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Term energies are determined for the n = 2 states of lithiumlike ions with nuclear charges in the
range 10 & Z & 92. These calculations are based on the relativistic no-pair Hamiltonian, which
includes both the Coulomb and the retarded Breit interactions. Single-particle wave functions are
expanded in a B-spline basis constructed from Dirac-Slater orbitals restricted to a Gnite cavity.
The Hamiltonian matrix is evaluated and Davidson's method is used to determine the lowest few
eigenenergies and eigenfunctions for each angular symmetry. Quantum electrodynamic and mass
polarization corrections are also calculated. Precise agreement between theory and experiment for
the 2s-2p transition energies is found throughout the Periodic Table.

PACS number(s): 31.25.—v, 31.30.Jv, 31.10.+z

I. INTRODUCTION

Recently, we have developed a large-scale relativis-
tic configuration-interaction (CI) calculation for two-
electron ions [1,2]. This CI method is based on the no-
pair Hamiltonian [3,4] and makes use of finite basis sets
constructed from B splines [5]. A special two-electron
code was used to calculate the energy levels of the ground
and the n = 2 states of ions in the helium isoelectronic
sequence [1,2]. These calculations have produced term
energies in very good accord with results from relativis-
tic many-body perturbation theory (RMBPT) [6,7] and
in precise agreement with experiment throughout the Pe-
riodic Table after QED corrections are included. The suc-
cess of the two-electron case has prompted us to develop
a general, large-scale relativistic CI code that can be ap-
plied to any many-electron system. This is particularly
timely in view of the recent high-precision measuremen~s
of the 28-2p3y2 energy differences in Li-like through Ne-
like uranium, which were made at the SuperEBIT facil-
ity at Lawrence Livermore National Laboratory [8]. The
multiconfiguration Dirac-Fock (MCDF) method led to
energies in poor agreement with these measurements [8].
While RMBPT gives excellent results for some of these
uranium ions, convergence of the RMBPT energies for
Be-like uranium is still poor [9). The CI method provides
an alternative approach that can be used to obtain high-
precision solutions to the relativistic many-body prob-
lem.

Lithiumlike ions are the simplest many-electron sys-
tems other than the two-electron ions. The three-electron
ion was chosen as a test case for our recently developed
general CI code because of its simplicity and the availabil-
ity of accurate experimental data and precision theoret-
ical predictions. In this paper, we report the relativistic
CI calculations of the n = 2 states of Li-like ions with

10 & Z & 92 using B-spline basis functions. These basis
functions are solutions of the radial Dirac equation for
an electron moving in a potential confined to a finite
cavity. The modified spectrum cleanly separates into
two discrete spectra: one with n positive-energy states
and the other with n negative-energy states. As a re-
sult, positive-energy projection operators in the relativis-
tic no-pair Hamiltonian can be accommodated easily by
using only positive-energy states. Also, B-spline func-
tions form a complete basis set for functions that can
be approximated by piecewise polynomials of a fixed de-

gree, so both continuum and bound-state contributions
to the electron correlation are included. In this work,
CI energies are combined with ab initio quantum elec-
trodynamic (QED) and mass polarization corrections to
obtain 28-2p~)2 and 28-2p3y2 transition energies.

In the following section, we present our version of
the CI method using B-spline basis functions. We then
discuss, in Sec. III, computational details including the
generation of basis functions and the configuration-state
functions employed. In Sec. IV, the treatment of QED
corrections is described. Finally, in Sec. V, results of our,
CI calculations are presented and compared with exper-
iment and with other theories.

II. THEORETICAL METHOD

The relativistic no-pair Hamiltonian is given by [3,4]

N

H = ) ho(i) + A++(H~+ HI3)A++,

where ho is the single-particle Dirac Hamiltonian for an
electron moving in a nuclear Coulomb potential V„„,(r)

bio —[crt p + (P —1)m,c + V„„,(r)],
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H~ is the Coulomb interaction

N

Hc =):
'&2 "U

H~ is the retarded Breit interaction

Jg constructed from antisymmetrized product wave func-
tions of one-electron Dirac orbitals. Expressed in terms
of the expansion coeKcients CK, the energy functional is
given by

E = &@IHI@) = ).C~Ci&4~IHI&~& = ).C~C~H~I. .

N

H~= —e') a, a;
c))

cos 4Jpq~

K,L K,L

Variation of the energy functional with respect to CK,
subject to the wave function normalization condition,
leads to the CI equation

and A++ is the positive-energy projection operator. Nu-
clear finite-size corrections are included by replacing the
nuclear potential V„„,(r) in Eq. (2) by the potential of a
two-parameter Fermi charge distribution. The eigenfunc-
tion iIJ(JM) of an atomic state with angular momentum
(J, M) and parity vr is expressed as a linear combina-
tion of the many-electron configuration-state functions
$(I'K JM),

e(JM) = ) C y(r JM),

where I'K is a set of quantum numbers representing dif-
ferent electronic configurations and P(I'JM) are eigen-
states of the total angular momentum operators J and

).(H~i —»~i)Ci = 0.
L

Here the contribution of the one-electron operator to di-
agonal matrix elements can be written as [10]

) hp(i) @ = ) CIi- ) q (K)I(aa),
'e K A

where q (K) is the occupation number of orbital a in
the Kth configuration and I(ab) = &alhplb) is the one-
electron radial integral. Matrix elements of the two-
electron operators between a pair of configuration-state
functions are given by [ll]

&rJMIH~ + H~ Ir' JIM') = 8» bMM
~1 yP1 &~2 ~P2

(—1) N (ni pin2 p2)

x ) (r., (lf.,j., )(r~, (ll~, j~, )(r.,j., l)l". )(f'~, ji, l)l'~ )
r

x ) (ALi(l+ b, p, b,p, ) [j,, jp, ]
X"(nipln2p2)

—A".(1-~ ., ) (1 —~-..)[j-„j..]-"X"(-.~.~.-.))
Here AP defines the phase of the matrix element, N(nPpb) is the statistical factor, (r.(lr.j ) denotes the fractional
parentage, [j,jp, . . .] = (2j + 1)(2jp+ 1).. ., and A~~ and Aa are recoupling coefficients for the direct and exchange
matrix elements. The effective interaction strength X"(neph) for the Coulomb and Breit operators is given by [1)

x"(n&~~) = &~-IIC~IIK~&&K~IIC~IIK~)&A. (nP~b) + &~-IICi IIK~&&K~IIC~II~~)

X
k(k+ 1) 1 1 1

2k+1 2k —1 ' 2k+3 ' 2
T(k, k —1) + T(k, k+1) ——X(k)

(10)

Formulas for reduced matrix elements &K II Cq II r'),
Coulomb radial integrals Rk(nPpb), and Breit integrals
T(k, k') and X (k), k' = k, k 6 1, are given in Ref. [1].

For diagonal matrix elements of the retarded Breit in-
teraction &abIH~(cu) Iab&, the frequency w is defined as

ld~~ = Mbb = 0 for the direct terms
~~a = wi~ = le~ —sbI/hc for the exchange terms.

For nondiagonal matrix elements &abIH~(~)lcd& where
cu«g wed, a frequency symmetrized Breit interaction as

suggested by Mittleman [4] is used:

&ablH~ (~) lcd) : —[&ablH~(cu«) + HB(&bd)lca&] (12).
Formulas for frequency-dependent Breit matrix elements
can be found in Ref. [1].
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III. NUMERICAL CALCULATIONS

A. Relativistic B-spline functions

B-spline basis functions for a Dirac electron in a model
potential constrained to a cavity of finite radius were
obtained using the method by Johnson, Blundell, and
Sapirstein [5]. In this work, the model potential is taken
to be the Hartree potential of the heliumlike ls ground
state. The choice of potential is found to be immaterial
here, as we have saturated our CI calculations with all
dominant configuration-state functions. Parameters for
the Fermi charge distribution of the nucleus are taken
Rom Johnson and SoK [12], except for thorium and for
uranium, which are from Zumbro et al. [13,14]. The ra-
dius of the cavity was chosen so that the first few s and
p states agree precisely with the actual eigenvalues of the
unconstrained. Hartree potential. A radius of 8 a.u. was
used for orbitals with 8 & 3 for Ne + and the radius was
gradually increased to 12 a.u. for E = 6 orbitals. A 1/Z
scaling rule was used to determine the cavity radius for
other ions. Within reason, the choice of the cavity radius
is not critical.

In this work, 30 positive-energy B-spline orbitals are
generated for each of the s, p, d, . . . states inside the
cavity. We included orbitals with E = 0 —6 and used the
first 19—20 orbitals for each of the angular symmetries
in our calculations. Contributions from the remaining
B-spline orbitals are found to be negligible.

B. Configuration-state functions

In our basic CI expansion, configuration-state func-
tions (CSFs) include states arising Rom single and dou-
ble excitations from reference states 1s 2s and 1s 2p. For
the 1s 2s state, we use 13952 CSFs from 1snkn'S' and
2snEn'E' configurations with 8 = E' = 0 —6. Contribu-
tions from states with AI. = ~E

—E'~ = 2 are found to be
insignificant. For the 1s 2pqy2 state, we employ 24155
CSFs from lsngn'(/+ 1) (E ( 5) and 2pnIn'E (E ( 6). In
both cases, up to 20 s, 20 p, 19 d, . . . , 19 i orbitals are
included in the basis set. For the 1s 2p3y2 state, the num-
ber of CSFs becomes rather large. To reduce the com-
putational effort, we break the problem into two parts.
First, we use 16071 CSFs from lsnEn'(/+ 1) (E ( 5) and
2pnEn'l (l ( 6) and restrict nIn'I. in the latter configu-
rations to be coupled to an angular momentum of J = 0
only (i.e. , only two-electron excitations from the 1s2 core
that preserve the core angular momentum are included).
In this case, the B-spline basis set consists of the first
19 orbitals of each angular symmetry. Second, the same
CI calculation is carried out with a smaller basis set that
contains up to the f orbitals only, along with a separate
CI calculation with 17410 CSFs &om the same config-
urations but with no restriction on the nfn'E couplings.
Contributions to the correlation energy of the 1s 2p3y2
state from these core angular momentum changing con-
figurations are then obtained by taking the differences of
these two calculations. Even though we include up to
the f orbitals only, these are very small corrections and

higher-8 contributions are completely negligible.
We have also included two additional corrections to

the correlation energy: The first one is a small correc-
tion for the 1s 2p states from the 2pnln'E' configurations
with AI. = 2 (e.g. , 2pnsnd, , 2pnpnf, . . .). It is calcu-
lated from differences in energies obtained &om two CI
expansions with and without these configurations &om
a basis set with E & 3. Again, high-E contributions are
completely negligible. The other correction arises from
three-electron excitations, which have been found to be
quite small [15]. Here they are included by using a CI
expansion that includes CSFs from three-electron exci-
tations 3snln'Z' and 3pnln'E' in addition to two-electron
excitations 1snln'E', 2snEn'E', and 2pnfn'E' with 8, E' & 2

and by subtracting the result of a similar CI calculation
with the two-electron excitations only. Contributions
from other triple excitations are expected to be insignif-
icant.

C. Evaluation of the Hamiltonian matrix

In large-scale CI calculations, we face the problem of
setting up a huge Hamiltonian matrix with dimension
as high as tens of thousands. The required number of
angular recoupling coeKcients is close to 10 . Direct cal-
culations of the recoupling coefBcients can easily use up
to hundreds, or even thousands, of hours of CRAY-YMP
supercomputer time. Hence the algorithms used to eval-
uate these hundreds of millions of matrix elements be-
comes the key to success of the CI calculations.

Recognizing that many matrix elements involving
CSFs that differ by just the principal quantum numbers
will have the same angular recoupling coefFicients, we

use the concept of angular momentum channels to sim-

plify these calculations. An angular momentum channel
is defined by an electronic configuration including cou-
pling schemes but ignoring principal quantum numbers,
except to distinguish between identical and nonidentical
electrons with the same angular symmetry. Specifically,
only recoupling coefBcients between distinct channels are
evaluated. We have successfully implemented the scheme
of angular momentum channels into an existing general
angular momentum recoupling program [10]. With this
modified angular program, we are able to reduce the
number of recoupling coeKcients to be evaluated from
hundreds of millions to tens of thousands such that the
calculation of recoupling coeKcients becomes a straight-
forward exercise.

It is also extremely expensive to calculate the millions
and millions of Coulomb and Breit radial integrals in set-
ting up the Hamiltonian matrix. To speed up the evalu-
ation of radial integrals, we have designed our computer
code in such a way that the same Hartree Y function is
not recalculated from matrix element to matrix element.
This is possible through careful orderings of the CSFs
and leads to an order of magnitude increase in the speed
of the calculation.

For full frequency-dependent magnetic and retarda-
tion corrections, the calculation becomes much more time
consuming. As in our previous works on the ground
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and n = 2 states of He-like ions [1,2], these correc-
tions were calculated using a two-step approach. First,
the off-diagonal Hamiltonian matrix elements were cal-
culated with the unretarded Breit operator, while the di-
agonal matrix elements were evaluated with the retarded
Breit operator to obtain the leading frequency-dependent
Breit energies. Next, the corrections AB(cu) from the
off-diagonal matrix elements of the retarded Breit inter-
action were obtained by repeating the CI calculation de-
scribed above with a smaller set of B-spline orbitals and
subtracting this result from a similar calculation with
a full, frequency-symmetrized Breit operator shown in
Eq. (12). In general, contributions from these AB(w)
terms are very small.

In the present relativistic CI calculations, atomic en-
ergy levels are obtained by solving for the erst few eigen-
values of a dense, real, symmetric Hamiltonian matrix
with dimensions ranging from 10 000 to 25 000. Even in
symmetric storage mode, these matrices can take up to
a few gigabytes of computer storage, making standard
matrix diagonalization methods inappropriate for these
calculations. Instead, we use Davidson's method [16] to
solve our eigenvalue problem. Davidson's method is an
iteration method based on perturbation theory and works
very well here because our CI matrices are dominated by
just a few configurations. Additionally, large CI matrices
do not have to be stored in the fast memory of the com-
puter for Davidson's method to work, making it possible
to run our CI codes on CRAY-YMP supercomputers as
well as on fast workstations with suKcient on-line disk
space. We have adopted an implementation of David-
son's method by Stathopoulos and Fischer [17]. Typi-
cally, 10—20 iterations are suKcient to obtain the first
few eigenvalues of the Hamiltonian.

IV. QUANTUM ELECTRODYNAMIC
CORRECTIONS

nated by expectation values of the Uehling potential us-
ing screened wave functions. On the other hand, accurate
evaluation of screened self-energies remains a challeng-
ing problem. In MCDF calculations of Ii-like ions by
Indelicato and Desclaux [18], electron self-energies were
estimated by the Welton method [19]. In the work of
Blundell [20], ab initio self-energies in a local screened po-
tential were calculated using an algorithm developed with
Snyderman [21,22], along with dominant contributions to
QED corrections from electron-electron interactions. Re-
cently, Persson et al. [23,24] have developed a method to
calculate electron self-energy and vacuum polarization in
a model potential based on a renormalization scheme that
avoids the expansion of the bound electron propagator
in terms of the external potential. In the present work,
electron self-energies are calculated using the scheme of
Cheng, Johnson, and Sapirstein [25], which is based on a
method by Brown, Langer, and Schaefer [26]. Like Pers-
son et al. , the effect of screening is included by the use of
model potentials in our calculations. Specifically, Dirac-
Slater (DS) potentials with Kohn-Sham average exchange
for the 1s 28 state are used here to calculate one-electron
self-energies. Nuclear finite-size effects are included by
using a Fermi charge distribution nuclear model in the
DS potential. Wichmann-Kroll corrections for vacuum
polarization and higher-order QED corrections are taken
from the tabulation by Johnson and Soff [12]. These
point-Coulomb values are adjusted by a screening factor
that is taken from the ratio of nonhydrogenic to hydro-
genic values of the Uehling potential contributions. Total
QED corrections for many-electron eigenstates are given
by the sum of the calculated single-particle QED correc-
tions, weighted by the fractional occupation number of
each orbital as obtained from the eigenvectors of the CI
calculation. We include QED corrections from the ls,
2s, and 2p orbitals only, as contributions from higher-n
orbitals are found to be unimportant.

In precision calculations of atomic energy levels, con-
tributions from QED corrections are significant, espe-
cially for highly charged heavy ions. On the one hand,
the evaluation of vacuum polarization presents no diK-
culty. Vacuum polarization energy corrections are domi-

V. RESULTS AND DISCUSSION

In Table I typical results of the Coulomb, Breit, and
no-pair energies for the ground state of lithiumlike neon

TABLE I. Contributions to the total energy (a.u. ) of the ground state of lithiumlike neon,
Z = 10. E~ is the Coulomb energy, E& is the Breit energy, and E„p ir is the energy from the
no-pair Hamiltonian. The values listed in rows 2—6 are the increments obtained on adding configu-
rations with successive f orbitals. AEt, i and AE$ pf are contributions from high-E extrapolations
and from three-electron excitations, respectively.

Highest-8
orbitals

Number of
configurations

3122
5288
7454
9620
11786
13952

-102.810645
-0.004026
-0.001054
-0.000382
-0.000167
-0.000083
-0.000137
-0.000039

-102.816533

0.011832
-0.000167
-0.000071
-0.000039
-0.000023
-0.000015
-0.000062

0.011455

Eno-pair

-102.798813
-0.004193
-0.001125
-0.000421
-0.000190
-0.000098
-0.000199
-0.000039

-102.805078
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are shown as functions of the angular momentum of
orbitals included in the calculation. In the erst two
columns, orbital angular momenta and numbers of con-
figurations included up to the indicated angular symme-
try are listed. In columns 3—5 of the first row, we list
under E~, E~, and E„~;,the Coulomb, Breit, and no-
pair energies, respectively, obtained by using lsnsn s,
1snpn'p, 2snsn's, and 2snpn'p basis states as described
in Sec. IIIB. E~ is obtained by restricting the inter-
action to the Coulomb interaction only, E„&„ is the

value Rom the full no-pair Hamiltonian, and E~ is the
difference between E~ and E„~;,. In rows 2—6, we
list the increments of these energies as obtained by suc-
cessively adding more angular momentum states to the
calculation. These tabulated values are extrapolated
to inanity by assuming that the increments decrease as
a(E+ I/2) "+b(E+ I/2) ",where k = 4 for Coulomb
and k = 2 for Breit energies. Results of the extrapolated
tails are listed in the seventh row. In the eighth row,
corrections from three electron excitations as discussed

Total
-102.79472
-102.21080
-102.20328

State
2S1/2
2p1/2
2p3/2

Breit
0.01146
0.01213
0.01129

TABLE II. Coulomb and Breit contributions to the total energies (a.u. ) of the n = 2 states of
lithiumlike ions are given, together with frequency-dependent Breit corrections AB(u), the mass
polarization corrections MP, and +ED corrections.

Z Coulomb
10 -102.81653

-102.23262
-102.22428

2S1/2
2p1/2
2p3/2

-238.90654
-237.95822
-237.90369

0.04219
0.04516
0.04168

-0.00015
-0.00014
-0.00014

0.00004
-0.00019
-0.00019

0.04397
0.04152
0.04164

-238.82049
-237.87187
-237.82070

20 2S1/2
2p1/2
2p3/2

-432.27343
-430.95245
-430.75752

0.10459
0.11269
0.10341

-0.00040
-0.00038
-0.00038

0.00004
-0.00034
-0.00031

0.11980
0.11273
0.11316

-432.04940
-430.72775
-430.54164

2$1/2
2p1/2
2p3/2

-741.10042
-739.31514
-738.70765

0.23758
0.25689
0.23486

-0.00099
-0.00095
-0.00096

0.00004
-0.00044
-0.00041

0.29408
0.27596
0.27726

-740.56971
-738.78368
-738.19690

32 2$1/2
2p1/2
2p3/2

2$1/2
2p1/2
2p3/2

-1135.5525
-1133.2775
-1131.7984

-1990.5372
-1987.3673
-1982.6425

0.4535
0.4916
0.4480

1.0575
1.1496
1.0420

-0.0021
-0.0020
-0.0020

-0.0045
-0.0042
-0.0043

0.0000
-0.0005
-0.0005

0.0001
-0.0007
-0.0007

0.5928
0.5552
0.5582

1.4705
1.3734
1.3824

-1134.5082
-1132.2332
-1130.7946

-1988.0137
-1984.8492
-1980.2231

2$1/2
2p1/2
2p3/2

-3363.9563
-3359.5290
-3345.6136

2.3241
2.5330
2.2796

-0.0090
-0.0086
-0.0087

0.0001
-0.0009
-0.0009

3.3926
3.1604
3.1835

-3358.2485
-3353.8451
-3340.1601

2$1/2
2p1/2
2p3/2

-4826.8888
-4821.1998
-4791.9655

3.9858
4.3531
3.8895

-0.0138
-0.0135
-0.0138

0.0001
-0.0011
-0.0010

5.9911
5.5711
5.6128

-4816.9256
-4811.2901
-4782.4780

74 2$1/2
2p1/2
2p3/2

-6617.2727
-6610.0683
-6554.1132

6.3721
6.9743
6.1792

-0.0181
-0.0180
-0.0183

0.0001
-0.0013
-0.0012

9.8111
9.1105
9.1740

-6601.1075
-6594.0028
-6538.7795

2$1/2
2p1/2
2p3/2

-8319.7066
-8311.0829
-8221.3584

8.9433
9.8098
8.6216

-0.0231
-0.0229
-0.0234

0.0001
-0.0015
-0.0013

14.0052
12.9944
13.0717

-8296.7811
-8288.3031
-8199.6898

2$1/2
2p1 /2

2p3/2

-10301.765
-10291.624
-10151.991

12.254
13.476
11.735

-0.028
-0.027
-0.028

0.000
-0.002
-0.001

19.486
18.071
18.147

-10270.053
-].0260.106
-10122.138

92 2$1/2
2p1/2
2p3/2

-10846.716
-10836.202
-10680.800

13.218
14.548
12.635

-0.029
-0.028
-0.029

0.000
-0.002
-0.001

21.094
19.562
19.632

-10812.432
-10802.122
-10648.563
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in Sec. IIIB are shown. Final Coulomb, Breit, and no-
pair energies, including the extrapolated values and triple
excitation corrections, are listed in the last row of the ta-
ble. The computational procedure described above was
applied to all ions covered in this study.

In Table II we present the total energies of the n = 2
states for 12 lithiumlike ions with Z in the range 10 &
Z & 92. Here Coulomb energies include contributions
from two-electron excitations with AE = 2 configura-
tions and from three-electron excitations. These con-
tributions are found to be non-negligible only for low-Z
ions. Specifically, triple excitations contribute —4 x 10
—2 x 10, and —1 x 10 a.u. to the correlation energies
of the n = 2 states of Ne +, P +, and Ca +, respec-
tively, while LX = 2 configurations contribute less than
—1 x 10 a.u. to the Coulomb correlation energy for all
ions studied in this work. Contributions to Breit ener-
gies from these corrections are found to be completely
negligible.

In this w'ork, mass polarization (MP) corrections are
calculated from first-order perturbation theory using the
eigenvectors from our CI calculations with the operator
HMp = ~ P. . p; p~, where M is the nuclear mass.
For low-Z ions, our mass polarization corrections agree
to within a few percent with results of the full-core plus
correlation method (FCPC) by Chung [27].

Ionization energies from the present work for the 1822s
ground state without @EDcorrections are compared with
results from the FCPC [27] and RMBPT [28,29] in Table
III. Our ionization energies are obtained by subtract-
ing the heliumlike ls2 CI energies [2] from the corre-
sponding lithiumlike 18 28 CI energies shown in Table II.
The FCPC method employs nonrelativistic multiconfig-
uration interaction approach with optimized Slater-type
basis functions. The efFect of relativity is taken into
account using first-order perturbation theory with the
Breit-Pauli approximation. RMBPT starts &om a Dirac-
Fock basis and includes second- and third-order Coulomb
corrections, the lowest-order Breit interaction with retar-
dation, and second-order Breit corrections. For Z = 10,
all three theories agree to within 5x10 5 a.u. For Z = 15
and 20, the FCPC results dier from the RMBPT and

TABLE III. Comparisons of the calculated ionization en-
ergies (a.u. ) without /ED corrections for the ground states
of Li-like ions

z
10
15
20
26
54
74
92

Present work
-8.78736

-22.48416
-42.55349
-75.19897

-360.7584
-724.2166

-1208.463

RMBPT
-8.78733

-22.48410
-42.55334
-75.19865

-360.7550
-724.2057

-1208.449

CCSDb

-1208.451

FCPC
-8.78731

-22.48367
-42.55059

Johnson et al. , Ref. [28], except for Z = 92.
Ynnerman et aL, Ref. [30].

'Chung, Ref. [27].
Blundell et al. , Ref. [29].

CI values by about 4.5 x 10 and 2.8 x 10 ~ a.u. , re-
spectively, due to the neglect of higher-order relativis-
tic corrections in the FCPC method. . Ionization energies
from the present work agree quite well with RMBPT,
with diAerences ranging from 3 x 10 a.u. at Z = 10
to 1.4 x 10 2 a.u. at Z = 92. For lithiumlike uranium,
RMBPT ionization energy is in very good agreement with
the result of another relativistic many-body calculation
that starts from a Dirac-Fock-Breit basis and is based on
the coupled-cluster approach with single and double ex-
citations (CCSD) [30]. Deviations at high Z between CI
and the two RMBPT calculations are due mainly to dif-
ferences in Breit energies. In RMBPT [29] and the CCSD
[30], retardation energies are evaluated to first-order cor-
rections only. From a perturbation theory point of view,
frequency-dependent retarded Breit energies from our
CI calculations contain not only first-order corrections
but also contributions from higher-order Breit-Breit and
Coulomb-Breit interactions. It appears that discrepan-
cies in Breit energies between CI and the two RMBPTs
are due mainly to higher-order Breit-Breit corrections
that are included. in CI but not in RMBPT and the
CCSD. Similar diQ'erences in Breit energies have also
been noted in heliumlike ions [1,2].

In Tables IV and V the 2s-2p~y2 and 28-2p3y2 transition

TABLE IV. Theoretical and experimental 2s-2pqyz transition energies (eV) for lithiumlike ions.

Z
10
15
20
26

32
42
54
90
92

Present work
15.8888
25.813
35.963
48.600

61.907
86.11

119.82
270.80
280.74'

RMBPT
15.8885
25.812
35.964
48.602

61.911
86.12

119.84
270.85
280.84'

CCSDb

280.52

MCDF'

25.806
35.957
48.597

86.13
119.90

281.88'

Experiment
15.8887(2)
25.814(3)
35.962(2)
48.599(l)
48.602(4)
61.902 (4)
86.10(l)

119.97(10)

280.59(9)

Reference
[31]
[32]
[33]
[34]
[35]
[36]
[36]
[37]

[38]

Blundell, Ref. [20].
Ynnerman et al. , Ref. [30].

'Indelicato and Desclaux, Ref. [18].
Includes the 0.13-eV contribution from nuclear polarization [39].

'Includes the 0.19-eV contribution from nuclear polarization [39].
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TABLE V. Theoretical and experimental 2s-2psy2 transition energies (eV) for lithiumlike ions.

z
10
15
20
26

32
42
54
90
92

Present work
16.0933
27.205
41.028
64.567

101.051
211.99
492.21

4025.11'
4459.31

RMBPT
16.0931
27.205
41.028
64.568

101.055
211.99
492.22

4025.25'
4459.70 "
4459.34"'

MgDFb

27.197
41.021
64.560

211.98
492.21

4460.09

Experiment
16.0932(2)
27.206 (3)
41.029(2)
64.566(2)
64.567(4)

101.043(12)
211.94(7)
492.34(62)

4025.23(14)
4459.37(35)

Reference
[»)
[»)
[31]
[34]
[35]
[36)
[36]
[371
[40]
[8)

Blundell, Ref. [20], except for Z = 92.
Indelicato and Desclaux, Ref. [18].

'Includes the 0.15-eV contribution from nuclear polarization [39].
Includes the 0.21-eV contribution from nuclear polarization [39].

'3ohnson et al. , Ref. [9].

energies &om the present CI calculations are compared
with experiment and with predictions from the MCDF
method [18],RMBPT [9,20], and the CCSD [30]. Our CI
results agree very well with RMBPT and experiment for
all ions covered in this investigation. Results from the
MCDF method are slightly outside experimental uncer-
tainties. A closer examination of the differences in cor-
relation energies between CI and RBMPT [28,29] shows
that deviations for the 28-2pzy2 transition in Coulomb
energies range from 0.0003 eV at Z = 10 to 0.04 eV at
Z = 92, while Breit energies differ by 0.00008 eV and
0.08 eV at Z = 10 and 92, respectively. For the 28-

2p3j2 energies, differences are 0.00014 eV and 0.01 eV
for Coulomb energies at Z = 10 and 92, respectively,
while deviations in Breit energies start from 0.00014 eV
at Z = 10 and increase to 0.35 eV at Z = 92. As we
shall show in the following, these discrepancies are par-
tially canceled by differences in QED energies, result-
ing in closer agreements in transition energies between
CI and RMBPT as shown in Tables IV and V. With-
out QED corrections, CCSD 2s-2p transition energies
for lithiumlike uranium are essentially the same as those
from RMBPT [29] and show similar differences in Breit
energies when compared with the CI results.

In Table VI we compare our QED corrections for the
2s-2p transitions with those by Blundell [20]. In general,
agreement between the two calculations is quite good,

especially for the 28-2pqy2 transition. The biggest differ-

ence is at Z = 90 for the 2s-2p3y2 transition, where our

QED correction is 0.57 eV below Blundell's value. Also
shown here is the QED energy of the 2s-2pqg2 transition
for lithiumlike uranium by Persson et al. [23,24], which is
different &om our result and Blundell's result by about
0.2 eV. While the use of model potentials to include cor-
relation corrections to the QED energies in our work and
in the work of Persson et al. is not as systematic as
Blundell's approach, not all two-photon corrections are
included in Blundell's calculations and his treatment of
higher-order QED corrections is also incomplete. From
these comparisons, it is clear that for high-Z ions such
as thorium and uranium, QED corrections can be uncer-
tain to 0.5 eV or more. But as discrepancies in Coulomb,
Breit, and QED energies between RMBPT, the CCSD,
and CI partially cancel each other, residual differences
between all three calculations are, in general, too small to
be detected by existing experiments. It thus appears that
a complete treatment of higher-order QED corrections is
needed to obtain high-precision transition energies.

In summary, we have successfully developed a large-
scale, general-purpose relativistic CI code with B-spline
basis functions for precision calculations of atomic struc-
tures. The code is applied to calculate the energy levels
of n = 2 states of lithiumlike ions. Good agreement be-
tween the present work, RMBPT, and experiment has

TABLE VI. +ED corrections (eV) for the 2s-2p transitions for lithiumlike ions.

z
10
15
20
32
42
54
90
92

This work
-0.0143
-0.067
-0.192
-1.025
-2.64
-6.32

-38.50
-41.69

28-2py /2
Blundell

-0.0141
-0.066
-0.191
-1.016
-2.63
-6.29

-38.45
-41.68

Persson et al.

-41.92

28-2p3)2
This work

-0.0137
-0.063
-0.181
-0.942
-2.40
-5.69

-36.44

Blundell
-0.0135
-0.062
-0.178
-0.929
-2.37
-5.62

-35.87

Reference [20].
"References [23,24].
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been attained. Work on more complex many-electron
systems such as Be-like ions is in progress.
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