empirical result for Ne of 4 mhartree reflects
both the limitations of present CI calculations (compare
[72,43,73]) and a small fraction of the relativistic corrections

R] ENR[ NR] (5.8)

and the transverse correlation energy E, as the RRPA could
be combined with more accurate nonrelativistic E,[n]. Table.

VII shows that both AE, and E, are much smaller than their
x-only counterparts. This conclusion is not really changed by
the fact that AE, and E, add up constructively so that the

total correction AE, +E, is not as much smaller than

AE +E as the individual components: For neutral Hg one
obtains AE, +E, = —0.49 hartree within second-order
MBPT compared to the exact AE +E, of about 2.19 har-

tree. Thus relativistic corrections to E,[n] are less important
than those to E [n]. This is also obvious from the IS»2
eigenvalues which reAect the role of the relativistic contribu-
tions in the correlation potential u, ([n];r): For Hg the

shift induced in E, su2 by going from u, ([n],r) to

u, ([n];r) amounts to 56 mhartree as compared to
—3.107 hartree in the case of exchange (see Table III).

Lacking the corresponding full RCI-results we resort to
second-order many-body perturbation theory (MBPT) [63] in

order to judge the accuracy of 4E, and E, ' " . As has
been discussed in Ref. [63] for Xe and is also obvious from
Table VII for small Z the second-order MBPT results repro-
duce the full CI values within about 5%, which is completely
sufficient for the present purpose. Two features are immedi-
ately clear from Table VII: On the one hand, AE, 2 and

E, 2 do not increase with Z as smoothly as the corresponding
RLDA results. On the other hand, while the RLDA for
AE, 2 agrees with the second-order MBPT values at least for
some atoms, the size of E, 2 cannot be reproduced by the

RLDA. The RLDA's overall relative error for AE, and E, is
even larger than that for AE and E
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0.8
0.6
0.4
Q.2

50
0

-0.2
-0.4—
Q6
08

-1

P —2.00
P = 040
P = 0.08

I I

might be expected if the rather simple relativistic exchange-
only pair correlation function used in the present study is
replaced by a more adequate form.

Alternatively, one could try to utilitze the advantages of
the WDA at the present stage by combining it with an accu-
rate nonrelativistic x-only functional, E, "[n] (like a gener-
alized gradient approximations [19,20,22]) in a pragmatic
way,

EL,RA( ] EL,RWDA) ] ENRWDA( ]+ENRA(

2 3 4
~ = kFI~ —~l

FIG. 6. Percentage deviation of g„'(z,p), Eq. (A5), from the
exact g

" (z,p), Eq. (4.20), as a function of z for various values
of P.

Moreover, the RLDA also does not reproduce the almost
Z-independent longitudinal correlation energy observed for
two-electron systems ([74,75]; compare Table VIII): While
for He the RLDA overestimates the exact E, by about a
factor of 2.5, for Hg

+ the RLDA result of E, =394 mhar-
tree is already larger than the CI value of roughly 43 mhar-
tree [75] by almost an order of magnitude. In particular, the
relativistic contribution AE, is grossly misrepresented by the
LDA in the case of two-electron systems: For Sn + the LDA
result of 19.9 mhartree may be compared with the second-
order MBPT value of 0.69 mhartree [76].On the other hand,

E, is markedly underestimated by the RLDA. The agreement
between the total relativistic correction AE, +E, from the
LDA and the corresponding MBPT value in the regime
Z=50 must thus be regarded as fortuitious.

In summary, the RLDA addresses relativistic corrections
to E,[n] on the same limited level of sophistication as the
NRLDA does for the nonrelativistic correlation energy func-
tional. Even more than in the case of exchange, nonlocal
corrections seem to be required for a really satisfying de-
scription of (relativistic) correlation effects in atoms.

VI. CONCLUDING REMARKS

The main idea of this construction is to eliminate the error of
the WDA for the nonrelativistic low-density regime by only
including the functional correction E,[n] —E, [n] in the

form of the WDA. Thus E, [n] is dominating E, ' [n] for
nonrelativistic densities, while the WDA is "switched on" in
the high-density regime. Correlation contributions could be
treated analogously, using a correlated pair correlation func-
tion.

As far as transverse (or Breit) contributions are concerned
the RLDA seems to be less adequate. Whether the addition
of gradient corrections or a WDA scheme based on the Breit
interaction can remedy this situation remains to be investi-
gated.
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APPENDIX: SIMPLE ANALYTIC APPROXIMATION FOR
THE PAIR CORRELATION FUNCTION OF THE

RELATIVISTIC HOMOGENEOUS ELECTRON GAS

The series representation (4.20) of the x-only pair corre-
lation function of the RHEG is not very suitable for actual
applications of the RWDA. We have thus developed a simple
and accurate fit to g which might also be useful for
other purposes. It is based on the form of g, (z, kF) for
z=o,

The RLDA for the longitudinal exchange-correlation en-
ergy functional is not found to be fully adequate, the main
reason being the failure of the RLDA to reproduce the cor-
rect interplay between relativistic and self-interaction effects.
Part of the problems with the RLDA originate from the non-
relativistic regime so that these errors can be reduced by
adding nonrelativistic nonlocal corrections (as, e.g. , gradient
terms) [77].The remaining errors (in the so-called functional
correction —see Sec. IV), however, require intrinsically
relativistic nonlocal corrections.

At present essentially two concepts addressing this issue
are conceivable: On the one hand, a relativistic gradient cor-
rection (to be derived from the linear response function of
the RHEG [36]) could serve as basis for a relativistic gener-
alized gradient approximation. An interesting alternative
might be provided by the relativistic WDA. In fact, the case
of the longitudinal exchange energy functional has indicated
the potential strength of this approach. Further improvement

RHEO
g (Ok )=—————

4 16P
arcsinh(P) 2

p3

with the limits

1
limg, (O,k ) =—, (A2)

3
lim g, (O,kF) =—.

Phoo
(A3)

Equation (A3) may be interpreted as a consequence of the
relativistic mixing of spin states [24]. The decreasing depth
of the exchange hole g, —1 with increasing P apparent
from (A2) and (A3) is compensated by a broadening of the
"width" of the exchange hole (compare [24,27]) in order to
satisfy (4.18) in the homogeneous limit,
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3'�)p
z dz [g, (z,k ) —I]=—l. (A4)

The scaling behavior required for (A4) suggests the ansatz

g, (z, kF) ~ g, (z), but also satisfies Eqs. (Al) and (A4).
P—+p

The percentage deviation of g,"'(z, kF) from g, (z, kF) is
plotted in Fig. 6. In fact, even in the limit p —+~ in which

9 jt(Cz(P)z)
g.'(z kF) = I ——&t(P)

arcsinh(P)
P'

(A5)

(A6)

RHE
( ) I ~ 2 (2+ 2)+

4 t z z z i

lj (z))
+ z' (AS)

~ (P)=[C (P)]'". (A7)

which not only approaches the correct nonrelativistic

g, (z), Eq. (4.19), for vanishing P,

the error does not exceed 1%, while for the more relevant
moderately high densities (P(0.5 —at the r-expectation
value of Hg

+ one finds P=0.6) the error reduces to less
than 0.2%.
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